[1]
Björkegren, J.L.M.; Lusis, A.J. Atherosclerosis: Recent developments. Cell, 2022, 185(10), 1630-1645.
[http://dx.doi.org/10.1016/j.cell.2022.04.004] [PMID: 35504280]
[http://dx.doi.org/10.1016/j.cell.2022.04.004] [PMID: 35504280]
[2]
Gimbrone, M.A., Jr; García-Cardeña, G. Endothelial cell dysfunction and the pathobiology of atherosclerosis. Circ. Res., 2016, 118(4), 620-636.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306301] [PMID: 26892962]
[3]
Caiati, C. Contrast-enhanced ultrasound reveals that lipoprotein apheresis improves myocardial but not skeletal muscle perfusion. JACC Cardiovasc. Imaging, 2019, 12(8), 1441-1443.
[http://dx.doi.org/10.1016/j.jcmg.2018.06.029] [PMID: 30553683]
[http://dx.doi.org/10.1016/j.jcmg.2018.06.029] [PMID: 30553683]
[4]
Bengtsson, E.; Hultman, K.; Edsfeldt, A.; Persson, A.; Nitulescu, M.; Nilsson, J.; Gonçalves, I.; Björkbacka, H. CD163+ macrophages are associated with a vulnerable plaque phenotype in human carotid plaques. Sci. Rep., 2020, 10(1), 14362.
[http://dx.doi.org/10.1038/s41598-020-71110-x] [PMID: 32873809]
[http://dx.doi.org/10.1038/s41598-020-71110-x] [PMID: 32873809]
[5]
Jirillo, E.; Lisco, G.; Giagulli, V.A.; De Pergola, G.; Guastamacchia, E.; Triggiani, V. The pathogenic role of foam cells in atherogenesis: do they represent novel therapeutic targets? Endocr. Metab. Immune Disord. Drug Targets, 2022, 22(7), 765-777.
[http://dx.doi.org/10.2174/1871530322666220107114313] [PMID: 34994321]
[http://dx.doi.org/10.2174/1871530322666220107114313] [PMID: 34994321]
[6]
Gräbner, R.; Lötzer, K.; Döpping, S.; Hildner, M.; Radke, D.; Beer, M.; Spanbroek, R.; Lippert, B.; Reardon, C.A.; Getz, G.S.; Fu, Y.X.; Hehlgans, T.; Mebius, R.E.; van der Wall, M.; Kruspe, D.; Englert, C.; Lovas, A.; Hu, D.; Randolph, G.J.; Weih, F.; Habenicht, A.J.R. Lymphotoxin β receptor signaling promotes tertiary lymphoid organogenesis in the aorta adventitia of aged ApoE−/− mice. J. Exp. Med., 2009, 206(1), 233-248.
[http://dx.doi.org/10.1084/jem.20080752] [PMID: 19139167]
[http://dx.doi.org/10.1084/jem.20080752] [PMID: 19139167]
[7]
Hu, D.; Mohanta, S.K.; Yin, C.; Peng, L.; Ma, Z.; Srikakulapu, P.; Grassia, G.; MacRitchie, N.; Dever, G.; Gordon, P.; Burton, F.L.; Ialenti, A.; Sabir, S.R.; McInnes, I.B.; Brewer, J.M.; Garside, P.; Weber, C.; Lehmann, T.; Teupser, D.; Habenicht, L.; Beer, M.; Grabner, R.; Maffia, P.; Weih, F.; Habenicht, A.J.R. Artery tertiary lymphoid organs control aorta immunity and protect against atherosclerosis via vascular smooth muscle cell lymphotoxin β receptors. Immunity, 2015, 42(6), 1100-1115.
[http://dx.doi.org/10.1016/j.immuni.2015.05.015] [PMID: 26084025]
[http://dx.doi.org/10.1016/j.immuni.2015.05.015] [PMID: 26084025]
[8]
Mohanta, S.K.; Peng, L.; Li, Y.; Lu, S.; Sun, T.; Carnevale, L.; Perrotta, M.; Ma, Z.; Förstera, B.; Stanic, K.; Zhang, C.; Zhang, X.; Szczepaniak, P.; Bianchini, M.; Saeed, B.R.; Carnevale, R.; Hu, D.; Nosalski, R.; Pallante, F.; Beer, M.; Santovito, D.; Ertürk, A.; Mettenleiter, T.C.; Klupp, B.G.; Megens, R.T.A.; Steffens, S.; Pelisek, J.; Eckstein, H.H.; Kleemann, R.; Habenicht, L.; Mallat, Z.; Michel, J.B.; Bernhagen, J.; Dichgans, M.; D’Agostino, G.; Guzik, T.J.; Olofsson, P.S.; Yin, C.; Weber, C.; Lembo, G.; Carnevale, D.; Habenicht, A.J.R. Neuroimmune cardiovascular interfaces control atherosclerosis. Nature, 2022, 605(7908), 152-159.
[http://dx.doi.org/10.1038/s41586-022-04673-6] [PMID: 35477759]
[http://dx.doi.org/10.1038/s41586-022-04673-6] [PMID: 35477759]
[9]
Ait-Oufella, H.; Salomon, B.L.; Potteaux, S.; Robertson, A.K.L.; Gourdy, P.; Zoll, J.; Merval, R.; Esposito, B.; Cohen, J.L.; Fisson, S.; Flavell, R.A.; Hansson, G.K.; Klatzmann, D.; Tedgui, A.; Mallat, Z. Natural regulatory T cells control the development of atherosclerosis in mice. Nat. Med., 2006, 12(2), 178-180.
[http://dx.doi.org/10.1038/nm1343] [PMID: 16462800]
[http://dx.doi.org/10.1038/nm1343] [PMID: 16462800]
[10]
Tam, S.J.; Watts, R.J. Connecting vascular and nervous system development: Angiogenesis and the blood-brain barrier. Annu. Rev. Neurosci., 2010, 33(1), 379-408.
[http://dx.doi.org/10.1146/annurev-neuro-060909-152829] [PMID: 20367445]
[http://dx.doi.org/10.1146/annurev-neuro-060909-152829] [PMID: 20367445]
[11]
Davern, P.J. A role for the lateral parabrachial nucleus in cardiovascular function and fluid homeostasis. Front. Physiol., 2014, 5, 436.
[http://dx.doi.org/10.3389/fphys.2014.00436] [PMID: 25477821]
[http://dx.doi.org/10.3389/fphys.2014.00436] [PMID: 25477821]
[12]
Libby, P.; Ridker, P.M.; Hansson, G.K. Progress and challenges in translating the biology of atherosclerosis. Nature, 2011, 473(7347), 317-325.
[http://dx.doi.org/10.1038/nature10146] [PMID: 21593864]
[http://dx.doi.org/10.1038/nature10146] [PMID: 21593864]
[13]
Carmeliet, P.; Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature, 2005, 436(7048), 193-200.
[http://dx.doi.org/10.1038/nature03875] [PMID: 16015319]
[http://dx.doi.org/10.1038/nature03875] [PMID: 16015319]
[14]
Steensma, D.P.; Bejar, R.; Jaiswal, S.; Lindsley, R.C.; Sekeres, M.A.; Hasserjian, R.P.; Ebert, B.L. Clonal hematopoiesis of indeterminate potential and its distinction from myelodysplastic syndromes. Blood, 2015, 126(1), 9-16.
[http://dx.doi.org/10.1182/blood-2015-03-631747] [PMID: 25931582]
[http://dx.doi.org/10.1182/blood-2015-03-631747] [PMID: 25931582]
[15]
Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; Higgins, J.M.; Moltchanov, V.; Kuo, F.C.; Kluk, M.J.; Henderson, B.; Kinnunen, L.; Koistinen, H.A.; Ladenvall, C.; Getz, G.; Correa, A.; Banahan, B.F.; Gabriel, S.; Kathiresan, S.; Stringham, H.M.; McCarthy, M.I.; Boehnke, M.; Tuomilehto, J.; Haiman, C.; Groop, L.; Atzmon, G.; Wilson, J.G.; Neuberg, D.; Altshuler, D.; Ebert, B.L. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med., 2014, 371(26), 2488-2498.
[http://dx.doi.org/10.1056/NEJMoa1408617] [PMID: 25426837]
[http://dx.doi.org/10.1056/NEJMoa1408617] [PMID: 25426837]
[16]
Jaiswal, S.; Natarajan, P.; Silver, A.J.; Gibson, C.J.; Bick, A.G.; Shvartz, E.; McConkey, M.; Gupta, N.; Gabriel, S.; Ardissino, D.; Baber, U.; Mehran, R.; Fuster, V.; Danesh, J.; Frossard, P.; Saleheen, D.; Melander, O.; Sukhova, G.K.; Neuberg, D.; Libby, P.; Kathiresan, S.; Ebert, B.L. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med., 2017, 377(2), 111-121.
[http://dx.doi.org/10.1056/NEJMoa1701719] [PMID: 28636844]
[http://dx.doi.org/10.1056/NEJMoa1701719] [PMID: 28636844]
[17]
Zhang, Q.; Zhao, K.; Shen, Q.; Han, Y.; Gu, Y.; Li, X.; Zhao, D.; Liu, Y.; Wang, C.; Zhang, X.; Su, X.; Liu, J.; Ge, W.; Levine, R.L.; Li, N.; Cao, X. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6. Nature, 2015, 525(7569), 389-393.
[http://dx.doi.org/10.1038/nature15252] [PMID: 26287468]
[http://dx.doi.org/10.1038/nature15252] [PMID: 26287468]
[18]
Fuster, J.J.; MacLauchlan, S.; Zuriaga, M.A.; Polackal, M.N.; Ostriker, A.C.; Chakraborty, R.; Wu, C.L.; Sano, S.; Muralidharan, S.; Rius, C.; Vuong, J.; Jacob, S.; Muralidhar, V.; Robertson, A.A.B.; Cooper, M.A.; Andrés, V.; Hirschi, K.K.; Martin, K.A.; Walsh, K. Clonal hematopoiesis associated with TET2 deficiency accelerates atherosclerosis development in mice. Science, 2017, 355(6327), 842-847.
[http://dx.doi.org/10.1126/science.aag1381] [PMID: 28104796]
[http://dx.doi.org/10.1126/science.aag1381] [PMID: 28104796]
[19]
Cobo, I.; Tanaka, T.N.; Chandra Mangalhara, K.; Lana, A.; Yeang, C.; Han, C.; Schlachetzki, J.; Challcombe, J.; Fixsen, B.R.; Sakai, M.; Li, R.Z.; Fields, H.; Mokry, M.; Tsai, R.G.; Bejar, R.; Prange, K.; de Winther, M.; Shadel, G.S.; Glass, C.K. DNA methyltransferase 3 alpha and TET methylcytosine dioxygenase 2 restrain mitochondrial DNA-mediated interferon signaling in macrophages. Immunity, 2022, 55(8), 1386-1401.e10.
[http://dx.doi.org/10.1016/j.immuni.2022.06.022] [PMID: 35931086]
[http://dx.doi.org/10.1016/j.immuni.2022.06.022] [PMID: 35931086]
[20]
Pileri, F.; Natoli, G. Clonal hematopoiesis, inflammation, and cardiovascular disorders: A mitochondrial connection. Trends Immunol., 2022, 43(9), 693-695.
[http://dx.doi.org/10.1016/j.it.2022.07.009] [PMID: 35945112]
[http://dx.doi.org/10.1016/j.it.2022.07.009] [PMID: 35945112]
[21]
Buck, L.; Axel, R. A novel multigene family may encode odorant receptors: A molecular basis for odor recognition. Cell, 1991, 65(1), 175-187.
[http://dx.doi.org/10.1016/0092-8674(91)90418-X] [PMID: 1840504]
[http://dx.doi.org/10.1016/0092-8674(91)90418-X] [PMID: 1840504]
[22]
Lee, S.J.; Depoortere, I.; Hatt, H. Therapeutic potential of ectopic olfactory and taste receptors. Nat. Rev. Drug Discov., 2019, 18(2), 116-138.
[http://dx.doi.org/10.1038/s41573-018-0002-3] [PMID: 30504792]
[http://dx.doi.org/10.1038/s41573-018-0002-3] [PMID: 30504792]
[23]
Orecchioni, M.; Kobiyama, K.; Winkels, H.; Ghosheh, Y.; McArdle, S.; Mikulski, Z.; Kiosses, W.B.; Fan, Z.; Wen, L.; Jung, Y.; Roy, P.; Ali, A.J.; Miyamoto, Y.; Mangan, M.; Makings, J.; Wang, Z.; Denn, A.; Vallejo, J.; Owens, M.; Durant, C.P.; Braumann, S.; Mader, N.; Li, L.; Matsunami, H.; Eckmann, L.; Latz, E.; Wang, Z.; Hazen, S.L.; Ley, K. Olfactory receptor 2 in vascular macrophages drives atherosclerosis by NLRP3-dependent IL-1 production. Science, 2022, 375(6577), 214-221.
[http://dx.doi.org/10.1126/science.abg3067] [PMID: 35025664]
[http://dx.doi.org/10.1126/science.abg3067] [PMID: 35025664]
[24]
Wang, C.; Andreasson, K.I. Odorant receptors in macrophages: potential targets for atherosclerosis. Trends Immunol., 2022, 43(4), 262-264.
[http://dx.doi.org/10.1016/j.it.2022.02.006] [PMID: 35283015]
[http://dx.doi.org/10.1016/j.it.2022.02.006] [PMID: 35283015]