Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Schisandrin B Inhibits Cell Viability and Malignant Progression of Melanoma Cells via Wnt/β-catenin Signaling Pathway

Author(s): Jiayi Chen, Lingzhao Zhang, Yihuan Pu, Yangmei Chen, Yuxin Li, Xingyu Pan and Jin Chen*

Volume 23, Issue 15, 2023

Published on: 22 May, 2023

Page: [1765 - 1773] Pages: 9

DOI: 10.2174/1871520623666230503094517

Price: $65

Abstract

Background: Melanoma is of great interest due to its aggressive behavior and less favorable prognosis. The need for the development of novel drugs for the treatment of melanoma is urgent. Considerable evidence indicated that Schisandrin B (Sch B), a bioactive compound extracted from Schisandra chinensis, has numerous anti-tumor properties in multiple malignant tumors. A few studies have reported the effect of Sch B on melanogenesis in the melanoma B16F10 cell line; however, the specific anti-tumor effects and mechanisms need to be further explored.

Objective: This study aimed to investigate the effects of Sch B on the cell viability, migration, invasion, and cell cycleblocking of melanoma cells and explore its potential anti-tumor mechanism in vitro and in vivo.

Methods: Melanoma cells (A375 and B16) were treated with different concentrations of Sch B (0, 20, 40, 60, or 80 μM), with dimethyl sulfoxide (DMSO) as control. The inhibitory effect of Sch B on A375 and B16 melanoma cells was verified by crystal violet assay and CCK8 assay. The flow cytometry was performed to observe cell cycle blocking. The effect of Sch B on the migration and invasion of melanoma cells was detected by wound healing assay and transwell assay, respectively. Western blot analysis was used to determine protein expression levels. The growth of the A375 melanoma xenograft-treated groups and immunohistochemical staining were conducted to assess the anti-tumor effect of Sch B in vivo.

Results: The crystal violet assay and CCK8 assay showed that Sch B significantly inhibited melanoma cell viability in a dose-dependent manner. Meanwhile, the flow cytometry analysis revealed that Sch B induced melanoma cell cycleblocking at the G1/S phase. In addition, the wound healing assay and transwell assay showed that Sch B inhibited the migration and invasion of melanoma cells. Furthermore, by establishing an animal model, we found that Sch B significantly inhibited the growth of melanoma in vivo. The potential mechanism could be that Sch B inhibited the activity of the Wnt/β-catenin signaling pathway.

Conclusion: These findings indicated that Sch B inhibits the cell viability and malignant progression of melanoma cells via the Wnt/β-catenin pathway and induces cell cycle arrest. Our study suggests that Sch B has potential as a bioactive compound for the development of new drugs for melanoma.

Graphical Abstract

[1]
Davis, L.E.; Shalin, S.C.; Tackett, A.J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther., 2019, 20(11), 1366-1379.
[http://dx.doi.org/10.1080/15384047.2019.1640032] [PMID: 31366280]
[2]
Bomar, L.; Senithilnathan, A.; Ahn, C. Systemic therapies for advanced melanoma. Dermatol. Clin., 2019, 37(4), 409-423.
[http://dx.doi.org/10.1016/j.det.2019.05.001] [PMID: 31466582]
[3]
Czarnecka, A.M.; Bartnik, E.; Fiedorowicz, M.; Rutkowski, P. Targeted therapy in melanoma and mechanisms of resistance. Int. J. Mol. Sci., 2020, 21(13), 4576.
[http://dx.doi.org/10.3390/ijms21134576] [PMID: 32605090]
[4]
Namikawa, K.; Yamazaki, N. Targeted therapy and immunotherapy for melanoma in Japan. Curr. Treat. Options Oncol., 2019, 20(1), 7.
[http://dx.doi.org/10.1007/s11864-019-0607-8] [PMID: 30675668]
[5]
Nasser, M.I.; Zhu, S.; Chen, C.; Zhao, M.; Huang, H.; Zhu, P. A comprehensive review on schisandrin B and its biological properties. Oxid. Med. Cell. Longev., 2020, 2020, 2172740.
[http://dx.doi.org/10.1155/2020/2172740] [PMID: 32256947]
[6]
Hu, X.L.; Guo, C.; Hou, J.Q.; Feng, J.H.; Zhang, X.Q.; Xiong, F.; Ye, W.C.; Wang, H. Stereoisomers of schisandrin B are potent ATP competitive GSK-3β inhibitors with neuroprotective effects against Alzheimer’s Disease: Stereochemistry and biological activity. ACS Chem. Neurosci., 2019, 10(2), 996-1007.
[http://dx.doi.org/10.1021/acschemneuro.8b00252] [PMID: 29944335]
[7]
Chen, N.; Ko, M. Schisandrin B-induced glutathione antioxidant response and cardioprotection are mediated by reactive oxidant species production in rat hearts. Biol. Pharm. Bull., 2010, 33(5), 825-829.
[http://dx.doi.org/10.1248/bpb.33.825] [PMID: 20460761]
[8]
Leong, P.K.; Ko, K.M.; Schisandrin, B. A double-edged sword in nonalcoholic fatty liver disease. Oxid. Med. Cell. Longev., 2016, 2016, 6171658.
[http://dx.doi.org/10.1155/2016/6171658] [PMID: 27847552]
[9]
Yan, C.; Gao, L.; Qiu, X.; Deng, C. Schisandrin B synergizes docetaxel-induced restriction of growth and invasion of cervical cancer cells in vitro and in vivo. Ann. Transl. Med., 2020, 8(18), 1157.
[http://dx.doi.org/10.21037/atm-20-6109] [PMID: 33241006]
[10]
Ma, R.; Zhan, Y.; Zhang, Y.; Wu, L.; Wang, X.; Guo, M. Schisandrin B ameliorates non-alcoholic liver disease through anti-inflammation activation in diabetic mice. Drug Dev. Res., 2021, ddr.21905
[http://dx.doi.org/10.1002/ddr.21905] [PMID: 34927282]
[11]
Wang, Y.; Chen, J.; Huang, Y.; Yang, S.; Tan, T.; Wang, N.; Zhang, J.; Ye, C.; Wei, M.; Luo, J.; Luo, X. Schisandrin B suppresses osteosarcoma lung metastasis in vivo by inhibiting the activation of the Wnt/β catenin and PI3K/Akt signaling pathways. Oncol. Rep., 2022, 47(3), 50.
[http://dx.doi.org/10.3892/or.2022.8261] [PMID: 35029287]
[12]
He, L.; Chen, H.; Qi, Q.; Wu, N.; Wang, Y.; Chen, M.; Feng, Q.; Dong, B.; Jin, R.; Jiang, L. Schisandrin B suppresses gastric cancer cell growth and enhances the efficacy of chemotherapy drug 5-FU in vitro and in vivo. Eur. J. Pharmacol., 2022, 920, 174823.
[http://dx.doi.org/10.1016/j.ejphar.2022.174823] [PMID: 35157912]
[13]
Li, Q.; Lu, X.; Wang, C.; Cai, L.; Lu, J.; Wu, J.; Zhuge, Q.; Zheng, W.; Su, Z. Antiproliferative and apoptosis-inducing activity of schisandrin B against human glioma cells. Cancer Cell Int., 2015, 15(1), 12.
[http://dx.doi.org/10.1186/s12935-015-0160-x] [PMID: 25685066]
[14]
Zhao, N.; Su, X.; Li, H.; Li, Z.; Wang, Y.; Chen, J.; Zhuang, W. Schisandrin B inhibits α-melanocyte-stimulating hormone-induced melanogenesis in B16F10 cells via downregulation of MAPK and CREB signaling pathways. Biosci. Biotechnol. Biochem., 2021, 85(4), 834-841.
[http://dx.doi.org/10.1093/bbb/zbaa100] [PMID: 33580697]
[15]
Samulitis, B.K.; Dorr, R.T.; Chow, H.H. Interaction of dacarbazine and imexon, in vitro and in vivo, in human A375 melanoma cells. Anticancer Res., 2011, 31(9), 2781-2785.
[PMID: 21868520]
[16]
Sadhu, S.S.; Wang, S.; Averineni, R.K.; Seefeldt, T.; Yang, Y.; Guan, X. In vitro and in vivo inhibition of melanoma growth and metastasis by the drug combination of celecoxib and dacarbazine. Melanoma Res., 2016, 26(6), 572-579.
[http://dx.doi.org/10.1097/CMR.0000000000000291] [PMID: 27540834]
[17]
Chanda, M.; Cohen, M.S. Advances in the discovery and development of melanoma drug therapies. Expert Opin. Drug Discov., 2021, 16(11), 1319-1347.
[http://dx.doi.org/10.1080/17460441.2021.1942834] [PMID: 34157926]
[18]
Olbryt, M. Potential biomarkers of skin melanoma resistance to targeted therapy—present state and perspectives. Cancers, 2022, 14(9), 2315.
[http://dx.doi.org/10.3390/cancers14092315] [PMID: 35565444]
[19]
Clevers, H.; Nusse, R. Wnt/β-catenin signaling and disease. Cell, 2012, 149(6), 1192-1205.
[http://dx.doi.org/10.1016/j.cell.2012.05.012] [PMID: 22682243]
[20]
Sun, C.; Wang, L.; Huang, S.; Heynen, G.J.J.E.; Prahallad, A.; Robert, C.; Haanen, J.; Blank, C.; Wesseling, J.; Willems, S.M.; Zecchin, D.; Hobor, S.; Bajpe, P.K.; Lieftink, C.; Mateus, C.; Vagner, S.; Grernrum, W.; Hofland, I.; Schlicker, A.; Wessels, L.F.A.; Beijersbergen, R.L.; Bardelli, A.; Di Nicolantonio, F.; Eggermont, A.M.M.; Bernards, R. Reversible and adaptive resistance to BRAF(V600E) inhibition in melanoma. Nature, 2014, 508(7494), 118-122.
[http://dx.doi.org/10.1038/nature13121] [PMID: 24670642]
[21]
Heinzerling, L.; Eigentler, T.K.; Fluck, M.; Hassel, J.C.; Heller-Schenck, D.; Leipe, J.; Pauschinger, M.; Vogel, A.; Zimmer, L.; Gutzmer, R. Tolerability of BRAF/MEK inhibitor combinations: Adverse event evaluation and management. ESMO Open, 2019, 4(3), e000491.
[http://dx.doi.org/10.1136/esmoopen-2019-000491] [PMID: 31231568]
[22]
Petrova, V.; Arkhypov, I.; Weber, R.; Groth, C.; Altevogt, P.; Utikal, J.; Umansky, V. Modern aspects of immunotherapy with checkpoint inhibitors in melanoma. Int. J. Mol. Sci., 2020, 21(7), 2367.
[http://dx.doi.org/10.3390/ijms21072367] [PMID: 32235439]
[23]
Xiang, Y.; Guo, Z.; Zhu, P.; Chen, J.; Huang, Y. Traditional Chinese medicine as a cancer treatment: Modern perspectives of ancient but advanced science. Cancer Med., 2019, 8(5), 1958-1975.
[http://dx.doi.org/10.1002/cam4.2108] [PMID: 30945475]
[24]
Wang, J.; Wong, Y.K.; Liao, F. What has traditional Chinese medicine delivered for modern medicine? Expert Rev. Mol. Med., 2018, 20, e4.
[http://dx.doi.org/10.1017/erm.2018.3] [PMID: 29747718]
[25]
Nasser, M.I.; Han, T.; Adlat, S.; Tian, Y.; Jiang, N. Inhibitory effects of Schisandrin B on human prostate cancer cells. Oncol. Rep., 2019, 41(1), 677-685.
[PMID: 30320364]
[26]
Dai, X.; Yin, C.; Guo, G.; Zhang, Y.; Zhao, C.; Qian, J.; Wang, O.; Zhang, X.; Liang, G. Schisandrin B exhibits potent anticancer activity in triple negative breast cancer by inhibiting STAT3. Toxicol. Appl. Pharmacol., 2018, 358, 110-119.
[http://dx.doi.org/10.1016/j.taap.2018.09.005] [PMID: 30195018]
[27]
Wang, S.; Wang, A.; Shao, M.; Lin, L.; Li, P.; Wang, Y. Schisandrin B reverses doxorubicin resistance through inhibiting P-glycoprotein and promoting proteasome-mediated degradation of survivin. Sci. Rep., 2017, 7(1), 8419.
[http://dx.doi.org/10.1038/s41598-017-08817-x] [PMID: 28827665]
[28]
Lv, X.J.; Zhao, L.J.; Hao, Y.Q.; Su, Z.Z.; Li, J.Y.; Du, Y.W.; Zhang, J. Schisandrin B inhibits the proliferation of human lung adenocarcinoma A549 cells by inducing cycle arrest and apoptosis. Int. J. Clin. Exp. Med., 2015, 8(5), 6926-6936.
[PMID: 26221229]
[29]
Tan, S.; Zheng, Z.; Liu, T.; Yao, X.; Yu, M.; Ji, Y. Schisandrin B induced ROS-mediated autophagy and Th1/Th2 imbalance via Selenoproteins in Hepa1-6 Cells. Front. Immunol., 2022, 13, 857069.
[http://dx.doi.org/10.3389/fimmu.2022.857069] [PMID: 35419003]
[30]
He, X.R.; Han, S.Y.; Li, X.H.; Zheng, W.X.; Pang, L.N.; Jiang, S.T.; Li, P.P. Chinese medicine Bu-Fei decoction attenuates epithelial-mesenchymal transition of non-small cell lung cancer via inhibition of transforming growth factor β1 signaling pathway in vitro and in vivo. J. Ethnopharmacol., 2017, 204, 45-57.
[http://dx.doi.org/10.1016/j.jep.2017.04.008] [PMID: 28412214]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy