Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

DFT, Molecular Docking, Bioactivity and ADME Analyses of Vic-dioxim Ligand Containing Hydrazone Group and its Zn(II) Complex

Author(s): Şerife Gökçe Çalişkan*

Volume 20, Issue 3, 2024

Published on: 15 May, 2023

Page: [264 - 273] Pages: 10

DOI: 10.2174/1573409919666230503094400

Price: $65

Abstract

Background: Cancer is one of the diseases affecting a large population worldwide and resulting in death. Finding new anti-cancer drugs that are target-focused and have low toxicity is of great importance.

Objective: This study aimed to investigate the effects of vic-dioxime derivatives carrying hydrazone group and its Zn(II) complex on cancer using molecular docking, bioactivity and quantum chemical calculations.

Methods: Molecular docking studies were performed on epidermal growth factor receptor and vascular endothelial growth factor receptor 2 target proteins. Furthermore, molecular geometry was performed, and the frontier molecular orbitals, Mulliken charges and molecular electron density distribution were evaluated using density functional theory. Also, the bioactivity parameters of the compounds were evaluated, and ADME analysis was performed using web-based tools.

Results: Higher binding affinity was observed for Zn(II) complex with target proteins vascular endothelial growth factor receptor 2 and against epidermal growth factor receptor when compared with LH2. Only the Zn(II) complex against the epidermal growth factor receptor had ligand efficiency and fit quality in the valid range. Furthermore, LH2 has the most potent electrophilic ability (acceptor) among other compounds. Moreover, both LH2 and Zn(II) complexes strongly satisfy Lipinski’s rule of five.

Conclusion: In conclusion, these novel compounds, especially Zn(II) complex, can be new candidates for anticancer drug development studies which are target-focused and have low toxicity.

Graphical Abstract

[1]
Yaseen, Y.; Kubba, A.; Shihab, W.; Tahtamouni, L. Synthesis, docking study, and structure-activity relationship of novel niflumic acid derivatives acting as anticancer agents by inhibiting VEGFR or EGFR tyrosine kinase activities. Pharmacia, 2022, 69(3), 595-614.
[http://dx.doi.org/10.3897/pharmacia.69.e86504]
[2]
Haider, K.; Rehman, S.; Pathak, A.; Najmi, A.K.; Yar, M.S. Advances in 2‐substituted benzothiazole scaffold‐based chemotherapeutic agents. Arch. Pharm., 2021, 354(12), 2100246.
[http://dx.doi.org/10.1002/ardp.202100246] [PMID: 34467567]
[3]
Amadio, M.; Govoni, S.; Pascale, A. Targeting VEGF in eye neovascularization: What’s new? Pharmacol. Res., 2016, 103, 253-269.
[http://dx.doi.org/10.1016/j.phrs.2015.11.027] [PMID: 26678602]
[4]
Alkahtani, H.M.; Alanazi, M.M.; Aleanizy, F.S.; Alqahtani, F.Y.; Alhoshani, A.; Alanazi, F.E.; Almehizia, A.A.; Abdalla, A.N.; Alanazi, M.G.; El-Azab, A.S.; Abdel-Aziz, A.A.M. Synthesis, anticancer, apoptosis-inducing activities and EGFR and VEGFR2 assay mechanistic studies of 5,5-diphenylimidazolidine-2,4-dione derivatives: Molecular docking studies. Saudi Pharm. J., 2019, 27(5), 682-693.
[http://dx.doi.org/10.1016/j.jsps.2019.04.003] [PMID: 31297023]
[5]
Altamimi, A.S.; El-Azab, A.S.; Abdelhamid, S.G.; Alamri, M.A.; Bayoumi, A.H.; Alqahtani, S.M.; Alabbas, A.B.; Altharawi, A.I.; Alossaimi, M.A.; Mohamed, M.A. Synthesis, anticancer screening of some novel trimethoxy quinazolines and VEGFR2, EGFR tyrosine kinase inhibitors assay; molecular docking studies. Molecules, 2021, 26(10), 2992.
[http://dx.doi.org/10.3390/molecules26102992] [PMID: 34069962]
[6]
Shakdofa, M.M.E.; Morsy, N.A.; Rasras, A.J.; Al-Hakimi, A.N.; Shakdofa, A.M.E. Synthesis, characterization, and density functional theory studies of hydrazone–oxime ligand derived from 2,4,6‐trichlorophenyl hydrazine and its metal complexes searching for new antimicrobial drugs. Appl. Organomet. Chem., 2021, 35(2), e6111.
[http://dx.doi.org/10.1002/aoc.6111]
[7]
Sarikavakli, N. Morphological and termal studies of synthesized ethanehydroximohydrazide (1Z, 2E)-N′-[(1Z)-1-biphenyl-4-yl-2-bromoethylidene]-2-(hydroxyimino) and its metal complexes. Dialogo J., 2016, 3, 163-172.
[http://dx.doi.org/10.18638/dialogo.2016.3.1.15]
[8]
Jurisson, S.S.; Lydon, J.D. Potential technetium small molecule radiopharmaceuticals. Chem. Rev., 1999, 99(9), 2205-2218.
[http://dx.doi.org/10.1021/cr980435t] [PMID: 11749479]
[9]
Sevagapandian, S.; Rajagopal, G.; Nehru, K.; Athappan, P. Copper(II), nickel(II), cobalt(II) and oxovanadium(IV) complexes of substituted β-hydroxyiminoanilides. Trans. Met. Chem., 2000, 25(4), 388-393.
[http://dx.doi.org/10.1023/A:1007067326655]
[10]
Sellmann, D.; Utz, J.; Heinemann, F.W. Transition-metal complexes with sulfur ligands. electron-rich Fe and Ru complexes with [MN2S3] cores containing the new pentadentate ligand ‘N2H2S3’2- (= 2,2‘-Bis(2-mercaptophenylamino)diethyl sulfide(2−)). Inorg. Chem., 1999, 38(3), 459-466.
[http://dx.doi.org/10.1021/ic980383q] [PMID: 11673949]
[11]
Laranjeira, M.C.M.; Marusak, R.A.; Lappin, A.G. Driving force effects in proton coupled electron transfer. Inorg. Chim. Acta, 2000, 300-302, 186-190.
[http://dx.doi.org/10.1016/S0020-1693(99)00558-7]
[12]
Rakha, T.H. Mononuclear and binuclear chelates of biacetylmonoxime picolinoylhydrazone. Trans. Met. Chem., 1999, 24(6), 659-665.
[http://dx.doi.org/10.1023/A:1006936101143]
[13]
Ragavendran, J.V.; Sriram, D.; Patel, S.K.; Reddy, I.V.; Bharathwajan, N.; Stables, J.; Yogeeswari, P. Design and synthesis of anticonvulsants from a combined phthalimide-GABA-anilide and hydrazone pharmacophore. Eur. J. Med. Chem., 2007, 42(2), 146-151.
[http://dx.doi.org/10.1016/j.ejmech.2006.08.010] [PMID: 17011080]
[14]
Ainscough, E.W.; Brodie, A.M.; Dobbs, A.J.; Ranford, J.D.; Waters, J.M. Antitumour copper(II) salicylaldehyde benzoylhydrazone (H2sb) complexes: physicochemical properties and the single-crystal X-ray structures of [Cu(H2sb)(CCl3CO2)22] and [Cu(Hsb) (ClO4) (C2H5OH)2] and the related salicylaldehyde acetylhydrazone (H2sa) complex, [Cu(Hsa)Cl(H2O)]•H2O. Inorg. Chim. Acta, 1998, 267(1), 27-38.
[http://dx.doi.org/10.1016/S0020-1693(97)05548-5]
[15]
Abou-Seri, S.M.; Eissa, A.A.M.; Behery, M.G.M.; Omar, F.A. Synthesis, in vitro anticancer activity and in silico studies of certain isoxazole-based carboxamides, ureates, and hydrazones as potential inhibitors of VEGFR2. Bioorg. Chem., 2021, 116, 105334.
[http://dx.doi.org/10.1016/j.bioorg.2021.105334] [PMID: 34534755]
[16]
Govindaiah, S.; Naha, S.; Madhuchakrapani Rao, T.; Revanasiddappa, B.C.; Srinivasa, S.M.; Parashuram, L.; Velmathi, S.; Sreenivasa, S. Sulfated magnesium zirconate catalyzed synthesis, antimicrobial, antioxidant, anti-inflammatory, and anticancer activity of benzo[d]thiazole-hydrazone analogues and its molecular docking. Results Chem., 2021, 3, 100197.
[http://dx.doi.org/10.1016/j.rechem.2021.100197]
[17]
Sarikavakli, N.; İrez, G. Synthesis and complex formation of some novel vicdioxime derivatives of hydrazones. Turk. J. Chem., 2005, 29(1), 107-116.
[18]
Sarıkavaklı N.; Çakıcı H.T. Synthesis and characterization of Co(II), Ni(II), Cu(II) and Zn(II) complexes of glyoxime hydrazone. Asian J. Chem., 2011, 23(3), 1321.
[19]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A., Jr; Peralta, J.E. Gaussian 09, Revision B.01; Gaussian Inc.: Wallingford, 2010.
[20]
Becke, A.D. Density‐functional thermochemistry. III. The role of exact exchange. J. Chem. Phys., 1993, 98(7), 5648-5652.
[http://dx.doi.org/10.1063/1.464913]
[21]
Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett., 1989, 157(3), 200-206.
[http://dx.doi.org/10.1016/0009-2614(89)87234-3]
[22]
Al Zoubi, W.; Ko, Y.G. Enhanced corrosion protection performance by organic-inorganic materials containing thiocarbonyl compounds. Sci. Rep., 2018, 8(1), 10925.
[http://dx.doi.org/10.1038/s41598-018-29299-5] [PMID: 30026470]
[23]
Koopmans, T. Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines. Atoms. Physica, 1934, 1(1-6), 104-113.
[http://dx.doi.org/10.1016/S0031-8914(34)90011-2]
[24]
Allal, H.; Belhocine, Y.; Zouaoui, E. Computational study of some thiophene derivatives as aluminium corrosion inhibitors. J. Mol. Liq., 2018, 265, 668-678.
[http://dx.doi.org/10.1016/j.molliq.2018.05.099]
[25]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[26]
Onawole, A.T.; Kolapo, T.U.; Sulaiman, K.O.; Adegoke, R.O. Structure based virtual screening of the Ebola virus trimeric glycoprotein using consensus scoring. Comput. Biol. Chem., 2018, 72, 170-180.
[http://dx.doi.org/10.1016/j.compbiolchem.2017.11.006] [PMID: 29361403]
[27]
Hopkins, A.L.; Groom, C.R.; Alex, A. Ligand efficiency: A useful metric for lead selection. Drug Discov. Today, 2004, 9(10), 430-431.
[http://dx.doi.org/10.1016/S1359-6446(04)03069-7] [PMID: 15109945]
[28]
Reynolds, C.H.; Bembenek, S.D.; Tounge, B.A. The role of molecular size in ligand efficiency. Bioorg. Med. Chem. Lett., 2007, 17(15), 4258-4261.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.038] [PMID: 17532632]
[29]
Schultes, S.; de Graaf, C.; Haaksma, E.E.J.; de Esch, I.J.P.; Leurs, R.; Krämer, O. Ligand efficiency as a guide in fragment hit selection and optimization. Drug Discov. Today. Technol., 2010, 7(3), e157-e162.
[http://dx.doi.org/10.1016/j.ddtec.2010.11.003] [PMID: 24103767]
[30]
Available From: www.molinspiration.com
[31]
Lee, C.; Yang, W.; Parr, R.G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B Condens. Matter, 1988, 37(2), 785-789.
[http://dx.doi.org/10.1103/PhysRevB.37.785] [PMID: 9944570]
[32]
Ferdous, J.M.A.; Kawsar, S. Thermochemical, molecular docking and ADMET studies of some methyl α-D-glucopyranoside derivatives. Chittagong Univ. J. Sci., 2021, 42(1), 58-83.
[http://dx.doi.org/10.3329/cujs.v42i1.54238]
[33]
Rupa, S.A.; Moni, M.R.; Patwary, M.A.M.; Mahmud, M.M.; Haque, M.A.; Uddin, J.; Abedin, S.M.T. Synthesis of novel tritopic hydrazine ligands: spectroscopy, biological activity, DFT, and molecular docking studies. Molecules, 2022, 27(5), 1656.
[http://dx.doi.org/10.3390/molecules27051656] [PMID: 35268756]
[34]
Sulaiman, K.O.; Kolapo, T.U.; Onawole, A.T.; Islam, M.A.; Adegoke, R.O.; Badmus, S.O. Molecular dynamics and combined docking studies for the identification of Zaire ebola virus inhibitors. J. Biomol. Struct. Dyn., 2019, 37(12), 3029-3040.
[http://dx.doi.org/10.1080/07391102.2018.1506362] [PMID: 30058446]
[35]
Verna, A. Lead finding from phyllanthusdebelis with hepatoprotective potentials. Asi. Pac. J. Trop. Biomed., 2012, 1, 735-737.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy