Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

Ligand-mediated Targeted Drug Delivery Approaches against Hepatocellular Carcinoma

Author(s): Amrita Singh, Sudhanshu Mishra*, Saurabh Sharma, Smriti Ojha, Sunil Yagnik and Sudhi Pandey

Volume 23, Issue 11, 2023

Published on: 19 May, 2023

Page: [879 - 888] Pages: 10

DOI: 10.2174/1568009623666230503094346

Price: $65

Abstract

One of the most important health problems in the world today is cancer. The World Health Organization (WHO) reported that it results in 8.9 million deaths annually. Malignant tumours and unregulated cell proliferation are features of malignant neoplasms, which can also invade nearby body regions. Hepatocellular carcinoma is the third most prevalent cause of cancer-related death worldwide and the fifth most common kind of cancer, according to a recent analysis. Patients with liver disease as well as chronic hepatitis B and C are more likely to develop hepatocellular carcinoma (HCC). Physical barriers, including RES absorption, opsonization, and first-pass drug metabolism, make drug therapy more challenging. Conventional cancer therapy procedures have a low response rate or may continue to be unsuccessful due to multi-drug resistance (MDR), high clearance rates, and other side effects because of suboptimal drug distribution and insufficient drug concentration reaching cancer cells. Innovative target drug molecules that are tailored to the injured liver cells must be developed in order to improve medication administration and drug targeting. The use of targeting ligands that have been joined to drug molecules or nanocarriers forms the basis of innovative targeting techniques. After being conjugated with the treatment method, ligands for targeting hepatocellular carcinoma cells included asialoglycoprotein, galactoside, lactobionic acid, mannose-6-phosphate, PDGF, antibodies, and aptamers.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Alibakhshi, A.; Abarghooi Kahaki, F.; Ahangarzadeh, S.; Yaghoobi, H.; Yarian, F.; Arezumand, R.; Ranjbari, J.; Mokhtarzadeh, A.; de la Guardia, M. Targeted cancer therapy through antibody fragments-decorated nanomedicines. J. Control. Release, 2017, 268, 323-334.
[http://dx.doi.org/10.1016/j.jconrel.2017.10.036] [PMID: 29107128]
[3]
Sharma, D.; Mishra, S.; Rajput, A.; Raj, K.; Malviya, R. Pathophysiology and biomarkers for breast cancer: Management using herbal medicines. Curr. Nutr. Food Sci., 2021, 17(9), 974-984.
[http://dx.doi.org/10.2174/1573401317666210713114216]
[4]
Kumari, R; Yadav, V; Azure, SA; Sharma, D; Mishra, S; Shalini, S; Ojha, RP; Venaik, A. Homocysteine metabolism and risk of breast cancer in women. In: Homocysteine Metabolism in Health and Disease; Springer Nature Singapore: Singapore, 2022; pp. 173-192.
[http://dx.doi.org/10.1007/978-981-16-6867-8_9]
[5]
Anselmo, A.C.; Mitragotri, S. An overview of clinical and commercial impact of drug delivery systems. J. Control. Release, 2014, 190, 15-28.
[http://dx.doi.org/10.1016/j.jconrel.2014.03.053] [PMID: 24747160]
[6]
Malviya, R.; Singh, A.K.; Singh, A.; Sundram, S.; Mishra, S. Chimeric antigen receptor (CAR) T-cell therapy: A new genetically engineered method of immunotherapy for cancer. Curr. Cancer Drug Targets, 2023, 23(3), 199-210.
[http://dx.doi.org/10.2174/1568009622666220928141727] [PMID: 36173082]
[7]
Jeevanandam, J.; Tan, K.X.; Danquah, M.K.; Guo, H.; Turgeson, A. Advancing aptamers as molecular probes for cancer theranostic applications-the role of molecular dynamics simulation. Biotechnol. J., 2020, 15(3), 1900368.
[http://dx.doi.org/10.1002/biot.201900368] [PMID: 31840436]
[8]
Balogh, J.; Victor, D., III; Asham, E.H.; Burroughs, S.G.; Boktour, M.; Saharia, A.; Li, X.; Ghobrial, M.; Monsour, H., Jr Hepatocellular carcinoma: A review. J. Hepatocell. Carcinoma, 2016, 3, 41-53.
[http://dx.doi.org/10.2147/JHC.S61146] [PMID: 27785449]
[9]
Wei, L.; Wang, Z.; Jing, N.; Lu, Y.; Yang, J.; Xiao, H.; Guo, H.; Sun, S.; Li, M.; Zhao, D.; Li, X.; Qi, W.; Zhang, Y. Frontier progress of the combination of modern medicine and traditional Chinese medicine in the treatment of hepatocellular carcinoma. Chin. Med., 2022, 17(1), 90.
[http://dx.doi.org/10.1186/s13020-022-00645-0] [PMID: 35907976]
[10]
Zhao, H.; Meng, Y.; Zhai, X.; Cheng, B.; Yu, S.; Yao, M.; Yin, H.; Wan, X.; Yang, Y.; Liu, H.; Shen, F.; Ling, C. Comparable effects of Jiedu Granule, a compound Chinese herbal medicine, and sorafenib for advanced hepatocellular carcinoma: A prospective multicenter cohort study. J. Integr. Med., 2020, 18(4), 319-325.
[http://dx.doi.org/10.1016/j.joim.2020.05.003] [PMID: 32532615]
[11]
Wang, Z; Li, Z; Ye, Y; Xie, L; Li, W. Oxidative stress and liver cancer: Etiology and therapeutic targets. Oxid. Med. Cell Longev., 2016, 2016, 7891574.
[http://dx.doi.org/10.1155/2016/7891574]
[12]
Greish, K. Enhanced permeability and retention (EPR) effect for anticancer nanomedicine drug targeting. Methods Mol. Biol., 2010, 624, 25-37.
[13]
Wu, J. The enhanced permeability and retention (EPR) effect: The significance of the concept and methods to enhance its application. J. Pers. Med., 2021, 11(8), 771.
[http://dx.doi.org/10.3390/jpm11080771] [PMID: 34442415]
[14]
Lammers, T.; Kiessling, F.; Hennink, W.E.; Storm, G. Drug targeting to tumors: Principles, pitfalls and (pre-) clinical progress. J. Control. Release, 2012, 161(2), 175-187.
[http://dx.doi.org/10.1016/j.jconrel.2011.09.063] [PMID: 21945285]
[15]
Seymour, L.W.; Ferry, D.R.; Anderson, D.; Hesslewood, S.; Julyan, P.J.; Poyner, R.; Doran, J.; Young, A.M.; Burtles, S.; Kerr, D.J. Hepatic drug targeting: Phase I evaluation of polymer-bound doxorubicin. J. Clin. Oncol., 2002, 20(6), 1668-1676.
[http://dx.doi.org/10.1200/JCO.2002.20.6.1668] [PMID: 11896118]
[16]
Verhoeven, Y; Tilborghs, S; Jacobs, J; De Waele, J; Quatannens, D; Deben, C; Prenen, H; Pauwels, P; Trinh, XB; Wouters, A; Smits, EL The potential and controversy of targeting STAT family members in cancer. In: Seminars in cancer biology; , 2020; pp. 41-56.
[http://dx.doi.org/10.1016/j.semcancer.2019.10.002]
[17]
Stylli, S.S.; Kaye, A.H.; Lock, P. Invadopodia: At the cutting edge of tumour invasion. J. Clin. Neurosci., 2008, 15(7), 725-737.
[http://dx.doi.org/10.1016/j.jocn.2008.03.003] [PMID: 18468901]
[18]
Kumar, P.; Ashawat, M.S.; Pandit, V. Gold nanoparticle-small drug molecule conjugates: therapeutic applications and benefits as compared to free drug. Asian J. Pharm., 2018, 8(1), 52-62.
[http://dx.doi.org/10.5958/2231-5713.2018.00009.0]
[19]
Jin, S.E.; Jin, H.E.; Hong, S.S. Targeted delivery system of nanobiomaterials in anticancer therapy: from cells to clinics. BioMed Res. Int., 2014, 2014, 1-23.
[http://dx.doi.org/10.1155/2014/814208] [PMID: 24672796]
[20]
Maeng, J.H.; Lee, D.H.; Jung, K.H.; Bae, Y.H.; Park, I.S.; Jeong, S.; Jeon, Y.S.; Shim, C.K.; Kim, W.; Kim, J.; Lee, J.; Lee, Y.M.; Kim, J.H.; Kim, W.H.; Hong, S.S. Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials, 2010, 31(18), 4995-5006.
[http://dx.doi.org/10.1016/j.biomaterials.2010.02.068] [PMID: 20347138]
[21]
Xiao, Y.; Liu, Y.; Yang, S.; Zhang, B.; Wang, T.; Jiang, D.; Zhang, J.; Yu, D.; Zhang, N. Sorafenib and gadolinium co-loaded liposomes for drug delivery and MRI-guided HCC treatment. Colloids Surf. B Biointerfaces, 2016, 141, 83-92.
[http://dx.doi.org/10.1016/j.colsurfb.2016.01.016] [PMID: 26844644]
[22]
He, P.; Ren, E.; Chen, B.; Chen, H.; Cheng, H.; Gao, X.; Liang, X.; Liu, H.; Li, J.; Li, B.; Chen, A.; Chu, C.; Chen, X.; Mao, J.; Zhang, Y.; Liu, G. A super-stable homogeneous Lipiodol-hydrophilic chemodrug formulation for treatment of hepatocellular carcinoma. Theranostics, 2022, 12(4), 1769-1782.
[http://dx.doi.org/10.7150/thno.68456] [PMID: 35198072]
[23]
Koirala, N.; Das, D.; Fayazzadeh, E.; Sen, S.; McClain, A.; Puskas, J.E.; Drazba, J.A.; McLennan, G. Folic acid conjugated polymeric drug delivery vehicle for targeted cancer detection in hepatocellular carcinoma. J. Biomed. Mater. Res. A, 2019, 107(11), 2522-2535.
[http://dx.doi.org/10.1002/jbm.a.36758] [PMID: 31334591]
[24]
Li, M.; Zhang, W.; Wang, B.; Gao, Y.; Song, Z.; Zheng, Q.C. Ligand-based targeted therapy: A novel strategy for hepatocellular carcinoma. Int. J. Nanomedicine, 2016, 11, 5645-5669.
[http://dx.doi.org/10.2147/IJN.S115727] [PMID: 27920520]
[25]
Ling, D.; Xia, H.; Park, W.; Hackett, M.J.; Song, C.; Na, K.; Hui, K.M.; Hyeon, T. pH-sensitive nanoformulated triptolide as a targeted therapeutic strategy for hepatocellular carcinoma. ACS Nano, 2014, 8(8), 8027-8039.
[http://dx.doi.org/10.1021/nn502074x] [PMID: 25093274]
[26]
Winzler, R.J.; Burk, D.; Du Vigneaud, V. Biotin in fermentation, respiration, growth and nitrogen assimilation by yeast. Arch. Biochem., 1944, 5, 25-47.
[27]
Harris, P.N.; Krahl, M.E.; Clowes, G.H. The effect of biotin upon para-dimethylaminoazobenzene carcinogenesis. Cancer Res., 1947, 7(3), 176-177.
[PMID: 20289429]
[28]
Chen, H.; Wei, X.; Qin, J.; Chen, H.; Shen, Z.; Lv, F.; Nan, W.; Wang, Y.; Li, Q.; Zhang, Q. Synthesis, characterization and in vivo efficacy of biotin-conjugated pullulan acetate nanoparticles as a novel anticancer drug carrier. J. Biomed. Nanotechnol., 2017, 13(9), 1134-1146.
[http://dx.doi.org/10.1166/jbn.2017.2402] [PMID: 31251146]
[29]
Hsu, S.L.; Lin, Y.F.; Chou, C.K. Retinoic acid biphasically regulates the gene expression of hepatitis B virus surface antigen in human hepatoma Hep3B cells. J. Biol. Chem., 1993, 268(31), 23093-23097.
[http://dx.doi.org/10.1016/S0021-9258(19)49430-1] [PMID: 8226826]
[30]
Hsu, S.; Yin, S.C.; Liu, M.C.; Reichert, U.; Ho, W.L. Involvement of cyclin-dependent kinase activities in CD437-induced apoptosis. Exp. Cell Res., 1999, 252(2), 332-341.
[http://dx.doi.org/10.1006/excr.1999.4625] [PMID: 10527623]
[31]
Yang, Y.; Qin, S.K.; Wu, Q.; Wang, Z.S.; Zheng, R.S.; Tong, X.H.; Liu, H.; Tao, L.; He, X.D. Connexin-dependent gap junction enhancement is involved in the synergistic effect of sorafenib and alltrans retinoic acid on HCC growth inhibition. Oncol. Rep., 2014, 31(2), 540-550.
[http://dx.doi.org/10.3892/or.2013.2894] [PMID: 24317203]
[32]
Chi, X.; Liu, K.; Luo, X.; Yin, Z.; Lin, H.; Gao, J. Recent advances of nanomedicines for liver cancer therapy. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(17), 3747-3771.
[http://dx.doi.org/10.1039/C9TB02871D] [PMID: 32215381]
[33]
Yang, S.; Cai, C.; Wang, H.; Ma, X.; Shao, A.; Sheng, J.; Yu, C. Drug delivery strategy in hepatocellular carcinoma therapy. Cell Commun. Signal., 2022, 20(1), 26.
[http://dx.doi.org/10.1186/s12964-021-00796-x] [PMID: 35248060]
[34]
Rizwanullah, M.; Alam, M.; Harshita.; Mir, S.R.; Rizvi, M.M.A.; Amin, S. Polymer-lipid hybrid nanoparticles: A next-generation nanocarrier for targeted treatment of solid tumors. Curr. Pharm. Des., 2020, 26(11), 1206-1215.
[http://dx.doi.org/10.2174/1381612826666200116150426] [PMID: 31951163]
[35]
Wang, X.; He, L.; Wei, B.; Yan, G.; Wang, J.; Tang, R. Bromelain-immobilized and lactobionic acid-modified chitosan nanoparticles for enhanced drug penetration in tumor tissues. Int. J. Biol. Macromol., 2018, 115, 129-142.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.076] [PMID: 29665385]
[36]
Li, M.; Zhang, Y.; Zhang, Q.; Li, J. Tumor extracellular matrix modulating strategies for enhanced antitumor therapy of nanomedicines. Mater. Today Bio., 2022, 16, 100364.
[http://dx.doi.org/10.1016/j.mtbio.2022.100364] [PMID: 35875197]
[37]
Lee, D.; Heo, D.N.; Lee, S.J.; Heo, M.; Kim, J.; Choi, S.; Park, H.K.; Park, Y.G.; Lim, H.N.; Kwon, I.K. Poly(lactide-co-glycolide) nanofibrous scaffolds chemically coated with gold-nanoparticles as osteoinductive agents for osteogenesis. Appl. Surf. Sci., 2018, 432, 300-307.
[http://dx.doi.org/10.1016/j.apsusc.2017.05.237]
[38]
Ye, Q.N.; Wang, Y.; Shen, S.; Xu, C.F.; Wang, J. Biomaterials-based delivery of therapeutic antibodies for cancer therapy. Adv. Healthc. Mater., 2021, 10(11), 2002139.
[http://dx.doi.org/10.1002/adhm.202002139] [PMID: 33870637]
[39]
Yousef, S.; Alsaab, H.O.; Sau, S.; Iyer, A.K. Development of asialoglycoprotein receptor directed nanoparticles for selective delivery of curcumin derivative to hepatocellular carcinoma. Heliyon, 2018, 4(12), e01071.
[http://dx.doi.org/10.1016/j.heliyon.2018.e01071] [PMID: 30603704]
[40]
Li, Y.L.; Zhu, X.M.; Liang, H.; Orvig, C.; Chen, Z.F. Recent advances in asialoglycoprotein receptor and glycyrrhetinic acid receptor-mediated and/or pH-responsive hepatocellular carcinoma-targeted drug delivery. Curr. Med. Chem., 2021, 28(8), 1508-1534.
[http://dx.doi.org/10.2174/0929867327666200505085756] [PMID: 32368967]
[41]
Guo, H.; Li, F.; Qiu, H.; Liu, J.; Qin, S.; Hou, Y.; Wang, C. Preparation and characterization of chitosan nanoparticles for chemotherapy of melanoma through enhancing tumor penetration. Front. Pharmacol., 2020, 11, 317.
[http://dx.doi.org/10.3389/fphar.2020.00317] [PMID: 32231576]
[42]
Rasines Mazo, A.; Allison-Logan, S.; Karimi, F.; Chan, N.J.A.; Qiu, W.; Duan, W.; O’Brien-Simpson, N.M.; Qiao, G.G. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem. Soc. Rev., 2020, 49(14), 4737-4834.
[http://dx.doi.org/10.1039/C9CS00738E] [PMID: 32573586]
[43]
Iacobazzi, R.M.; Porcelli, L.; Lopedota, A.A.; Laquintana, V.; Lopalco, A.; Cutrignelli, A.; Altamura, E.; Di Fonte, R.; Azzariti, A.; Franco, M.; Denora, N. Targeting human liver cancer cells with lactobionic acid-G(4)-PAMAM-FITC sorafenib loaded dendrimers. Int. J. Pharm., 2017, 528(1-2), 485-497.
[http://dx.doi.org/10.1016/j.ijpharm.2017.06.049] [PMID: 28624661]
[44]
Zhao, N.; Yan, L.; Zhao, X.; Chen, X.; Li, A.; Zheng, D.; Zhou, X.; Dai, X.; Xu, F.J. Versatile types of organic/inorganic nanohybrids: From strategic design to biomedical applications. Chem. Rev., 2019, 119(3), 1666-1762.
[http://dx.doi.org/10.1021/acs.chemrev.8b00401] [PMID: 30592420]
[45]
Zhang, X.; Guo, S.; Fan, R.; Yu, M.; Li, F.; Zhu, C.; Gan, Y. Dual-functional liposome for tumor targeting and overcoming multidrug resistance in hepatocellular carcinoma cells. Biomaterials, 2012, 33(29), 7103-7114.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.048] [PMID: 22796159]
[46]
Frisch, B.; Carrière, M.; Largeau, C.; Mathey, F.; Masson, C.; Schuber, F.; Scherman, D.; Escriou, V. A new triantennary galactose-targeted PEGylated gene carrier, characterization of its complex with DNA, and transfection of hepatoma cells. Bioconjug. Chem., 2004, 15(4), 754-764.
[http://dx.doi.org/10.1021/bc049971k] [PMID: 15264862]
[47]
Ma, P.; Liu, S.; Huang, Y.; Chen, X.; Zhang, L.; Jing, X. Lactose mediated liver-targeting effect observed by ex vivo imaging technology. Biomaterials, 2010, 31(9), 2646-2654.
[http://dx.doi.org/10.1016/j.biomaterials.2009.12.019] [PMID: 20036420]
[48]
Xue, W.J.; Feng, Y.; Wang, F.; Guo, Y.B.; Li, P.; Wang, L.; Liu, Y.F.; Wang, Z.W.; Yang, Y.M.; Mao, Q.S. Asialoglycoprotein receptor-magnetic dual targeting nanoparticles for delivery of RASSF1A to hepatocellular carcinoma. Sci. Rep., 2016, 6(1), 22149.
[http://dx.doi.org/10.1038/srep22149] [PMID: 26915683]
[49]
Liang, H.F.; Chen, S.C.; Chen, M.C.; Lee, P.W.; Chen, C.T.; Sung, H.W. Paclitaxel-loaded poly(γ-glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system against cultured HepG2 cells. Bioconjug. Chem., 2006, 17(2), 291-299.
[http://dx.doi.org/10.1021/bc0502107] [PMID: 16536458]
[50]
Zhu, D.; Tao, W.; Zhang, H.; Liu, G.; Wang, T.; Zhang, L.; Zeng, X.; Mei, L. Docetaxel (DTX)-loaded polydopamine-modified TPGS-PLA nanoparticles as a targeted drug delivery system for the treatment of liver cancer. Acta Biomater., 2016, 30, 144-154.
[http://dx.doi.org/10.1016/j.actbio.2015.11.031] [PMID: 26602819]
[51]
Quan, S.; Wang, Y.; Zhou, A.; Kumar, P.; Narain, R. Galactose-based Thermosensitive Nanogels for Targeted Drug Delivery of Iodoazomycin Arabinofuranoside (IAZA) for theranostic management of hypoxic hepatocellular carcinoma. Biomacromolecules, 2015, 16(7), 1978-1986.
[http://dx.doi.org/10.1021/acs.biomac.5b00576] [PMID: 25996799]
[52]
Opanasopit, P.; Apirakaramwong, A.; Ngawhirunpat, T.; Rojanarata, T.; Ruktanonchai, U. Development and characterization of pectinate micro/nanoparticles for gene delivery. AAPS PharmSciTech., 2008, 9(1), 67-74.
[http://dx.doi.org/10.1208/s12249-007-9007-7] [PMID: 18446463]
[53]
Chittasupho, C.; Jaturanpinyo, M.; Mangmool, S. Pectin nanoparticle enhances cytotoxicity of methotrexate against hepG2 cells. Drug Deliv., 2013, 20(1), 1-9.
[http://dx.doi.org/10.3109/10717544.2012.739214] [PMID: 23216416]
[54]
Yu, C.Y.; Wang, Y.M.; Li, N.M.; Liu, G.S.; Yang, S.; Tang, G.T.; He, D.X.; Tan, X.W.; Wei, H. In vitro and in vivo evaluation of pectin-based nanoparticles for hepatocellular carcinoma drug chemotherapy. Mol. Pharm., 2014, 11(2), 638-644.
[http://dx.doi.org/10.1021/mp400412c] [PMID: 24383625]
[55]
Zhang, C.; An, T.; Wang, D.; Wan, G.; Zhang, M.; Wang, H.; Zhang, S.; Li, R.; Yang, X.; Wang, Y. Stepwise pH-responsive nanoparticles containing charge-reversible pullulan-based shells and poly(β-amino ester)/poly(lactic-co-glycolic acid) cores as carriers of anticancer drugs for combination therapy on hepatocellular carcinoma. J. Control. Release, 2016, 226, 193-204.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.030] [PMID: 26896737]
[56]
Gelband, H; Chen, CJ; Chen, W; Franceschi, S; Hall, A; London, WT; McGlynn, KA; Wild, CP Cancer: Disease Control Priorities, 3rd ed.; The International Bank for Reconstruction and Development / The World Bank: Washington (DC), 2015.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy