Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Icacinaceae Plant Family: A Recapitulation of the Ethnobotanical, Phytochemical, Pharmacological, and Biotechnological Aspects

Author(s): Sangeeta Hazarika, Pobitra Borah, Pran Kishore Deb*, Katharigatta N. Venugopala and Siva Hemalatha

Volume 29, Issue 15, 2023

Published on: 16 May, 2023

Page: [1193 - 1217] Pages: 25

DOI: 10.2174/1381612829666230502164605

Price: $65

Abstract

Icacinaceae, an Angiospermic family comprising 35 genera and 212 accepted species, including trees, shrubs, and lianas with pantropical distribution, is one of the most outshining yet least explored plant families, which despite its vital role as a source of pharmaceuticals and nutraceuticals has received a meagre amount of attraction from the scientific community. Interestingly, Icacinaceae is considered a potential alternative resource for camptothecin and its derivatives, which are used in treating ovarian and metastatic colorectal cancer. However, the concept of this family has been revised many times, but further recognition is still needed. The prime objective of this review is to compile the available information on this family in order to popularize it in the scientific community and the general population and promote extensive exploration of these taxa. The phytochemical preparations or isolated compounds from the Icacinaceae family have been centrally amalgamated to draw diverse future prospects from this inclusive plant species. The ethnopharmacological activities and the associated endophytes and cell culture techniques are also depicted. Nevertheless, the methodical evaluation of the Icacinaceae family is the only means to preserve and corroborate the folkloristic remedial effects and provide scientific recognition of its potencies before they are lost under the blanket of modernization.

[1]
González-Juárez DE, Escobedo-Moratilla A, Flores J, et al. A review of the Ephedra genus: Distribution, ecology, ethnobotany, phytochemistry and pharmacological properties. Molecules 2020; 25(14): 3283.
[http://dx.doi.org/10.3390/molecules25143283] [PMID: 32698308]
[2]
Michel J, Abd Rani NZ, Husain K. A review on the potential use of medicinal plants from asteraceae and lamiaceae plant family in cardiovascular diseases. Front Pharmacol 2020; 11: 852.
[http://dx.doi.org/10.3389/fphar.2020.00852] [PMID: 32581807]
[3]
Chen GT, Lu Y, Yang M, Li JL, Fan BY. Medicinal uses, pharmacology, and phytochemistry of Convolvulaceae plants with central nervous system efficacies: A systematic review. Phytother Res 2018; 32(5): 823-64.
[http://dx.doi.org/10.1002/ptr.6031] [PMID: 29356185]
[4]
Debnath M, Malik C, Bisen P. Micropropagation: A tool for the production of high quality plant-based medicines. Curr Pharm Biotechnol 2006; 7(1): 33-49.
[http://dx.doi.org/10.2174/138920106775789638] [PMID: 16472132]
[5]
Getahun T, Sharma V, Gupta N. The genus Laggera (Asteraceae) – Ethnobotanical and ethnopharmacological information, chemical composition as well as biological activities of its essential oils and extracts: A review. Chem Biodivers 2019; 16(8): e1900131.
[http://dx.doi.org/10.1002/cbdv.201900131] [PMID: 31173470]
[6]
Kårehed J. Multiple origin of the tropical forest tree family Icacinaceae. Am J Bot 2001; 88(12): 2259-74.
[http://dx.doi.org/10.2307/3558388] [PMID: 21669659]
[7]
Che CT, Zhao M, Guo B, Onakpa MM. Icacina trichantha, a tropical medicinal plant. Nat Prod Commun 2016; 11: 1934578X1601100740.
[8]
Utteridge T, Nagamasu H, Teo SP, White LC, Gasson P. Sleumeria (Icacinaceae): A new genus from northern Borneo. Syst Bot 2005; 30(3): 635-43.
[http://dx.doi.org/10.1600/0363644054782116]
[9]
Utteridge TMA. A new species of Platea (Icacinaceae) from Peninsular Malaysia: Platea malayana. Kew Bull 2010; 65(2): 345-8.
[http://dx.doi.org/10.1007/s12225-010-9209-0]
[10]
Utteridge T, Schori M. Updating malesian icacinaceae. Gard Bull 2011; 63: 105-18.
[11]
Savolainen V, Manen JF, Douzery E, Spichiger R. Molecular phylogeny of families related to Celastrales based on rbcL 5′ flanking sequences. Mol Phylogenet Evol 1994; 3(1): 27-37.
[http://dx.doi.org/10.1006/mpev.1994.1004] [PMID: 8025727]
[12]
Byng JW, Bernardini B, Joseph JA, Chase MW, Utteridge TMA. Phylogenetic relationships of Icacinaceae focusing on the vining genera. Bot J Linn Soc 2014; 176(3): 277-94.
[http://dx.doi.org/10.1111/boj.12205]
[13]
Martins D, Nunez C. Secondary metabolites from Rubiaceae species. Molecules 2015; 20(7): 13422-95.
[http://dx.doi.org/10.3390/molecules200713422] [PMID: 26205062]
[14]
Cerqueira TMG, de Carvalho Correia AC, dos Santos RV, Lemos RPL, da Silva SAS, Barreto E. The use of medicinal plants in maceió, northeastern brazil: An ethnobotanical survey. Medicines 2020; 7(2): 7.
[http://dx.doi.org/10.3390/medicines7020007] [PMID: 31973141]
[15]
Signorini MA, Piredda M, Bruschi P. Plants and traditional knowledge: An ethnobotanical investigation on Monte Ortobene (Nuoro, Sardinia). J Ethnobiol Ethnomed 2009; 5(1): 6.
[http://dx.doi.org/10.1186/1746-4269-5-6] [PMID: 19208227]
[16]
Souza-Junior FJC, Luz-Moraes D, Pereira FS, et al. Aniba canelilla (Kunth) Mez (Lauraceae): A review of ethnobotany, phytochemical, antioxidant, anti-inflammatory, cardiovascular, and neurological properties. Front Pharmacol 2020; 11: 699.
[http://dx.doi.org/10.3389/fphar.2020.00699] [PMID: 32528283]
[17]
Tchoumi JMT, Coetzee MPA, Rajchenberg M, Roux J. Poroid hymenochaetaceae associated with trees showing wood-rot symptoms in the garden route national park of South Africa. Mycologia 2020; 112(4): 722-41.
[http://dx.doi.org/10.1080/00275514.2020.1753160] [PMID: 32574523]
[18]
Divya MK, Lincy L, Raghavamenon AC, Babu TD. Ameliorative effect of Apodytes dimidiata on cisplatin-induced nephrotoxicity in Wistar rats. Pharm Biol 2016; 54(10): 2149-57.
[http://dx.doi.org/10.3109/13880209.2016.1149494] [PMID: 26940704]
[19]
Awoke H, Mewded B. Changes in woody species composition and structure of Denkoro dry evergreen Afromontane forest over 16 years (2001–2017), South Wollo, Ethiopia. For Ecol Manage 2019; 441: 71-9.
[http://dx.doi.org/10.1016/j.foreco.2019.03.039]
[20]
Uddin AI, Mengistie HK, Sandén H, Godbold D. Effects of tree species on soil enzyme activities in natural mixed forest and monoculture plantations in Ethiopia. 22nd EGU General Assembly 2020; 22: 21746.
[21]
Divya MK, Salini S, Meera N, et al. Attenuation of DMBA/croton oil induced mouse skin papilloma by Apodytes dimidiata mediated by its antioxidant and antimutagenic potential. Pharm Biol 2016; 54(9): 1564-74.
[http://dx.doi.org/10.3109/13880209.2015.1107747] [PMID: 26878464]
[22]
Watt JM, Breyer-Brandwijk MG. The Medicinal and Poisonous Plants of Southern and Eastern Africa being an Account of their Medicinal and other Uses, Chemical Composition, Pharmacological Effects and Toxicology in Man and Animal. E. & S. Livingstone 1962; 2.
[23]
Gerstner J. A preliminary checklist of Zulu names of plants with short notes. Bantu Studies 12: 215–236; 321–342. George J Laing MD Drewes SE 2001eds Phytochem Res South Afr. S Afr J Sci 1938; 97: 93-105.
[24]
Bryant AT. Zulu medicine and medicine-men. Cape Town: C. Struik 1966.
[25]
Masoko P, Nxumalo KM. Validation of antimycobacterial plants used by traditional healers in three districts of the Limpopo province (South Africa). Evid Based Complement Alternat Med 2013; 2013: 586247.
[26]
Divya M, Salini S, Chubicka T, Raghavamenon A, Babu T. Evaluation of cytotoxic and antitumour properties of apodytes dimidiata and characterisation of the bioactive component. Planta Med 2015; 81(18): 1705-11.
[http://dx.doi.org/10.1055/s-0035-1557751] [PMID: 26218335]
[27]
Vallejo-Marín M, Domínguez CA, Dirzo R. Simulated seed predation reveals a variety of germination responses of neotropical rain forest species. Am J Bot 2006; 93(3): 369-76.
[http://dx.doi.org/10.3732/ajb.93.3.369] [PMID: 21646197]
[28]
Akuodor GC, Udia PM, Bassey A, Chilaka KC, Okezie OA. Antihyperglycemic and antihyperlipidemic properties of aqueous root extract of Icacina senegalensis in alloxan induced diabetic rats. J Acute Dis 2014; 3(2): 99-103.
[http://dx.doi.org/10.1016/S2221-6189(14)60025-1]
[29]
Villa GM, Borja DLRMA, Zuleta PH, Toscano RA, Reyes TB. Structure and absolute configuration of the 11-noriridoid “Chapingolide.”. Heterocycles 2015; 91: 1417-22.
[http://dx.doi.org/10.3987/COM-15-13216]
[30]
Vera-Caletti P, Wendt T. A new species of Calatola (Icacinaceae) from Mexico and Central America. Acta Bot Mex 2001; (54): 39-49.
[http://dx.doi.org/10.21829/abm54.2001.867]
[31]
Ribeiro RG. Ethnobotanical and physico-chemical study of the sweet potato (Casimirella spp –Icacinaceae) 2018.
[32]
Amorim BS, Cardozo ND, Albuquerque PM, Cabral FN, Amorim BS, Cardozo ND. Flora da Reserva Ducke, Amazonas, Brasil: Icacinaceae. Rodriguésia 2020; 71.
[33]
Howard RA. A revision of Casimirella, including Humirianthera (Icacinaceae). Brittonia 1992; 44(2): 166-72.
[http://dx.doi.org/10.2307/2806831]
[34]
Rasoanaivo P, Galeffi C, Multari G, Nicoletti M. 7-caffeoylloganin: An iridoid glucoside from Cassinopsis madagascariensis. Planta Med 1991; 57(5): 486-7.
[http://dx.doi.org/10.1055/s-2006-960178] [PMID: 1798806]
[35]
Jongkind CCH, Lachenaud O. Vadensea (Icacinaceae), a new genus to accommodate continental African species of Desmostachys. Phytotaxa 2019; 405(5): 237-47.
[http://dx.doi.org/10.11646/phytotaxa.405.5.2]
[36]
Potgieter MJ, Duno R. Icacinaceae. In: Kadereit JW, Bittrich V, Eds. Flowering Plants Eudicots. New York City, US: Cham: Springer International Publishing: 2016; pp. 239-56.
[http://dx.doi.org/10.1007/978-3-319-28534-4_21]
[37]
Asuzu IU, Egwu OK. Search for the centrally active component of Icacina trichantha tuber. Phytomedicine 1998; 5(1): 35-9.
[http://dx.doi.org/10.1016/S0944-7113(98)80057-3] [PMID: 23195697]
[38]
Monday Onakpa M, Zhao M, Gödecke T, et al. Cytotoxic (9βH)-pimarane and (9βH)-17-norpimarane diterpenes from the tuber of Icacina trichantha. Chem Biodivers 2014; 11(12): 1914-22.
[http://dx.doi.org/10.1002/cbdv.201400151] [PMID: 25491335]
[39]
Asuzu IU, Abubakar II. The effects of Icacina trichantha tuber extract on the nervous system. Phytother Res 1995; 9(1): 21-5.
[http://dx.doi.org/10.1002/ptr.2650090106]
[40]
Zhao M, Onakpa MM, Santarsiero BD, et al. (9βH)-Pimaranes and derivatives from the tuber of Icacina trichantha. J Nat Prod 2015; 78(11): 2731-7.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00688] [PMID: 26523419]
[41]
Ajayi SS. In situ conservation of wildlife in West Africa. In: Ajayi SS, Ed. Wildlife Conservation in Africa. Academic Press Cambridge, Massachusetts, US 2019; pp. 141-72.
[http://dx.doi.org/10.1016/B978-0-12-816962-9.00015-6]
[42]
Mohsin R, Choudhary MI. Medicinal plants with anticonvulsant activities. Stud Nat Prod 2000; 22(C): 507-53.
[43]
Akuodor GC, Nwobodo NN, Megwas AU, et al. Antidiarrheal and antimicrobial activities of the ethanol extract from the Icacina senegalensis root bark. J Basic Clin Physiol Pharmacol 2018; 29(2): 211-6.
[http://dx.doi.org/10.1515/jbcpp-2016-0174] [PMID: 29176020]
[44]
Otun KO, Onikosi DB, Ajiboye AT, Jimoh AA. Chemical composition, antioxidant and antimicrobial potentials of Icacina trichantha Oliv. leaf extracts. Res J Phytochem 2015; 9(4): 161-74.
[http://dx.doi.org/10.3923/rjphyto.2015.161.174]
[45]
Asuzu IU, Sosa S, Loggia RD. The antiinflammatory activity of Icacina trichantha tuber. Phytomedicine 1999; 6(4): 267-72.
[http://dx.doi.org/10.1016/S0944-7113(99)80019-1] [PMID: 10589446]
[46]
Ezeigbo I. Antidiabetic potential of methanolic leaf extracts of Icacina Trichantha in alloxan-induced diabetic mice. Int J Diabetes Dev Ctries 2010; 30(3): 150.
[http://dx.doi.org/10.4103/0973-3930.66511]
[47]
Alawode TT, Lajide L, Owolabi BJ, Olaleye MT. Investigation into the antioxidant and in vitro anti-inflammatory use of the leaves and tuber extracts of Icacina Trichantha. J Chem Soc Niger 2018; 43(4)
[48]
Mann A, Ifarajimi OR, Adewoye AT, et al. In vivo antitrypanosomal effects of some ethnomedicinal plants from Nupeland of north central Nigeria. Afr J Tradit Complement Altern Med 2011; 8(1): 15-21.
[PMID: 22238478]
[49]
Asuzu IU, Ugwueze EE. Screening of Icacina trichantha extracts for pharmacological activity. J Ethnopharmacol 1990; 28(2): 151-6.
[http://dx.doi.org/10.1016/0378-8741(90)90024-N] [PMID: 2329805]
[50]
Timothy O, Idu M, Olorunfemi DI, Ovuakporie-Uvo O. Cytotoxic and genotoxic properties of leaf extract of Icacina trichantha Oliv. S Afr J Bot 2014; 91: 71-4.
[http://dx.doi.org/10.1016/j.sajb.2013.11.008]
[51]
David-Oku E, Ifeoma OOJ, Christian AG, Dick EA. Evaluation of the antimalarial potential of Icacina senegalensis Juss (Icacinaceae). Asian Pac J Trop Med 2014; 7: S469-72.
[http://dx.doi.org/10.1016/S1995-7645(14)60276-5] [PMID: 25312169]
[52]
Akuodor GC, Essien DO, Nkorroh JA, et al. Antiplasmodial activity of the ethanolic root bark extract of Icacina senegalensis in mice infected by Plasmodium berghei. J Basic Clin Physiol Pharmacol 2017; 28(2): 181-4.
[http://dx.doi.org/10.1515/jbcpp-2016-0109] [PMID: 27845882]
[53]
David-Oku E, Akuodor G, Edet E, Ogbuji G, Obiajunwa-Otteh J, Aja D. Antinociceptive, anti-inflammatory and antipyretic effects of ethanolic root bark extract of Icacina senegalensis in rodents. J Appl Pharm Sci 2016; 6: 104-8.
[http://dx.doi.org/10.7324/JAPS.2016.60215]
[54]
Sarr SO, Perrotey S, Fall I, et al. Icacina senegalensis (Icacinaceae), traditionally used for the treatment of malaria, inhibits in vitro Plasmodium falciparum growth without host cell toxicity. Malar J 2011; 10(1): 85.
[http://dx.doi.org/10.1186/1475-2875-10-85] [PMID: 21481272]
[55]
Gan M, Zhang Y, Lin S, et al. Glycosides from the root of Iodes cirrhosa. J Nat Prod 2008; 71(4): 647-54.
[http://dx.doi.org/10.1021/np7007329] [PMID: 18327912]
[56]
Del Rio C, Stull GW, De Franceschi D. New species of Iodes fruits (Icacinaceae) from the early Eocene Le Quesnoy locality, Oise, France. Rev Palaeobot Palynol 2019; 262: 60-71.
[http://dx.doi.org/10.1016/j.revpalbo.2018.12.005]
[57]
Zhang GJ, Hu F, Jiang H, et al. Mappianines A−E, structurally diverse monoterpenoid indole alkaloids from Mappianthus iodoides. Phytochemistry 2018; 145: 68-76.
[http://dx.doi.org/10.1016/j.phytochem.2017.10.009] [PMID: 29101786]
[58]
Cong HJ, Zhao Q, Zhang SW, Wei JJ, Wang WQ, Xuan LJ. Terpenoid indole alkaloids from Mappianthus iodoides Hand.-Mazz. Phytochemistry 2014; 100: 76-85.
[http://dx.doi.org/10.1016/j.phytochem.2014.01.004] [PMID: 24495957]
[59]
Fang D, Qin D-H. Two new species of Adinandra and Mappianthus from Guangxi, China. Yunnan Zhi Wu Yan Jiu 2002; 24: 709-11.
[60]
Nath KK, Deka P, Borthakur SK. Traditional remedies of Joint diseases in Assam. Indian J Tradit Knowl 2011; 10: 568-71.
[61]
Baro D, Borthakur SK. Climbing angiosperms of manas national park, Assam: Diversity and ethnobotany. Biosci Discov 2017; 8: 158-65.
[62]
Rehman S, Shawl AS, Verma V, et al. An endophytic Neurospora sp. from Nothapodytes foetida producing camptothecin. Prikl Biokhim Mikrobiol 2008; 44(2): 225-31.
[PMID: 18669267]
[63]
Wu SF, Hsieh PW, Wu CC, et al. Camptothecinoids from the seeds of Taiwanese Nothapodytes foetida. Molecules 2008; 13(6): 1361-71.
[http://dx.doi.org/10.3390/molecules13061361] [PMID: 18596662]
[64]
Namdeo A, Sharma A, Sathiyanarayanan L, Fulzele D, Mahadik K. HPTLC densitometric evaluation of tissue culture extracts of Nothapodytes foetida compared to conventional extracts for camptothecin content and antimicrobial activity. Planta Med 2010; 76(5): 474-80.
[http://dx.doi.org/10.1055/s-0029-1186219] [PMID: 19862669]
[65]
Puri SC, Handa G, Bhat BA, et al. Separation of 9-methoxy-camptothecin and camptothecin from Nothapodytes foetida by semipreparative HPLC. J Chromatogr Sci 2005; 43(7): 348-50.
[http://dx.doi.org/10.1093/chromsci/43.7.348] [PMID: 16176645]
[66]
Wu T, Leu Y-L, Hsu H-C, et al. Constituents and cytotoxic principles of Nothapodytes foetida. Phytochemistry 1995; 39(2): 383-5.
[http://dx.doi.org/10.1016/0031-9422(94)00901-5] [PMID: 7495532]
[67]
Pai SR, Ankad G, Upadhya V, et al. Evaluating Nothapodytes nimmoniana population from three localities of Western Ghats using camptothecin as phytochemical marker and selection of elites using a new-content range chart method. Pharmacogn Mag 2015; 11(41): 90-5.
[http://dx.doi.org/10.4103/0973-1296.149712] [PMID: 25709216]
[68]
Shivaprakash KN, Ramesha BT, Uma Shaanker R, Dayanandan S, Ravikanth G. Genetic structure, diversity and long term viability of a medicinal plant, Nothapodytes nimmoniana Graham. (Icacinaceae), in protected and non-protected areas in the Western Ghats biodiversity hotspot. PLoS One 2014; 9(12): e112769.
[http://dx.doi.org/10.1371/journal.pone.0112769] [PMID: 25493426]
[69]
Li CY, Lin CH, Wu TS. Quantitative analysis of camptothecin derivatives in Nothapodytes foetida using 1H-NMR method. Chem Pharm Bull 2005; 53(3): 347-9.
[http://dx.doi.org/10.1248/cpb.53.347] [PMID: 15744115]
[70]
Fulzele DP, Satdive RK. Distribution of anticancer drug camptothecin in Nothapodytes foetida. Fitoterapia 2005; 76(7-8): 643-8.
[http://dx.doi.org/10.1016/j.fitote.2005.07.005] [PMID: 16242856]
[71]
Manjunatha BL, Singh HR, Ravikanth G, et al. Transcriptome analysis of stem wood of Nothapodytes nimmoniana (Graham) Mabb. identifies genes associated with biosynthesis of camptothecin, an anti-carcinogenic molecule. J Biosci 2016; 41(1): 119-31.
[http://dx.doi.org/10.1007/s12038-016-9591-3] [PMID: 26949094]
[72]
Stull GW, Tiffney BH, Manchester SR, Rio CD, Wing SL. Endocarps of Pyrenacantha (Icacinaceae) from the Early Oligocene of Egypt. Int J Plant Sci 2020; 181(4): 432-42.
[http://dx.doi.org/10.1086/706854]
[73]
Suma HK, Kumar V, Senthilkumar U, et al. Pyrenacantha volubilis Wight, (Icacinaceae) a rich source of camptothecine and its derivatives, from the Coromandel Coast forests of India. Fitoterapia 2014; 97: 105-10.
[http://dx.doi.org/10.1016/j.fitote.2014.05.017] [PMID: 24882065]
[74]
Awe EO, Kolawole SO, Wakeel KO, Abiodun OO. Antidiarrheal activity of Pyrenacantha staudtii Engl. (Iccacinaceae) aqueous leaf extract in rodents. J Ethnopharmacol 2011; 137(1): 148-53.
[http://dx.doi.org/10.1016/j.jep.2011.04.068] [PMID: 21571058]
[75]
Falodun A, Usifoh CO, Nworgu ZA. Phytochemical and active column fractions of Pyrenacantha staudtii leaf extracts on isolated rat uterus. Pak J Pharm Sci 2005; 18(4): 31-5.
[PMID: 16380355]
[76]
Falodun A, Usifoh CO, Nworgu ZA. Phytochemical analysis and inhibitory effect of Pyrenacantha staudtii leaf extract on isolated rat uterus. J Pharm Bioresour 2005; 2: 100-3.
[77]
Falodun A, Usifoh CO, Nworgu ZAM. Smooth muscle relaxant activity of 3-carbomethoxylpyridine from Pyrenacantha staudtii leaf on isolated rat uterus. Afr J Biotechnol 2006; 5(12)
[78]
Engel N, Falodun A, Kühn J, Kragl U, Langer P, Nebe B. Pro-apoptotic and anti-adhesive effects of four African plant extracts on the breast cancer cell line MCF-7. BMC Complement Altern Med 2014; 14(1): 334.
[http://dx.doi.org/10.1186/1472-6882-14-334] [PMID: 25199565]
[79]
Falodun AA, Usifoh CO. Isolation and characterization of 3-carbomethoxypyridine from the leaves of Pyrenacantha staudtii Hutch and Dalz (Icacinaceae). Acta Pol Pharm 2006; 63(3): 235-6.
[PMID: 20085230]
[80]
Aguwa CN, Okunji CO. Gastrointestinal studies of Pyrenacantha staudtii leaf extracts. J Ethnopharmacol 1986; 15(1): 45-55.
[http://dx.doi.org/10.1016/0378-8741(86)90103-0] [PMID: 3713227]
[81]
Ogbeide VN, Okpo SO, Eze GI. Evaluation of the protective potential of methanol leaf extract of Pyrenacantha staudtii hutch and Dalz (Icacinaceae) And 3-Carbomethoxypyridine isolated from it on chronically-induced liver damage in rats. Niger J Pharm Appl Sci Res 2016; 5: 21-35.
[82]
Aguwa CN, Mittal GC. Study of antiulcer activity of aqueous extract of leaves of Pyrenacantha staudtii (family icacinaceae) using various models of experimental gastric ulcer in rats. Eur J Pharmacol 1981; 74(2-3): 215-9.
[http://dx.doi.org/10.1016/0014-2999(81)90533-1] [PMID: 7327202]
[83]
Potgieter MJ, Van Wyk AE. Fruit structure of the genus Pyrenacantha Hook.(Icacinaceae) in southern Africa. Bot Bull Acad Sin 1994; 35.
[84]
Cunningham AB. The resource value of indigenous plants to rural people in a low agricultural potential area 1985.
[85]
Mendes EJ. Icacinaceae, Flora zambesiaca (FZ). Kew, UK: FZ Online Database. Trustees of the Royal Botanic Gardens 1963; p. 2.
[86]
Omolo JJ, Maharaj V, Naidoo D, et al. Bioassay-guided investigation of the Tanzanian plant Pyrenacantha kaurabassana for potential anti-HIV-active compounds. J Nat Prod 2012; 75(10): 1712-6.
[http://dx.doi.org/10.1021/np300255r] [PMID: 23002902]
[87]
Thomas D, Burnham RJ, Chuyong G, Kenfack D, Sainge MN. Liana abundance and diversity in Cameroon’s Korup National Park. In: Schnitzer SA, Bongers F, Burnham RJ, Putz FE, Eds. Ecology of Lianas. John Wiley & Sons, Ltd. Chichester, UK 2014; pp. 11-22.
[http://dx.doi.org/10.1002/9781118392409.ch2]
[88]
Lebamba J, Vincens A, Lézine AM, Marchant R, Buchet G. Forest-savannah dynamics on the Adamawa plateau (Central Cameroon) during the “African humid period” termination: A new high-resolution pollen record from Lake Tizong. Rev Palaeobot Palynol 2016; 235: 129-39.
[http://dx.doi.org/10.1016/j.revpalbo.2016.10.001]
[89]
Baas P. Stomatal types in Icacinaceae. Additional observations on genera outside Malesia. Acta Bot Neerl 1974; 23(3): 193-200.
[http://dx.doi.org/10.1111/j.1438-8677.1974.tb00936.x]
[90]
Swier J. Sustainability of Medicinal Plant Trade in Southern Benin. Plant use of the Motherland: linking West African and Afro-Caribbean Ethnobotany Student Projects Ethnobotany. 2012.
[91]
Lasisi AA, Folarin OM, Dare EO, Akinloye OA, Fisuyi MO. Phytochemical, antibacterial and cytotoxic evaluation of Raphiostylis beninensi stem bark extracts. Int J Pharma Bio Sci 2011; 2(3): 489-95.
[92]
Sahar Traoré M, Aliou Baldé M, Camara A, et al. The malaria co-infection challenge: An investigation into the antimicrobial activity of selected Guinean medicinal plants. J Ethnopharmacol 2015; 174: 576-81.
[http://dx.doi.org/10.1016/j.jep.2015.03.008] [PMID: 25773488]
[93]
Ofeimun JO, Ayinde BA. Preliminary investigation of the aphrodisiac potential of the methanol extract and fractions of Rhaphiostylis beninensis Planch ex Benth (Icacinaceae) root on male rats. J Sci Pract Pharm 2017; 4: 182-8.
[94]
Abraham PE, Harindran J. Pharmacognostic evaluation and formulation of shampoo using Sarcostigma kleinii wight & Arn. leaves Fam. Icacinaceae 2019; 8: 220-3.
[95]
FAO. Towards sustainable crop pollination services: Measures at field, farm and landscape scales. Rome, Italy: FAO 2020.
[http://dx.doi.org/10.4060/ca8965en]
[96]
Arunachalam K, Parimelazhagan T, Saravanan S. Phenolic content and antioxidant potential of Sarcostigma kleinii Wight. & Arn. Food Agric Immunol 2011; 22(2): 161-70.
[http://dx.doi.org/10.1080/09540105.2010.549211]
[97]
Cruz APO, Viana PL, Cruz APO, Viana PL. Flora of the cangas of Serra dos Carajás, Pará, Brazil: Metteniusaceae. Rodriguésia 2016; 67(5spe): 1427-9.
[http://dx.doi.org/10.1590/2175-7860201667542]
[98]
Kong DR, Schori M, Li L, Peng H. Floral development of Gonocaryum with emphasis on the gynoecium. Plant Syst Evol 2018; 304(3): 327-41.
[http://dx.doi.org/10.1007/s00606-017-1479-7]
[99]
Urban HAH, Angulo DF, Lascurain-Rangel M, Avendaño-Reyes S, Can LL, Stull G. Systematics and phylogeny of Oecopetalum (Metteniusaceae), a genus of trees endemic to North and Central America. Rev Biol Trop 2019; 67(4)
[100]
Del Rio C, Haevermans T, De Franceschi D. First record of an Icacinaceae Miers fossil flower from Le Quesnoy (Ypresian, France) amber. Sci Rep 2017; 7(1): 11099.
[http://dx.doi.org/10.1038/s41598-017-11536-y] [PMID: 28894196]
[101]
Stull GW, Soltis PS, Soltis DE, Gitzendanner MA, Smith SA. Nuclear phylogenomic analyses of asterids conflict with plastome trees and support novel relationships among major lineages. Am J Bot 2020; 107(5): 790-805.
[http://dx.doi.org/10.1002/ajb2.1468] [PMID: 32406108]
[102]
Borah P, Hazarika S, Deka S, et al. Application of advanced technologies in natural product research: A review with special emphasis on ADMET profiling. Curr Drug Metab 2020; 21(10): 751-67.
[http://dx.doi.org/10.2174/1389200221666200714144911] [PMID: 32664837]
[103]
Cragg GM, Newman DJ. Natural products: A continuing source of novel drug leads. Biochim Biophys Acta BBA - Gen Subj 1830; 1830: 3670-95.
[http://dx.doi.org/10.1016/j.bbagen.2013.02.008]
[104]
Nair JJ, van Staden J. Antifungal constituents of the plant family Amaryllidaceae. Phytother Res 2018; 32(6): 976-84.
[http://dx.doi.org/10.1002/ptr.6049] [PMID: 29484733]
[105]
Guo B, Onakpa MM, Huang XJ, et al. Di -nor - and 17- nor -pimaranes from Icacina trichantha. J Nat Prod 2016; 79(7): 1815-21.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00289] [PMID: 27340832]
[106]
Zhao M, Guo B, Onakpa MM, et al. Activity of Icacinol from Icacina trichantha on Seedling Growth of Oryza sativa and Arabidopsis thaliana. J Nat Prod 2017; 80(12): 3314-8.
[http://dx.doi.org/10.1021/acs.jnatprod.7b00668] [PMID: 29227099]
[107]
Zhao M, Onakpa MM, Chen WL, et al. 17-Norpimaranes and (9βH)-17-norpimaranes from the tuber of Icacina trichantha. J Nat Prod 2015; 78(4): 789-96.
[http://dx.doi.org/10.1021/np5010328] [PMID: 25782063]
[108]
Zhao M, Onakpa MM, Santarsiero BD, et al. Icacinlactone H and Icacintrichantholide from the Tuber of Icacina trichantha. Org Lett 2015; 17(15): 3834-7.
[http://dx.doi.org/10.1021/acs.orglett.5b01806] [PMID: 26183449]
[109]
Boudesocque-Delaye L, Agostinho D, Bodet C, et al. Antibacterial polyketide heterodimers from Pyrenacantha kaurabassana tubers. J Nat Prod 2015; 78(4): 597-603.
[http://dx.doi.org/10.1021/np5003252] [PMID: 25756503]
[110]
Bläs B, Zapp J, Becker H. ent -Clerodane diterpenes and other constituents from the liverwort Adelanthus lindenbergianus (Lehm.). Mitt Phytochemistry 2004; 65(1): 127-37.
[http://dx.doi.org/10.1016/S0031-9422(03)00387-X] [PMID: 14697278]
[111]
Quan NV, Thien DD, Khanh TD, et al. B, and tricin in rice grain and by-products are potential skin aging inhibitors. Foods 2019; 8(12): 602.
[http://dx.doi.org/10.3390/foods8120602] [PMID: 31766429]
[112]
Quan NV, Xuan TD, Tran HD, Ahmad A, Khanh TD, Dat TD. Contribution of momilactones A and B to diabetes inhibitory potential of rice bran: Evidence from in vitro assays. Saudi Pharm J 2019; 27(5): 643-9.
[http://dx.doi.org/10.1016/j.jsps.2019.03.006] [PMID: 31297018]
[113]
Quan N, Tran HD, Xuan T, et al. Momilactones A and B are α-amylase and α-glucosidase inhibitors. Molecules 2019; 24(3): 482.
[http://dx.doi.org/10.3390/molecules24030482] [PMID: 30700006]
[114]
Villaseñor IM, Angelada J, Canlas AP, Echegoyen D. Bioactivity studies on β-sitosterol and its glucoside. Phytother Res 2002; 16(5): 417-21.
[http://dx.doi.org/10.1002/ptr.910] [PMID: 12203259]
[115]
Wang H, Ao M, Wu J, Yu L. TNFα and Fas/FasL pathways are involved in 9-Methoxycamptothecin-induced apoptosis in cancer cells with oxidative stress and G2/M cell cycle arrest. Food Chem Toxicol 2013; 55: 396-410.
[http://dx.doi.org/10.1016/j.fct.2012.12.059] [PMID: 23369935]
[116]
Khan N, Tamboli ET, Sharma VK, Kumar S. Phytochemical and pharmacological aspects of Nothapodytes nimmoniana. An overview. Herba Pol 2013; 59(1): 53-66.
[http://dx.doi.org/10.2478/hepo-2013-0006]
[117]
Kim NH, Xin MJ, Cha JY, et al. Antitumor and immunomodulatory effect of Gastrodia elata on colon cancer in vitro and in vivo. Am J Chin Med 2017; 45(2): 319-35.
[http://dx.doi.org/10.1142/S0192415X17500203] [PMID: 28231745]
[118]
Tian Q, Wang L, Sun X, Zeng F, Pan Q, Xue M. Scopoletin exerts anticancer effects on human cervical cancer cell lines by triggering apoptosis, cell cycle arrest, inhibition of cell invasion and PI3K/AKT signalling pathway. J BUON 2019; 24(3): 997-1002.
[PMID: 31424653]
[119]
Wang Z, Zhan Y, Xu J, et al. β-sitosterol reverses multidrug resistance via BCRP suppression by inhibiting the p53–MDM2 interaction in colorectal cancer. J Agric Food Chem 2020; 68(12): 3850-8.
[http://dx.doi.org/10.1021/acs.jafc.0c00107] [PMID: 32167760]
[120]
Chen X, Wu Q, Chen Y, et al. Diosmetin induces apoptosis and enhances the chemotherapeutic efficacy of paclitaxel in non‐small cell lung cancer cells via Nrf2 inhibition. Br J Pharmacol 2019; 176(12): 2079-94.
[http://dx.doi.org/10.1111/bph.14652] [PMID: 30825187]
[121]
Whelan J, Fritsche K. Linoleic Acid. Adv Nutr 2013; 4(3): 311-2.
[http://dx.doi.org/10.3945/an.113.003772] [PMID: 23674797]
[122]
Zhou J, Chan L, Zhou S. Trigonelline: A plant alkaloid with therapeutic potential for diabetes and central nervous system disease. Curr Med Chem 2012; 19(21): 3523-31.
[http://dx.doi.org/10.2174/092986712801323171] [PMID: 22680628]
[123]
Salehi B, Venditti A, Sharifi-Rad M, et al. The therapeutic potential of apigenin. Int J Mol Sci 2019; 20(6): 1305.
[http://dx.doi.org/10.3390/ijms20061305] [PMID: 30875872]
[124]
Wagner GJ, Kroumova AB. The use of RNAi to elucidate and manipulate secondary metabolite synthesis in plants. In: Ying S-Y, Ed. Current Perspectives in microRNAs (miRNA). Dordrecht: Springer Netherlands 2008; pp. 431-59.
[http://dx.doi.org/10.1007/978-1-4020-8533-8_23]
[125]
Wang C, Wu C, Wang Y, et al. Transcription factor OpWRKY3 is involved in the development and biosynthesis of camptothecin and its precursors in Ophiorrhiza pumila hairy roots. Int J Mol Sci 2019; 20(16): 3996.
[http://dx.doi.org/10.3390/ijms20163996] [PMID: 31426351]
[126]
Lorence A, Nessler CL. Camptothecin, over four decades of surprising findings. Phytochemistry 2004; 65(20): 2735-49.
[http://dx.doi.org/10.1016/j.phytochem.2004.09.001] [PMID: 15474560]
[127]
Gopalakrishnan R, Shankar B. Multiple shoot cultures of Ophiorrhiza rugosa var. decumbens Deb and Mondal - A viable renewable source for the continuous production of bioactive Camptotheca alkaloids apart from stems of the parent plant of Nothapodytes foetida (Wight) Sleumer. Phytomedicine 2014; 21(3): 383-9.
[http://dx.doi.org/10.1016/j.phymed.2013.09.006] [PMID: 24252342]
[128]
Wang H, Ao M, Liu W, Bai Y, Zhu Y, Yu L. Topoisomerases inhibitory activities and DNA binding properties of 9-methoxy-camptothecin from Nothapodytes nimmoniana (J. Graham) Mabberly. Nat Prod Res 2019; 33(5): 727-31.
[http://dx.doi.org/10.1080/14786419.2017.1402312] [PMID: 29130341]
[129]
Zeng XH, Li YH, Wu SS, et al. New and highly efficient column chromatographic extraction and simple purification of camptothecin from Camptotheca acuminata and Nothapodytes pittosporoides. Phytochem Anal 2013; 24(6): 623-30.
[http://dx.doi.org/10.1002/pca.2441] [PMID: 23722924]
[130]
Zhou BN, Hoch JM, Johnson RK, et al. Use of COMPARE analysis to discover new natural product drugs: Isolation of camptothecin and 9-methoxycamptothecin from a new source. J Nat Prod 2000; 63(9): 1273-6.
[http://dx.doi.org/10.1021/np000058r] [PMID: 11000035]
[131]
Shweta S, Zuehlke S, Ramesha BT, et al. Endophytic fungal strains of Fusarium solani, from Apodytes dimidiata E. Mey. ex Arn (Icacinaceae) produce camptothecin, 10-hydroxycamptothecin and 9-methoxycamptothecin. Phytochemistry 2010; 71(1): 117-22.
[http://dx.doi.org/10.1016/j.phytochem.2009.09.030] [PMID: 19863979]
[132]
Fulzele DP, Satdive RK. Comparison of techniques for the extraction of the anti-cancer drug camptothecin from Nothapodytes foetida. J Chromatogr A 2005; 1063(1-2): 9-13.
[http://dx.doi.org/10.1016/j.chroma.2004.11.020] [PMID: 15700452]
[133]
Hsiao HY, Cheng TJ, Yang GM, Huang IJ, Chen RLC. Determination of camptothecins in DMSO extracts of Nothapodytes foetida by direct injection capillary electrophoresis. Phytochem Anal 2008; 19(2): 136-40.
[http://dx.doi.org/10.1002/pca.1026] [PMID: 17853380]
[134]
Namdeo AG, Sharma A. HPLC analysis of camptothecin content in various parts of Nothapodytes foetida collected on different periods. Asian Pac J Trop Biomed 2012; 2(5): 389-93.
[http://dx.doi.org/10.1016/S2221-1691(12)60062-8] [PMID: 23569936]
[135]
Patil DM, Akamanchi KG. Ultrasound-assisted rapid extraction and kinetic modelling of influential factors: Extraction of camptothecin from Nothapodytes nimmoniana plant. Ultrason Sonochem 2017; 37: 582-91.
[http://dx.doi.org/10.1016/j.ultsonch.2017.02.015] [PMID: 28427671]
[136]
Prakash L, Middha SK, Mohanty SK, Swamy MK. Micropropagation and validation of genetic and biochemical fidelity among regenerants of Nothapodytes nimmoniana (Graham) Mabb. employing ISSR markers and HPLC. 3 Biotech 2016; 6: 171.
[137]
Roja G. Comparative studies on the camptothecin content from Nothapodytes foetida and Ophiorrhiza species. Nat Prod Res 2006; 20(1): 85-8.
[http://dx.doi.org/10.1080/15216540500092898] [PMID: 16286315]
[138]
Ramesha BT, Amna T, Ravikanth G, et al. Prospecting for Camptothecines from Nothapodytes nimmoniana in the Western Ghats, South India: Identification of high-yielding sources of camptothecin and new families of camptothecines. J Chromatogr Sci 2008; 46(4): 362-8.
[http://dx.doi.org/10.1093/chromsci/46.4.362] [PMID: 18402730]
[139]
Srimany A, Ifa DR, Naik HR, Bhat V, Cooks RG, Pradeep T. Direct analysis of camptothecin from Nothapodytes nimmoniana by desorption electrospray ionization mass spectrometry (DESI-MS). Analyst 2011; 136(15): 3066-8.
[http://dx.doi.org/10.1039/c1an15339k]
[140]
Ramesha BT, Suma HK, Senthilkumar U, et al. New plant sources of the anti-cancer alkaloid, camptothecine from the Icacinaceae taxa, India. Phytomedicine 2013; 20(6): 521-7.
[http://dx.doi.org/10.1016/j.phymed.2012.12.003] [PMID: 23474217]
[141]
Delgado JL, Hsieh CM, Chan NL, Hiasa H. Topoisomerases as anticancer targets. Biochem J 2018; 475(2): 373-98.
[http://dx.doi.org/10.1042/BCJ20160583] [PMID: 29363591]
[142]
Guo B, Zhao M, Wu Z, Onakpa MM, Burdette JE, Che CT. 19-nor-pimaranes from Icacina trichantha. Fitoterapia 2020; 144: 104612.
[http://dx.doi.org/10.1016/j.fitote.2020.104612] [PMID: 32437735]
[143]
Falodun A, Siraj R, Choudhary MI. GC-MS analysis of insecticidal leaf essential oil of Pyrenacantha staudtii Hutch and Dalz (Icacinaceae). Trop J Pharm Res 2009; 8(2): 8.
[http://dx.doi.org/10.4314/tjpr.v8i2.44522]
[144]
Foubert K, Cuyckens F, Matheeussen A, et al. Antiprotozoal and antiangiogenic saponins from Apodytes dimidiata. Phytochemistry 2011; 72(11-12): 1414-23.
[http://dx.doi.org/10.1016/j.phytochem.2011.04.009] [PMID: 21601896]
[145]
Nworgu ZA, Falodun A, Usifoh CO. Inhibitory effect of 3-carboethoxypyridine and 3-carbobutoxypyridine on isolated rat uterus. Acta Pol Pharm 2007; 64(2): 179-82.
[PMID: 17665869]
[146]
Abraham E, Harindran J. LCMS ANALYSIS and in-vitro antidepressent study of ethyl alcoholic extract of shade dried leaves of sarcostigmaleinii wright and arn(icacinaceae). World J Pharm Pharm Sci 2019; 8(12): 600-8.
[147]
Gupta M, Shukla KK. Endophytic fungi: A treasure trove of novel bioactive compounds. In: Singh J, Meshram V, Gupta M, Eds. Bioactive Natural products in Drug Discovery Springer, Singapore,. Springer 2020; pp. 427-49.
[148]
Uzma F, Mohan CD, Siddaiah CN, Chowdappa S. Endophytic fungi: Promising source of novel bioactive compounds. In: Singh BP, Ed. Advances in endophytic fungal research Cham. Springer International Publishing New York City, US 2019; pp. 243-65.
[http://dx.doi.org/10.1007/978-3-030-03589-1_12]
[149]
Petrini O. Fungal endophytes of tree leaves. In: Microbial Ecology of Leaves. Springer New York City, US 1991; pp. 179-97.
[http://dx.doi.org/10.1007/978-1-4612-3168-4_9]
[150]
Strobel GA. Endophytes as sources of bioactive products. Microbes Infect 2003; 5(6): 535-44.
[http://dx.doi.org/10.1016/S1286-4579(03)00073-X] [PMID: 12758283]
[151]
Bacon CW, White J, Eds. Microbial EndophytesCRC Press: Boca Raton. 2014.
[http://dx.doi.org/10.1201/9781482277302]
[152]
Gouda S, Das G, Sen SK, Shin HS, Patra JK. Endophytes: A treasure house of bioactive compounds of medicinal importance. Front Microbiol 2016; 7: 1538.
[http://dx.doi.org/10.3389/fmicb.2016.01538] [PMID: 27746767]
[153]
Stierle A, Strobel G, Stierle D, Grothaus P, Bignami G. The search for a taxol-producing microorganism among the endophytic fungi of the Pacific yew, Taxus brevifolia. J Nat Prod 1995; 58(9): 1315-24.
[http://dx.doi.org/10.1021/np50123a002] [PMID: 7494141]
[154]
Dingle J, Mcgee PA. Some endophytic fungi reduce the density of pustules of Puccinia recondita f. sp. tritici in wheat. Mycol Res 2003; 107(3): 310-6.
[http://dx.doi.org/10.1017/S0953756203007512] [PMID: 12825500]
[155]
Sherameti I, Shahollari B, Venus Y, Altschmied L, Varma A, Oelmüller R. The endophytic fungus Piriformospora indica stimulates the expression of nitrate reductase and the starch-degrading enzyme glucan-water dikinase in tobacco and Arabidopsis roots through a homeodomain transcription factor that binds to a conserved motif in their promoters. J Biol Chem 2005; 280(28): 26241-7.
[http://dx.doi.org/10.1074/jbc.M500447200] [PMID: 15710607]
[156]
Kaul S, Gupta S, Ahmed M, Dhar MK. Endophytic fungi from medicinal plants: A treasure hunt for bioactive metabolites. Phytochem Rev 2012; 11(4): 487-505.
[http://dx.doi.org/10.1007/s11101-012-9260-6]
[157]
Jia M, Chen L, Xin HL, et al. A friendly relationship between endophytic fungi and medicinal plants: A systematic review. Front Microbiol 2016; 7: 906.
[http://dx.doi.org/10.3389/fmicb.2016.00906] [PMID: 27375610]
[158]
Subbulakshmi G, Thalavaipandian A, Ramesh V. Bioactive endophytic fungal isolates of Biota orientalis (L) Endl., Pinus excelsa Wall. and Thuja occidentalis L. Int J Adv Life Sci 2012; 4: 9-15.
[159]
Pommier Y. Camptothecins and topoisomerase I: A foot in the door. Targeting the genome beyond topoisomerase I with camptothecins and novel anticancer drugs: Importance of DNA replication, repair and cell cycle checkpoints. Curr Med Chem Anticancer Agents 2004; 4(5): 429-34.
[http://dx.doi.org/10.2174/1568011043352777] [PMID: 15379698]
[160]
Bhalkar BN, Patil SM, Govindwar SP. Camptothecine production by mixed fermentation of two endophytic fungi from Nothapodytes nimmoniana. Fungal Biol 2016; 120(6-7): 873-83.
[http://dx.doi.org/10.1016/j.funbio.2016.04.003] [PMID: 27268247]
[161]
Soujanya KN, Siva R, Mohana Kumara P, et al. Camptothecin-producing endophytic bacteria from Pyrenacantha volubilis Hook. (Icacinaceae): A possible role of a plasmid in the production of camptothecin. Phytomedicine 2017; 36: 160-7.
[http://dx.doi.org/10.1016/j.phymed.2017.09.019] [PMID: 29157810]
[162]
Ludwig-Müller J. Plants and endophytes: Equal partners in secondary metabolite production? Biotechnol Lett 2015; 37(7): 1325-34.
[http://dx.doi.org/10.1007/s10529-015-1814-4] [PMID: 25792513]
[163]
Kusari S, Spiteller M. Metabolomics of endophytic fungi producing associated plant secondary metabolites: Progress, challenges and opportunities. Metabolomics 2012; 241-66.
[164]
Puri SC, Verma V, Amna T, Qazi GN, Spiteller M. An endophytic fungus from Nothapodytes foetida that produces camptothecin. J Nat Prod 2005; 68(12): 1717-9.
[http://dx.doi.org/10.1021/np0502802] [PMID: 16378360]
[165]
Musavi SF, Dhavale A, Balakrishnan RM. Optimization and kinetic modeling of cell-associated camptothecin production from an endophytic Fusarium oxysporum NFX06. Prep Biochem Biotechnol 2015; 45(2): 158-72.
[http://dx.doi.org/10.1080/10826068.2014.907177] [PMID: 24840354]
[166]
Strobel G, Daisy B. Bioprospecting for microbial endophytes and their natural products. Microbiol Mol Biol Rev 2003; 67(4): 491-502.
[http://dx.doi.org/10.1128/MMBR.67.4.491-502.2003] [PMID: 14665674]
[167]
Fierascu RC, Fierascu I, Ortan A, Georgiev MI, Sieniawska E. Innovative approaches for recovery of phytoconstituents from medicinal/aromatic plants and biotechnological production. Molecules 2020; 25(2): 309.
[http://dx.doi.org/10.3390/molecules25020309] [PMID: 31940923]
[168]
Ramirez-Estrada K, Vidal-Limon H, Hidalgo D, et al. Elicitation, an effective strategy for the biotechnological production of bioactive high-added value compounds in plant cell factories. Molecules 2016; 21(2): 182.
[http://dx.doi.org/10.3390/molecules21020182] [PMID: 26848649]
[169]
Alfermann AW, Petersen M. Natural product formation by plant cell biotechnology. Plant Cell Tissue Organ Cult 1995; 43(2): 199-205.
[http://dx.doi.org/10.1007/BF00052176]
[170]
Bhatia S, Sharma K, Dahiya R, Bera T. Modern Applications of plant biotechnology in pharmaceutical sciences. Cambridge, Massachusetts, US: Academic Press 2015.
[171]
Tabata H. Production of paclitaxel and the related taxanes by cell suspension cultures of Taxus species. Curr Drug Targets 2006; 7(4): 453-61.
[http://dx.doi.org/10.2174/138945006776359368] [PMID: 16611032]
[172]
Hu X, Neill SJ, Cai W, Tang Z. Nitric oxide mediates elicitor-induced saponin synthesis in cell cultures of Panax ginseng. Funct Plant Biol 2003; 30(8): 901-7.
[http://dx.doi.org/10.1071/FP03061] [PMID: 32689074]
[173]
Espinosa-Leal CA, Puente-Garza CA, García-Lara S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 2018; 248(1): 1-18.
[http://dx.doi.org/10.1007/s00425-018-2910-1] [PMID: 29736623]
[174]
Zhong JJ. Biochemical engineering of the production of plant-specific secondary metabolites by cell suspension cultures. Adv Biochem Eng Biotechnol 2001; 72: 1-26.
[http://dx.doi.org/10.1007/3-540-45302-4_1] [PMID: 11729750]
[175]
Gonçalves S, Romano A. Production of Plant Secondary Metabolites by Using Biotechnological Tools. Secondary Metabolites - Sources and Applications. Intech Open 2018.
[http://dx.doi.org/10.5772/intechopen.76414]
[176]
Pua E-C, Davey MR, Eds. Transgenic Crops VI. Springer Berlin, Heidelberg 2007; pp. 205-23.
[http://dx.doi.org/10.1007/978-3-540-71711-9_11]
[177]
Almagro L, Fernández-Pérez F, Pedreño M. Indole alkaloids from Catharanthus roseus: Bioproduction and their effect on human health. Molecules 2015; 20(2): 2973-3000.
[http://dx.doi.org/10.3390/molecules20022973] [PMID: 25685907]
[178]
Fulzele DP, Satdive RK, Pol BB. Growth and production of camptothecin by cell suspension cultures of Nothapodytes foetida. Planta Med 2001; 67(2): 150-2.
[http://dx.doi.org/10.1055/s-2001-11519] [PMID: 11301862]
[179]
Moshi AP, Nyandele JP, Ndossi HP, Eva SM, Hosea KM. Feasibility of bioethanol production from tubers of Dioscorea sansibarensis and Pyrenacantha kaurabassana. Bioresour Technol 2015; 196: 613-20.
[http://dx.doi.org/10.1016/j.biortech.2015.08.028] [PMID: 26298406]
[180]
Murthy HN, Georgiev MI, Park SY, Dandin VS, Paek KY. The safety assessment of food ingredients derived from plant cell, tissue and organ cultures: A review. Food Chem 2015; 176: 426-32.
[http://dx.doi.org/10.1016/j.foodchem.2014.12.075] [PMID: 25624252]
[181]
Smetanska I. Production of secondary metabolites using plant cell cultures. In: Stahl U, Donalies UEB, Nevoigt E, Eds. Food Biotechnology. Springer Berlin, Heidelberg 2008; pp. 187-228.
[http://dx.doi.org/10.1007/10_2008_103]
[182]
Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M. Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 2012; 4(1): 10-20.
[http://dx.doi.org/10.4103/0975-7406.92725] [PMID: 22368394]
[183]
Chen SL, Yu H, Luo HM, Wu Q, Li CF, Steinmetz A. Conservation and sustainable use of medicinal plants: Problems, progress, and prospects. Chin Med 2016; 11(1): 37.
[http://dx.doi.org/10.1186/s13020-016-0108-7] [PMID: 27478496]
[184]
Pu X, Zhang CR, Zhu L, et al. Possible clues for camptothecin biosynthesis from the metabolites in camptothecin-producing plants. Fitoterapia 2019; 134: 113-28.
[http://dx.doi.org/10.1016/j.fitote.2019.02.014] [PMID: 30794920]
[185]
Atanasov AG, Zotchev SB, Dirsch VM, Supuran CT. Natural products in drug discovery: Advances and opportunities. Nat Rev Drug Discov 2021; 20(3): 200-16.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy