Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Nutrition, Immunity and Aging: Current Scenario and Future Perspectives in Neurodegenerative Diseases

Author(s): Camilla Barbero Mazzucca, Giuseppe Cappellano* and Annalisa Chiocchetti

Volume 23, Issue 5, 2024

Published on: 16 May, 2023

Page: [573 - 587] Pages: 15

DOI: 10.2174/1871527322666230502123255

Price: $65

conference banner
Abstract

Aging is a gradual decline of physiological function and tissue homeostasis and, in many instances, is related to increased (neuro)-degeneration, together with inflammation, becoming one of the most important risks for developing neurodegenerative diseases. Certain individual nutrients or foods in combination may counteract aging and associated neurodegenerative diseases by promoting a balance between the pro- and anti-inflammatory responses. Thus, nutrition could represent a powerful modulator of this fine balance, other than a modifiable risk factor to contrast inflammaging. This narrative review explores from a broad perspective the impact of nutrition on the hallmarks of aging and inflammation in Alzheimer’s disease (AD), Parkinson’s disease (PD) and Amyotrophic Lateral Sclerosis Syndrome (ALS), starting from nutrients up to single foods and complex dietary patterns.

Graphical Abstract

[1]
Postolache TT, Bergeron CD, Marquez DX, Gong CH, Heine C, Honge Gong C. Dual sensory loss, mental health, and wellbeing of older adults living in China. Front Public Health 2019; 7: 92.
[2]
Reddy MS. Depression: The disorder and the burden. Indian J Psychol Med 2010; 32(1): 1.
[3]
Murphy MP, Levine H. Alzheimer’s disease and the β-amyloid peptide. J Alzheimers Dis 2010; 19(1): 311.
[4]
Knopman DS, Amieva H, Petersen RC, Chételat G, Holtzman DM, Hyman BT. Alzheimer disease. Nat Rev Dis Primers 2021; 7(1): 33. A.
[http://dx.doi.org/10.1038/s41572-021-00269-y]
[5]
Balestrino R, Schapira AHV. Parkinson disease. Eur J Neurol 2020; 27(1): 27-42.
[http://dx.doi.org/10.1111/ene.14108] [PMID: 31631455]
[6]
Hardiman O, Al-Chalabi A, Chio A, Corr EM, Logroscino G, Robberecht W. Amyotrophic lateral sclerosis. Nat Rev Dis Primers 2017; 3: 17071.
[7]
Pape JA, Grose JH. The effects of diet and sex in amyotrophic lateral sclerosis. Rev Neurol 2020; 176(5): 301-15.
[8]
Pogačnik L, Ota A, Ulrih NP. An overview of crucial dietary substances and their modes of action for prevention of neurodegenerative diseases. Cells 2020; 9(3): 576.
[http://dx.doi.org/10.3390/cells9030576]
[9]
Kubben N, Misteli T. Shared molecular and cellular mechanisms of premature ageing and ageing-associated diseases. Nat Rev Mol Cell Biol 2017; 18(10): 595-609.
[http://dx.doi.org/10.1038/nrm.2017.68]
[10]
Kritsilis M, Rizou SV, Koutsoudaki PN, Evangelou K, Gorgoulis VG, Papadopoulos D. Molecular sciences ageing, cellular senescence and neurodegenerative disease. Int J Mol Sci 2018; 6: 628.
[11]
Meiklejohn CD, Montooth KL, Rand DM. Positive and negative selection on the mitochondrial genome. Trends Genet 2007; 23(6): 259-63.
[http://dx.doi.org/10.1016/j.tig.2007.03.008] [PMID: 17418445]
[12]
Melzer D, Pilling LC, Ferrucci L. The genetics of human ageing. Nat Rev Genet 2020; 21(2): 88-101.
[http://dx.doi.org/10.1038/s41576-019-0183-6]
[13]
Schumacher B, Garinis GA, Hoeijmakers JHJ. Age to survive: DNA damage and aging. Trends Genet 2008; 24(2): 77-85.
[http://dx.doi.org/10.1016/j.tig.2007.11.004] [PMID: 18192065]
[14]
Fraga MF, Esteller M. Epigenetics and aging: The targets and the marks. Trends Genet 2007; 23(8): 413-8.
[http://dx.doi.org/10.1016/j.tig.2007.05.008] [PMID: 17559965]
[15]
López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6): 1194-217.
[http://dx.doi.org/10.1016/j.cell.2013.05.039] [PMID: 23746838]
[16]
Hayflick L, Moorhead PS. The serial cultivation of human diploid cell strains. Exp Cell Res 1961; 25(3): 585-621.
[http://dx.doi.org/10.1016/0014-4827(61)90192-6] [PMID: 13905658]
[17]
Herrmann LK, Welter E, Leverenz J, et al. A systematic review of dementia-related stigma research: Can we move the stigma dial? Am J Geriatr Psychiatry 2018; 26(3): 316-31.
[http://dx.doi.org/10.1016/j.jagp.2017.09.006] [PMID: 29426607]
[18]
Flanary BE, Sammons NW, Nguyen C, Walker D, Streit WJ. Evidence that aging and amyloid promote microglial cell senescence. Rejuvenation Res 2007; 10(1): 61-74.
[http://dx.doi.org/10.1089/rej.2006.9096]
[19]
Khleifat AAL, Iacoangeli A, Shatunov A, Fang T, Sproviero W, Jones AR. Telomere length is greater in ALS than in controls: A whole genome sequencing study. Amyotroph Lateral Scler Frontotemporal Degener 2019; 20(3-4): 229-34.
[http://dx.doi.org/10.1080/21678421.2019.1586951]
[20]
Powers ET, Morimoto RI, Dillin A, Kelly JW, Balch WE. Biological and chemical approaches to diseases of proteostasis deficiency. Annu Rev Biochem 2009; 78: 959-91.
[http://dx.doi.org/10.1146/annurev.biochem.052308.114844]
[21]
Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From discoveries in ageing research to therapeutics for healthy ageing. Nature 2019; 571(7764): 183-92.
[http://dx.doi.org/10.1038/s41586-019-1365-2]
[22]
Shields HJ, Traa A, Van Raamsdonk JM. Beneficial and detrimental effects of reactive oxygen species on lifespan: A comprehensive review of comparative and experimental studies. Front Cell Dev Biol 2021; 9: 628157.
[http://dx.doi.org/10.3389/fcell.2021.628157] [PMID: 33644065]
[23]
Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest 2013; 123(3): 966-72.
[http://dx.doi.org/10.1172/JCI64098]
[24]
Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J. Senescent cells: An emerging target for diseases of ageing. Nat Rev Drug Discov 2017; 16(10): 718-35.
[http://dx.doi.org/10.1038/nrd.2017.116]
[25]
Calcinotto A, Kohli J, Zagato E, Pellegrini L, Demaria M, Alimonti A. Cellular senescence: Aging, cancer, and injury. Physiol Rev 2019; 99(2): 1047-78.
[http://dx.doi.org/10.1152/physrev.00020.2018] [PMID: 30648461]
[26]
Oh J, Lee YD, Wagers AJ. Stem cell aging: Mechanisms, regulators and therapeutic opportunities. Nat Med 2014; 20(8): 870-80.
[27]
Franceschi C, Campisi J. Chronic inflammation (Inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 2014; 69(S1): S4-9.
[28]
Franceschi C, Garagnani P, Vitale G, Capri M, Salvioli S. Inflammaging and ‘Garb-aging’. Trends Endocrinol Metab 2017; 28(3): 199-212.
[http://dx.doi.org/10.1016/j.tem.2016.09.005] [PMID: 27789101]
[29]
Zapata HJ, Quagliarello VJ. The microbiota and microbiome in aging: Potential implications in health and age-related diseases. J Am Geriatr Soc 2015; 63(4): 776-81.
[http://dx.doi.org/10.1111/jgs.13310] [PMID: 25851728]
[30]
Faas MM, de Vos P. Mitochondrial function in immune cells in health and disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866(10): 165845.
[http://dx.doi.org/10.1016/j.bbadis.2020.165845] [PMID: 32473386]
[31]
Iyer SS, He Q, Janczy JR, et al. Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity 2013; 39(2): 311-23.
[http://dx.doi.org/10.1016/j.immuni.2013.08.001] [PMID: 23954133]
[32]
Borghesan M, Fafián-Labora J, Eleftheriadou O, et al. Small extracellular vesicles are key regulators of non-cell autonomous intercellular communication in senescence via the interferon protein IFITM3. Cell Rep 2019; 27(13): 3956-3971.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.05.095] [PMID: 31242426]
[33]
Maione F, Cappellano G, Bellan M, Raineri D, Chiocchetti A. Chicken-or-egg question: Which came first, extracellular vesicles or autoimmune diseases? J Leukoc Biol 2020; 108(2): 601-16.
[http://dx.doi.org/10.1002/JLB.3MR0120-232R] [PMID: 32108378]
[34]
Cappellano G, Raineri D, Rolla R, Giordano M, Puricelli C, Vilardo B. Circulating platelet-derived extracellular vesicles are a hallmark of Sars-Cov-2 infection. Cells 2021; 10(1): 85.
[http://dx.doi.org/10.3390/cells10010085]
[35]
Raineri D, Venegoni C, Calella MG, Vaschetto R, Scotti L, Canciani E. Worse disease prognosis is associated to an increase of platelet-derived extracellular vesicles in hospitalized SARS-CoV-2 patients. Dis Markers 2022; 2022: 8074655.
[36]
Abreu H, Canciani E, Raineri D, Cappellano G, Rimondini L, Chiocchetti A. Extracellular vesicles in musculoskeletal regeneration: Modulating the therapy of the future. Cells 2021; 11(1): 43.
[http://dx.doi.org/10.3390/cells11010043] [PMID: 35011605]
[37]
Conboy IM, Rando TA. Aging, stem cells and tissue regeneration: Lessons from muscle. Cell Cycle 2005; 4(3): 407-10.
[38]
Plowden J, Renshaw-Hoelscher M, Engleman C, Katz J, Sambhara S. Innate immunity in aging: Impact on macrophage function. Aging Cell 2004; 3(4): 161-7.
[http://dx.doi.org/10.1111/j.1474-9728.2004.00102.x] [PMID: 15268749]
[39]
Wu D, Meydani SN. Mechanism of age-associated up-regulation in macrophage PGE2 synthesis. Brain Behav Immun 2004; 18(6): 487-94.
[http://dx.doi.org/10.1016/j.bbi.2004.05.003] [PMID: 15331118]
[40]
Mariani E, Meneghetti A, Neri S, et al. Chemokine production by natural killer cells from nonagenarians. Eur J Immunol 2002; 32(6): 1524-9.
[http://dx.doi.org/10.1002/1521-4141(200206)32:6<1524:AID-IMMU1524>3.0.CO;2-E] [PMID: 12115634]
[41]
Butcher SK, Chahal H, Nayak L, et al. Senescence in innate immune responses: Reduced neutrophil phagocytic capacity and CD16 expression in elderly humans. J Leukoc Biol 2001; 70(6): 881-6.
[http://dx.doi.org/10.1189/jlb.70.6.881] [PMID: 11739550]
[42]
Salminen A, Huuskonen J, Ojala J, Kauppinen A, Kaarniranta K, Suuronen T. Activation of innate immunity system during aging: NF-kB signaling is the molecular culprit of inflamm-aging. Ageing Res Rev 2008; 7(2): 83-105.
[http://dx.doi.org/10.1016/j.arr.2007.09.002] [PMID: 17964225]
[43]
Veuger SJ, Durkacz BW. Persistence of unrepaired DNA double strand breaks caused by inhibition of ATM does not lead to radio-sensitisation in the absence of NF-κB activation. DNA Repair 2011; 10(2): 235-44.
[http://dx.doi.org/10.1016/j.dnarep.2010.11.005] [PMID: 21144805]
[44]
Choudhury AR, Ju Z, Djojosubroto MW, et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 2007; 39(1): 99-105.
[http://dx.doi.org/10.1038/ng1937] [PMID: 17143283]
[45]
Niraula A, Sheridan JF, Godbout JP. Microglia priming with aging and stress. Neuropsychopharmacology 2017; 42(1): 318-33.
[http://dx.doi.org/10.1038/npp.2016.185]
[46]
Bales KR, Verina T, Dodel RC, Du Y, Altstiel L, Bender M. Lack of apolipoprotein E dramatically reduces amyloid β-peptide deposition. nature 1997; 17: 263-4.
[http://dx.doi.org/10.1038/ng1197-263]
[47]
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol 2018; 217(2): 459-72.
[http://dx.doi.org/10.1083/jcb.201709069] [PMID: 29196460]
[48]
Ferreira SA, Romero-Ramos M. Microglia response during Parkinson’s disease: Alpha-synuclein intervention. Front Cell Neurosci 2018; 12: 247.
[http://dx.doi.org/10.3389/fncel.2018.00247] [PMID: 30127724]
[49]
Liao B, Zhao W, Beers DR, Henkel JS, Appel SH. Transformation from a neuroprotective to a neurotoxic microglial phenotype in a mouse model of ALS. Exp Neurol 2012; 237(1): 147-52.
[http://dx.doi.org/10.1016/j.expneurol.2012.06.011] [PMID: 22735487]
[50]
Chiu IM, Morimoto ETA, Goodarzi H, et al. A neurodegeneration-specific gene-expression signature of acutely isolated microglia from an amyotrophic lateral sclerosis mouse model. Cell Rep 2013; 4(2): 385-401.
[http://dx.doi.org/10.1016/j.celrep.2013.06.018] [PMID: 23850290]
[51]
Marshall JS, Warrington R, Watson W, Kim HL. An introduction to immunology and immunopathology. Allergy Asthma Clin Immunol 2018; 14(S2): 49.
[52]
Linton PJ, Dorshkind K. Age-related changes in lymphocyte development and function. Nat Immunol 2004; 5(2): 133-9.
[http://dx.doi.org/10.1038/ni1033]
[53]
Allman D, Miller JP. B cell development and receptor diversity during aging. Curr Opin Immunol 2005; 17(5): 463-7.
[http://dx.doi.org/10.1016/j.coi.2005.07.002] [PMID: 16054808]
[54]
Spaulding C, Guo W, Effros RB. Resistance to apoptosis in human CD8+ T cells that reach replicative senescence after multiple rounds of antigen-specific proliferation. Exp Gerontol 1999; 34(5): 633-44.
[http://dx.doi.org/10.1016/S0531-5565(99)00033-9] [PMID: 10530789]
[55]
Igarashi H, Gregory SC, Yokota T, Sakaguchi N, Kincade PW. Transcription from the RAG1 locus marks the earliest lymphocyte progenitors in bone marrow. Immunity 2002; 17(2): 117-30.
[http://dx.doi.org/10.1016/S1074-7613(02)00366-7] [PMID: 12196284]
[56]
Fulop T, Kotb R, Fortin CF, Pawelec G, De Angelis F, Larbi A. Potential role of immunosenescence in cancer development. Ann N Y Acad Sci 2010; 1197(1): 158-65.
[http://dx.doi.org/10.1111/j.1749-6632.2009.05370.x] [PMID: 20536845]
[57]
Hadamitzky M, Spuch C, Hellings N, Maler JM, Oberstein TJ, Taha L. Imbalance of circulating Th17 and regulatory T cells in Alzheimer’s Disease: A case control study. Front Immunol 2018; 9: 1213.
[58]
Gate D, Saligrama N, Leventhal O, et al. Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer’s disease. Nature 2020; 577(7790): 399-404.
[http://dx.doi.org/10.1038/s41586-019-1895-7] [PMID: 31915375]
[59]
Garfias S, Tamaya Domínguez B, Toledo Rojas A, et al. Peripheral blood lymphocyte phenotypes in Alzheimer and Parkinson’s diseases. Neurologia 2022; 37(2): 110-21.
[http://dx.doi.org/10.1016/j.nrleng.2018.10.022] [PMID: 35279225]
[60]
Baba Y, Kuroiwa A, Uitti RJ, Wszolek ZK, Yamada T. Alterations of T-lymphocyte populations in Parkinson disease. Parkinsonism Relat Disord 2005; 11(8): 493-8.
[http://dx.doi.org/10.1016/j.parkreldis.2005.07.005] [PMID: 16154792]
[61]
Saunders JAH, Estes KA, Kosloski LM, et al. CD4+ regulatory and effector/memory T cell subsets profile motor dysfunction in Parkinson’s disease. J Neuroimmune Pharmacol 2012; 7(4): 927-38.
[http://dx.doi.org/10.1007/s11481-012-9402-z] [PMID: 23054369]
[62]
Bas J, Calopa M, Mestre M. Mollevı DG, Cutillas B, Ambrosio S. Lymphocyte populations in Parkinson’s disease and in rat models of parkinsonism. J Neuroimmunol 2001; 113(1): 146-52.
[63]
Li R, Tropea TF, Baratta LR, Zuroff L, Diaz-Ortiz ME, Zhang B. Abnormal B-Cell and Tfh-Cell profiles in patients with parkinson disease: A cross-sectional study. Neurol Neuroimmunol Neuroinflamm 2022; 9(2): e1125.
[64]
Orr CF, Rowe DB, Mizuno Y, Mori H, Halliday GM. A possible role for humoral immunity in the pathogenesis of Parkinson’s disease. Brain 2005; 128(11): 2665-74.
[http://dx.doi.org/10.1093/brain/awh625] [PMID: 16219675]
[65]
Mosley RL, Hutter-Saunders JA, Stone DK, Gendelman HE. Inflammation and adaptive immunity in parkinson’s disease. Cold Spring Harb Perspect Med 2012; 2(1): a009381.
[http://dx.doi.org/10.1101/cshperspect.a009381]
[66]
Shi N, Kawano Y, Tateishi T, et al. Increased IL-13-producing T cells in ALS: Positive correlations with disease severity and progression rate. J Neuroimmunol 2007; 182(1-2): 232-5.
[http://dx.doi.org/10.1016/j.jneuroim.2006.10.001] [PMID: 17097743]
[67]
Engelhardt JI, Tajti J, Appel SH. Lymphocytic infiltrates in the spinal cord in amyotrophic lateral sclerosis. Arch Neurol 1993; 50(1): 30-6.
[http://dx.doi.org/10.1001/archneur.1993.00540010026013] [PMID: 8093428]
[68]
Chen X, Feng W, Huang R, et al. Evidence for peripheral immune activation in amyotrophic lateral sclerosis. J Neurol Sci 2014; 347(1-2): 90-5.
[http://dx.doi.org/10.1016/j.jns.2014.09.025] [PMID: 25312013]
[69]
Hirschberg S, Gisevius B, Duscha A, Haghikia A. Implications of diet and the gut microbiome in neuroinflammatory and neurodegenerative diseases. Int J Mol Sci 2019; 20(12): 3109.
[http://dx.doi.org/10.3390/ijms20123109]
[70]
Forsythe P, Bienenstock J, Kunze WA. Vagal pathways for microbiome-brain-gut axis communication. Adv Exp Med Biol 2014; 817: 115-33.
[http://dx.doi.org/10.1007/978-1-4939-0897-4_5] [PMID: 24997031]
[71]
Rao M, Gershon MD. The bowel and beyond: The enteric nervous system in neurological disorders. Nat Rev Gastroenterol Hepatol 2016; 13(9): 517-28.
[http://dx.doi.org/10.1038/nrgastro.2016.107]
[72]
Fond G, Loundou A, Hamdani N, et al. Anxiety and depression comorbidities in Irritable Bowel Syndrome (IBS): A systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci 2014; 264(8): 651-60.
[http://dx.doi.org/10.1007/s00406-014-0502-z] [PMID: 24705634]
[73]
Vighi G, Marcucci F, Sensi L, Di Cara G, Frati F. Allergy and the gastrointestinal system. Clin Exp Immunol 2008; 153(S1): 3-6.
[http://dx.doi.org/10.1111/j.1365-2249.2008.03713.x]
[74]
Swiatczak B, Cohen IR. Gut feelings of safety: tolerance to the microbiota mediated by innate immune receptors. Microbiol Immunol 2015; 59(10): 573-85.
[http://dx.doi.org/10.1111/1348-0421.12318] [PMID: 26306708]
[75]
Gomaa EZ. Human gut microbiota/microbiome in health and diseases: a review. Antonie van Leeuwenhoek 2020; 113(12): 2019-40.
[http://dx.doi.org/10.1007/s10482-020-01474-7] [PMID: 33136284]
[76]
Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res 2020; 30(6): 492-506.
[http://dx.doi.org/10.1038/s41422-020-0332-7]
[77]
Massier L, Blüher M, Kovacs P, Chakaroun RM. Impaired intestinal barrier and tissue bacteria: Pathomechanisms for metabolic diseases. Front Endocrinol 2021; 12: 616506.
[78]
Paray BA, Albeshr MF. Leaky gut and autoimmunity: An intricate balance in individuals health and the diseased state. Int J Mol Sci 2020; 21(24): 1-12.
[79]
Van Ijzendoorn SCD, Derkinderen P. The intestinal barrier in parkinson’s disease: Current state of knowledge. J Parkinsons Dis 2019; 9(S2): S323.
[80]
Jiang C, Li G, Huang P, Liu Z, Zhao B. The Gut Microbiota and Alzheimer’s Disease. J Alzheimers Dis 2017; 58(1): 1-15.
[http://dx.doi.org/10.3233/JAD-161141] [PMID: 28372330]
[81]
Köhler C, Maes M, Slyepchenko A, et al. The gut-brain axis, including the microbiome, leaky gut and bacterial translocation: Mechanisms and pathophysiological role in alzheimer’s disease. Curr Pharm Des 2016; 22(40): 6152-66.
[http://dx.doi.org/10.2174/1381612822666160907093807] [PMID: 27604604]
[82]
Carloni S, Bertocchi A, Mancinelli S, et al. Identification of a choroid plexus vascular barrier closing during intestinal inflammation. Science 2021; 374(6566): 439-48.
[http://dx.doi.org/10.1126/science.abc6108] [PMID: 34672740]
[83]
Cheng LK, O’Grady G, Du P, Egbuji JU, Windsor JA, Pullan AJ. Gastrointestinal system. Wiley Interdiscip Rev Syst Biol Med 2010; 2(1): 65-79.
[http://dx.doi.org/10.1002/wsbm.19] [PMID: 20836011]
[84]
Lerner A, Matthias T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun Rev 2015; 14(6): 479-89.
[http://dx.doi.org/10.1016/j.autrev.2015.01.009] [PMID: 25676324]
[85]
Raposo G, Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J Cell Biol 2013; 200(4): 373-83.
[http://dx.doi.org/10.1083/jcb.201211138] [PMID: 23420871]
[86]
Ilgın C, Topuzoğlu A. Extracellular vesicles in psychiatry research in the context of RDoC criteria. Psychiatry Investig 2018; 15(11): 1011-8.
[http://dx.doi.org/10.30773/pi.2018.09.17] [PMID: 30380817]
[87]
Pieters BCH, Arntz OJ, Bennink MB, et al. Commercial cow milk contains physically stable extracellular vesicles expressing immunoregulatory TGF-β. PLoS One 2015; 10(3): e0121123.
[http://dx.doi.org/10.1371/journal.pone.0121123] [PMID: 25822997]
[88]
Baum J, Kim IY, Wolfe R. Protein consumption and the elderly: What is the optimal level of intake? Nutrients 2016; 8(6): 359.
[http://dx.doi.org/10.3390/nu8060359] [PMID: 27338461]
[89]
Moore K, Hughes CF, Ward M, Hoey L, McNulty H. Diet, nutrition and the ageing brain: current evidence and new directions. Proc Nutr Soc 2018; 77(2): 152-63.
[http://dx.doi.org/10.1017/S0029665117004177] [PMID: 29316987]
[90]
Ooi CP, Loke SC, Yassin Z, Hamid T, Group CD. Carbohydrates for improving the cognitive performance of independent‐living older adults with normal cognition or mild cognitive impairment. Cochrane Database Syst Rev 2011; 2011(4)
[91]
Mwamburi DM, Liebson E, Folstein M, Bungay K, Tucker KL, Qiu WQ. Depression and glycemic intake in the homebound elderly. J Affect Disord 2011; 132(1-2): 94-8.
[http://dx.doi.org/10.1016/j.jad.2011.02.002] [PMID: 21396718]
[92]
Bazinet RP, Layé S. Polyunsaturated fatty acids and their metabolites in brain function and disease. Nat Rev Neurosci 2014; 15(12): 771-85.
[http://dx.doi.org/10.1038/nrn3820]
[93]
Nozaki S, Sawada N, Matsuoka YJ, Shikimoto R, Mimura M, Tsugane S. Association Between Dietary Fish and PUFA Intake in Midlife and Dementia in Later Life: The JPHC Saku Mental Health Study. J Alzheimers Dis 2021; 79(3): 1091-104.
[http://dx.doi.org/10.3233/JAD-191313] [PMID: 33386799]
[94]
Ford AH, Almeida OP. Effect of vitamin B supplementation on cognitive function in the elderly: A systematic review and meta-analysis. Drugs Aging 2019; 36(5): 419-34.
[http://dx.doi.org/10.1007/s40266-019-00649-w] [PMID: 30949983]
[95]
Daniele S, Giacomelli C, Martini C. Brain ageing and neurodegenerative disease: The role of cellular waste management. Biochem Pharmacol 2018; 158: 207-16.
[96]
Li Z, Wang W, Xin X, Song X, Zhang D. Association of total zinc, iron, copper and selenium intakes with depression in the US adults. J Affect Disord 2018; 228: 68-74.
[http://dx.doi.org/10.1016/j.jad.2017.12.004] [PMID: 29232566]
[97]
Makkar R, Behl T, Bungau S, et al. Nutraceuticals in neurological disorders. Int J Mol Sci 2020; 21(12): 4424.
[http://dx.doi.org/10.3390/ijms21124424] [PMID: 32580329]
[98]
Chico L, Ienco EC, Bisordi C, et al. Amyotrophic lateral sclerosis and oxidative stress: A double-blind therapeutic trial after curcumin supplementation. CNS Neurol Disord Drug Targets 2018; 17(10): 767-79.
[http://dx.doi.org/10.2174/1871527317666180720162029] [PMID: 30033879]
[99]
Mezzaroba L, Alfieri DF, Colado SAN, Vissoci REM. The role of zinc, copper, manganese and iron in neurodegenerative diseases. Neurotoxicology 2019; 74: 230-41.
[100]
Petrovic S, Arsic A, Ristic-Medic D, Cvetkovic Z, Vucic V. Lipid peroxidation and antioxidant supplementation in neurodegenerative diseases: A review of human studies. Antioxidants 2020; 9(11): 1128.
[http://dx.doi.org/10.3390/antiox9111128]
[101]
Joseph J, Cole G, Head E, Ingram D. Nutrition, brain aging, and neurodegeneration. J Neurosci 2009; 29(41): 12795-801.
[102]
Santos C, Costa J, Santos J, Vaz-Carneiro A, Lunet N. Caffeine intake and dementia: Systematic review and meta-analysis. J Alzheimers Dis 2010; 20(S1): S187-204.
[http://dx.doi.org/10.3233/JAD-2010-091387]
[103]
Chen JQA, Scheltens P, Groot C, Ossenkoppele R. Associations between caffeine consumption, cognitive decline, and dementia: A systematic review. J Alzheimers Dis 2020; 78(4): 1519-46.
[http://dx.doi.org/10.3233/JAD-201069] [PMID: 33185612]
[104]
Kang JH, Ascherio A, Grodstein F. Fruit and vegetable consumption and cognitive decline in aging women. Ann Neurol 2005; 57(5): 713-20.
[http://dx.doi.org/10.1002/ana.20476] [PMID: 15852398]
[105]
Niu K, Guo H, Kakizaki M, et al. A tomato-rich diet is related to depressive symptoms among an elderly population aged 70 years and over: A population-based, cross-sectional analysis. J Affect Disord 2013; 144(1-2): 165-70.
[http://dx.doi.org/10.1016/j.jad.2012.04.040] [PMID: 22840609]
[106]
Niu K, Hozawa A, Kuriyama S, et al. Green tea consumption is associated with depressive symptoms in the elderly. Am J Clin Nutr 2009; 90(6): 1615-22.
[http://dx.doi.org/10.3945/ajcn.2009.28216] [PMID: 19828710]
[107]
Bonyadi N, Dolatkhah N, Salekzamani Y, Hashemian M. Effect of berry-based supplements and foods on cognitive function: a systematic review. Sci Rep 2022; 12(1): 3239.
[http://dx.doi.org/10.1038/s41598-022-07302-4] [PMID: 35217779]
[108]
Buckinx F, Aubertin-Leheudre M. Nutrition to prevent or treat cognitive impairment in older adults: A GRADE recommendation. J Prev Alzheimers Dis 2021; 8(1): 110-6.
[PMID: 33336232]
[109]
Mazzucca CB, Raineri D, Cappellano G, Chiocchetti A. How to tackle the relationship between autoimmune diseases and diet: Well begun is half-done. Nutrients 2021; 13(11): 3956.
[http://dx.doi.org/10.3390/nu13113956] [PMID: 34836210]
[110]
Dragan S. Șerban MC, Damian G, Buleu F, Valcovici M, Christodorescu R. Dietary patterns and interventions to alleviate chronic pain. Nutrients 2020; 12(9): 2510.
[111]
Longo VD, Di Tano M, Mattson MP, Guidi N. Intermittent and periodic fasting, longevity and disease. Nat Aging 2021; 1(1): 47.
[http://dx.doi.org/10.1038/s43587-020-00013-3]
[112]
Wheless JW. History of the ketogenic diet. Epilepsia 2008; 49(S8): 3-5.
[http://dx.doi.org/10.1111/j.1528-1167.2008.01821.x] [PMID: 19049574]
[113]
Longo VD, Mattson MP. Fasting: Molecular mechanisms and clinical applications. Cell Metab 2014; 19(2): 181-92.
[http://dx.doi.org/10.1016/j.cmet.2013.12.008] [PMID: 24440038]
[114]
Phillips MCL. Fasting as a therapy in neurological disease. Nutrients 2019; 11(10): 2501.
[http://dx.doi.org/10.3390/nu11102501] [PMID: 31627405]
[115]
Weindruch R, Sohal RS. Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N Engl J Med 1997; 337(14): 986-94.
[http://dx.doi.org/10.1056/NEJM199710023371407] [PMID: 9309105]
[116]
Mattson MP, Moehl K, Ghena N, Schmaedick M, Cheng A. Intermittent metabolic switching, neuroplasticity and brain health. Nat Rev Neurosci 2018; 19(2): 81-94.
[http://dx.doi.org/10.1038/nrn.2017.156] [PMID: 29321682]
[117]
Duan W, Mattson MP. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Res 1999; 57(2): 195-206.
[http://dx.doi.org/10.1002/(SICI)1097-4547(19990715)57:2<195:AID-JNR5>3.0.CO;2-P] [PMID: 10398297]
[118]
Bruce-Keller AJ, Umberger G, Mcfall R, Mattson MP. Food restriction reduces brain damage and improves behavioral outcome following excitotoxic and metabolic insults. Ann Neurol 1999; 45(1): 8-15.
[http://dx.doi.org/10.1002/1531-8249(199901)45:1<8:AID-ART4>3.0.CO;2-V]
[119]
Halagappa VKM, Guo Z, Pearson M, et al. Intermittent fasting and caloric restriction ameliorate age-related behavioral deficits in the triple-transgenic mouse model of Alzheimer’s disease. Neurobiol Dis 2007; 26(1): 212-20.
[http://dx.doi.org/10.1016/j.nbd.2006.12.019] [PMID: 17306982]
[120]
Mindikoglu AL, Abdulsada MM, Jain A, et al. Intermittent fasting from dawn to sunset for 30 consecutive days is associated with anticancer proteomic signature and upregulates key regulatory proteins of glucose and lipid metabolism, circadian clock, DNA repair, cytoskeleton remodeling, immune system and cognitive function in healthy subjects. J Proteomics 2020; 217: 103645.
[http://dx.doi.org/10.1016/j.jprot.2020.103645] [PMID: 31927066]
[121]
Ooi TC, Meramat A, Rajab NF, et al. Intermittent fasting enhanced the cognitive function in older adults with mild cognitive impairment by inducing biochemical and metabolic changes: A 3-year progressive study. Nutrients 2020; 12(9): 2644.
[http://dx.doi.org/10.3390/nu12092644] [PMID: 32872655]
[122]
Gudden J, Arias VA, Bloemendaal M. The effects of intermittent fasting on brain and cognitive function. Nutrients 2021; 13(9): 3166.
[123]
Paoli A, Tinsley G, Bianco A, Moro T. The influence of meal frequency and timing on health in humans: The role of fasting. Nutrients 2019; 11(4): 719.
[124]
Martin B, Mattson MP, Maudsley S. Caloric restriction and intermittent fasting: Two potential diets for successful brain aging. Ageing Res Rev 2006; 5(3): 332.
[125]
Koh S, Dupuis N, Auvin S. Ketogenic diet and neuroinflammation. Epilepsy Res 2020; 167: 106454.
[http://dx.doi.org/10.1016/j.eplepsyres.2020.106454] [PMID: 32987244]
[126]
Phillips MCL, Murtagh DKJ, Gilbertson LJ, Asztely FJS, Lynch CDP. Low-fat versus ketogenic diet in Parkinson’s disease: A pilot randomized controlled trial. Mov Disord 2018; 33(8): 1306-14.
[http://dx.doi.org/10.1002/mds.27390] [PMID: 30098269]
[127]
Vanitallie TB. Treatment of parkinson disease with diet-induced hyperketonemia: A feasibility study. Neurology 2005; 64(4): 728-30.
[128]
Włodarek D. Role of ketogenic diets in neurodegenerative diseases (Alzheimer’s disease and Parkinson’s disease). Nutrients 2019; 11(1): 169.
[129]
Usda H. 2015 Dietary Guidelines Advisory Committee Report. 2015.
[130]
Zhao Z, Lange DJ, Voustianiouk A, et al. A ketogenic diet as a potential novel therapeutic intervention in amyotrophic lateral sclerosis. BMC Neurosci 2006; 7(1): 29.
[http://dx.doi.org/10.1186/1471-2202-7-29] [PMID: 16584562]
[131]
Hamadeh MJ, Rodriguez MC, Kaczor JJ, Tarnopolsky MA. Caloric restriction transiently improves motor performance but hastens clinical onset of disease in the Cu/Zn-superoxide dismutase mutant G93A mouse. Muscle Nerve 2005; 31(2): 214-20.
[http://dx.doi.org/10.1002/mus.20255] [PMID: 15625688]
[132]
Pedersen WA, Mattson MP. No benefit of dietary restriction on disease onset or progression in amyotrophic lateral sclerosis CurZn-superoxide dismutase mutant mice. Brain Res 1999; 833(1): 117-20.
[133]
Cummings NE, Lamming DW. Regulation of metabolic health and aging by nutrient-sensitive signaling pathways. Mol Cell Endocrinol 2017; 455: 13.
[http://dx.doi.org/10.1016/j.mce.2016.11.014]
[134]
Norman K, Klaus S. Veganism, aging and longevity. Curr Opin Clin Nutr Metab Care 2020; 23(2): 145-50.
[http://dx.doi.org/10.1097/MCO.0000000000000625] [PMID: 31895244]
[135]
Levine ME, Suarez JA, Brandhorst S, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall mortality in the 65 and younger but not older population. Cell Metab 2014; 19(3): 407-17.
[http://dx.doi.org/10.1016/j.cmet.2014.02.006] [PMID: 24606898]
[136]
Zheng J, Zhu T, Yang G, Zhao L, Li F, Park YM. The isocaloric substitution of plant-based and animal-based protein in relation to aging-related health outcomes: A systematic review. Nutrients 2022; 14(2): 272.
[137]
Hargreaves SM, Raposo A, Saraiva A, Zandonadi RP. Vegetarian diet: An overview through the perspective of quality of life domains. Int J Environ Res Public Health 2021; 18(8): 4067.
[138]
Craig WJ. Nutrition concerns and health effects of vegetarian diets. Nutr Clin Pract 2010; 25(6): 613-20.
[http://dx.doi.org/10.1177/0884533610385707] [PMID: 21139125]
[139]
Brants HA, Löwik MR, Westenbrink S, Hulshof KF, Kistemaker C. Adequacy of a vegetarian diet at old age (Dutch Nutrition Surveillance System). J Am Coll Nutr 1990; 9(4): 292-302.
[http://dx.doi.org/10.1080/07315724.1990.10720383] [PMID: 2212385]
[140]
Barnard ND, Bush AI, Ceccarelli A, Cooper J, de Jager CA, Erickson KI. Dietary and lifestyle guidelines for the prevention of Alzheimer’s disease. Neurobiol Aging 2014; 35(S2): S74-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.03.033]
[141]
Gardener H, Caunca MR. Mediterranean diet in preventing neurodegenerative diseases. Curr Nutr Rep 2018; 7(1): 10-20.
[http://dx.doi.org/10.1007/s13668-018-0222-5] [PMID: 29892785]
[142]
Shannon OM, Ashor AW, Scialo F, et al. Mediterranean diet and the hallmarks of ageing. Eur J Clin Nutr 2021; 75(8): 1176-92.
[http://dx.doi.org/10.1038/s41430-020-00841-x] [PMID: 33514872]
[143]
Townsend RF, Woodside JV, Prinelli F, O’Neill RF, McEvoy CT. Associations between dietary patterns and neuroimaging markers: A systematic review. Front Nutr 2022; 9: 806006.
[http://dx.doi.org/10.3389/fnut.2022.806006] [PMID: 35571887]
[144]
Valls-Pedret C, Sala-Vila A, Serra-Mir M, et al. Mediterranean diet and age-related cognitive decline: A randomized clinical trial. JAMA Intern Med 2015; 175(7): 1094-103.
[http://dx.doi.org/10.1001/jamainternmed.2015.1668] [PMID: 25961184]
[145]
van den Brink AC, Brouwer-Brolsma EM, Berendsen AAM, van de Rest O. The mediterranean, dietary approaches to stop hypertension (DASH), and mediterranean-DASH intervention for neurodegenerative delay (MIND) diets are associated with less cognitive decline and a lower risk of Alzheimer’s disease-A Review. Adv Nutr 2019; 10(6): 1040-65.
[http://dx.doi.org/10.1093/advances/nmz054] [PMID: 31209456]
[146]
Morris MC, Tangney CC, Wang Y, et al. MIND diet slows cognitive decline with aging. Alzheimers Dement 2015; 11(9): 1015-22.
[http://dx.doi.org/10.1016/j.jalz.2015.04.011] [PMID: 26086182]
[147]
Morris MC, Tangney CC, Wang Y, Sacks FM, Bennett DA, Aggarwal NT. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement 2015; 11(9): 1007-14.
[http://dx.doi.org/10.1016/j.jalz.2014.11.009] [PMID: 25681666]
[148]
Agarwal P, Wang Y, Buchman AS, Holland TM, Bennett DA, Morris MC. MIND diet associated with reduced incidence and delayed progression of parkinsonism in old age. J Nutr Health Aging 2018; 22(10): 1211-5.
[http://dx.doi.org/10.1007/s12603-018-1094-5] [PMID: 30498828]
[149]
Alonso-Pedrero L, Ojeda-Rodríguez A, Martínez-González MA, Zalba G, Bes-Rastrollo M, Marti A. Ultra-processed food consumption and the risk of short telomeres in an elderly population of the Seguimiento Universidad de Navarra (SUN) Project. Am J Clin Nutr 2020; 111(6): 1259-66.
[http://dx.doi.org/10.1093/ajcn/nqaa075] [PMID: 32330232]
[150]
Agarwal P, Dhana K, Barnes LL, et al. Unhealthy foods may attenuate the beneficial relation of a Mediterranean diet to cognitive decline. Alzheimers Dement 2021; 17(7): 1157-65.
[http://dx.doi.org/10.1002/alz.12277] [PMID: 33410584]
[151]
Hoscheidt S, Sanderlin AH, Baker LD, et al. Mediterranean and Western diet effects on Alzheimer’s disease biomarkers, cerebral perfusion, and cognition in mid‐life: A randomized trial. Alzheimers Dement 2022; 18(3): 457-68.
[http://dx.doi.org/10.1002/alz.12421] [PMID: 34310044]
[152]
Wang H, Abbas KM, Abbasifard M, et al. Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950–2019: A comprehensive demographic analysis for the Global Burden of Disease Study 2019. Lancet 2020; 396(10258): 1160-203.
[http://dx.doi.org/10.1016/S0140-6736(20)30977-6] [PMID: 33069325]
[153]
Kingston A, Robinson L, Booth H, Knapp M, Jagger C, Adelaja B. Projections of multi-morbidity in the older population in England to 2035: Estimates from the Population Ageing and Care Simulation (PACSim) model. Age Ageing 2018; 47(3): 374-80.
[http://dx.doi.org/10.1093/ageing/afx201] [PMID: 29370339]
[154]
Livingston G, Huntley J, Sommerlad A, Ames D, Ballard C, Banerjee S. Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. Lancet 2020; 396(10248): 413-46.
[155]
Forero DA, González-Giraldo Y, López-Quintero C, Castro-Vega LJ, Barreto GE, Perry G. Telomere length in Parkinson’s disease: A meta-analysis. Exp Gerontol 2016; 75: 53-5.
[http://dx.doi.org/10.1016/j.exger.2016.01.002] [PMID: 26772888]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy