Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

Promoting Oncolytic Vector Replication with Switches that Detect Ubiquitous Mutations

Author(s): Michael A. Renteln*

Volume 20, Issue 1, 2024

Published on: 25 May, 2023

Page: [40 - 52] Pages: 13

DOI: 10.2174/1573394719666230502110244

Price: $65

conference banner
Abstract

Most existing cancer therapies negatively affect normal tissue as well as cancerous tissue. A potentially effective strategy for treating cancer that precludes off-target damage and could be an option for most patients would involve targeting one or more mutations that are ubiquitous in the given patient’s tumor(s). To effect this strategy, one would employ multi-region sequencing of a patient’s primary tumor and metastases to seek out mutations that are shared between all or at least most regions. Once the target or targets are known, one would ideally rapidly generate a molecular switch for at least one of said ubiquitous mutations that can distinguish the mutated DNA, RNA, or protein from the wild-type version and subsequently trigger a therapeutic response. I propose that the therapeutic response involve the replication of an oncolytic virus or intracellular bacterium, as any mutation can theoretically be detected by a vector that enters the cell - and automatic propagation could be very helpful. Moreover, the mutation “signal” can be easily enhanced through transcriptional and translational (if the target is an intracellular protein) enhancement. Importantly, RNA may make the best target for the molecular switches in terms of amplification of the signal and ease of targeting.

Graphical Abstract

[1]
Kelly E, Russell SJ. History of oncolytic viruses: Genesis to genetic engineering. Mol Ther 2007; 15(4): 651-9.
[http://dx.doi.org/10.1038/sj.mt.6300108] [PMID: 17299401]
[2]
Andtbacka RHI, Collichio F, Harrington KJ, et al. Final analyses of OPTiM: A randomized phase III trial of talimogene laherparepvec versus granulocyte-macrophage colony-stimulating factor in unresectable stage III–IV melanoma. J Immunother Cancer 2019; 7(1): 145.
[http://dx.doi.org/10.1186/s40425-019-0623-z] [PMID: 31171039]
[3]
Franke V, Berger DMS, Klop WMC, et al. High response rates for T‐VEC in early metastatic melanoma (stage IIIB/C‐IVM1a). Int J Cancer 2019; 145(4): 974-8.
[http://dx.doi.org/10.1002/ijc.32172] [PMID: 30694555]
[4]
Andtbacka RHI, Kaufman HL, Collichio F, et al. Talimogene laherparepvec improves durable response rate in patients with advanced melanoma. J Clin Oncol 2015; 33(25): 2780-8.
[http://dx.doi.org/10.1200/JCO.2014.58.3377] [PMID: 26014293]
[5]
Sun L, Funchain P, Song JM, et al. Talimogene Laherparepvec combined with anti-PD-1 based immunotherapy for unresectable stage III-IV melanoma: A case series. J Immunother Cancer 2018; 6(1): 36.
[http://dx.doi.org/10.1186/s40425-018-0337-7] [PMID: 29764498]
[6]
Xu B, Ma R, Russell L, et al. Correction: Amendments: Publisher correction: An oncolytic herpesvirus expressing E-cadherin improves survival in mouse models of glioblastoma. Nat Biotechnol 2019; 37(1): 102.
[http://dx.doi.org/10.1038/nbt0119-102c] [PMID: 30605164]
[7]
Minev BR, Lander E, Feller JF, et al. First-in-human study of TK-positive oncolytic vaccinia virus delivered by adipose stromal vascular fraction cells. J Transl Med 2019; 17(1): 271.
[http://dx.doi.org/10.1186/s12967-019-2011-3] [PMID: 31426803]
[8]
Yachida S, Jones S, Bozic I, et al. Distant metastasis occurs late during the genetic evolution of pancreatic cancer. Nature 2010; 467(7319): 1114-7.
[http://dx.doi.org/10.1038/nature09515] [PMID: 20981102]
[9]
Gerlinger M, Rowan AJ, Horswell S, et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N Engl J Med 2012; 366(10): 883-92.
[http://dx.doi.org/10.1056/NEJMoa1113205] [PMID: 22397650]
[10]
Schrijver WAME, Selenica P, Lee JY, et al. Mutation profiling of key cancer genes in primary breast cancers and their distant metastases. Cancer Res 2018; 78(12): 3112-21.
[http://dx.doi.org/10.1158/0008-5472.CAN-17-2310] [PMID: 29615433]
[11]
Reiter JG, Makohon-Moore AP, Gerold JM, et al. Minimal functional driver gene heterogeneity among untreated metastases. Science 2018; 361(6406): 1033-7.
[http://dx.doi.org/10.1126/science.aat7171] [PMID: 30190408]
[12]
Chavez A, Tuttle M, Pruitt BW, et al. Comparative analysis of Cas9 activators across multiple species. Nat Methods 2016; 13: 563-7.
[http://dx.doi.org/10.1038/nmeth.3871] [PMID: 27214048]
[13]
Boettcher M, Tian R, Blau JA, et al. Dual gene activation and knockout screen reveals directional dependencies in genetic networks. Nat Biotechnol 2018; 36(2): 170-8.
[http://dx.doi.org/10.1038/nbt.4062] [PMID: 29334369]
[14]
Eleuteri B, Aranda S, Ernfors P. NoRC recruitment by H2A.X deposition at RRNA gene promoter limits embryonic stem cell proliferation. Cell Rep 2018; 23(6): 1853-66.
[http://dx.doi.org/10.1016/j.celrep.2018.04.023] [PMID: 29742439]
[15]
Wilson C, Chen PJ, Miao Z, Liu DR. Programmable m6A modification of cellular RNAs with a Cas13-directed methyltransferase. Nat Biotechnol 2020; 38(12): 1431-40.
[http://dx.doi.org/10.1038/s41587-020-0572-6] [PMID: 32601430]
[16]
Monteuuis G, Wong JJL, Bailey CG, Schmitz U, Rasko JEJ. The changing paradigm of intron retention: Regulation, ramifications and recipes. Nucleic Acids Res 2019; 47(22): gkz1068.
[http://dx.doi.org/10.1093/nar/gkz1068] [PMID: 31724706]
[17]
Carlson JC, Badran AH, Guggiana-Nilo DA, Liu DR. Negative selection and stringency modulation in phage-assisted continuous evolution. Nat Chem Biol 2014; 10(3): 216-22.
[http://dx.doi.org/10.1038/nchembio.1453] [PMID: 24487694]
[18]
English JG, Olsen RHJ, Lansu K, et al. VEGAS as a platform for facile directed evolution in mammalian cells. Cell 2019; 178(3): 748-761.e17.
[http://dx.doi.org/10.1016/j.cell.2019.05.051] [PMID: 31280962]
[19]
Mendel M, Delaney K, Pandey RR, et al. Splice site m6A methylation prevents binding of U2AF35 to inhibit RNA splicing. Cell 2021; 184(12): 3125-3142.e25.
[http://dx.doi.org/10.1016/j.cell.2021.03.062] [PMID: 33930289]
[20]
Maeder ML, Linder SJ, Cascio VM, Fu Y, Ho QH, Joung JK. CRISPR RNA–guided activation of endogenous human genes. Nat Methods 2013; 10(10): 977-9.
[http://dx.doi.org/10.1038/nmeth.2598] [PMID: 23892898]
[21]
Liu P, Chen M, Liu Y, Qi LS, Ding S. CRISPR-based chromatin remodeling of the endogenous Oct4 or Sox2 locus enables reprogramming to pluripotency. Cell Stem Cell 2018; 22(2): 252-261.e4.
[http://dx.doi.org/10.1016/j.stem.2017.12.001] [PMID: 29358044]
[22]
Li K, Liu Y, Cao H, et al. Interrogation of enhancer function by enhancer-targeting CRISPR epigenetic editing. Nat Commun 2020; 11(1): 485.
[http://dx.doi.org/10.1038/s41467-020-14362-5] [PMID: 31980609]
[23]
Karnuta JM, Scacheri PC. Enhancers: Bridging the gap between gene control and human disease. Hum Mol Genet 2018; 27(R2): R219-27.
[http://dx.doi.org/10.1093/hmg/ddy167] [PMID: 29726898]
[24]
Tak YE, Horng JE, Perry NT, et al. Augmenting and directing long-range CRISPR-mediated activation in human cells. Nat Methods 2021; 18(9): 1075-81.
[http://dx.doi.org/10.1038/s41592-021-01224-1] [PMID: 34354266]
[25]
Rodriguez BV, Kuehn MJ. Staphylococcus aureus secretes immunomodulatory RNA and DNA via membrane vesicles. Sci Rep 2020; 10(1): 18293.
[http://dx.doi.org/10.1038/s41598-020-75108-3] [PMID: 33106559]
[26]
Lamb BM, Mercer AC, Barbas CF III. Directed evolution of the TALE N-terminal domain for recognition of all 5′ bases. Nucleic Acids Res 2013; 41(21): 9779-85.
[http://dx.doi.org/10.1093/nar/gkt754] [PMID: 23980031]
[27]
Slabaugh E, Brandizzi F. Membrane-tethered transcription factors provide a connection between stress response and developmental pathways. Plant Signal Behav 2011; 6(8): 1210-1.
[http://dx.doi.org/10.4161/psb.6.8.16047] [PMID: 21758012]
[28]
Lonzarić J, Lebar T, Majerle A, Manček-Keber M, Jerala R. Locked and proteolysis-based transcription activator-like effector (TALE) regulation. Nucleic Acids Res 2016; 44(3): 1471-81.
[http://dx.doi.org/10.1093/nar/gkv1541] [PMID: 26748097]
[29]
Copeland MF, Politz MC, Johnson CB, Markley AL, Pfleger BF. A transcription activator–like effector (TALE) induction system mediated by proteolysis. Nat Chem Biol 2016; 12(4): 254-60.
[http://dx.doi.org/10.1038/nchembio.2021] [PMID: 26854666]
[30]
Yoon YG, Koob MD. Nonreplicating intracellular bacterial vector for conjugative DNA transfer into mitochondria. Pharm Res 2012; 29(4): 1040-5.
[http://dx.doi.org/10.1007/s11095-012-0701-0] [PMID: 22350804]
[31]
Dutta NK, Klinkenberg LG, Vazquez MJ, et al. Inhibiting the stringent response blocks Mycobacterium tuberculosis entry into quiescence and reduces persistence. Sci Adv 2019; 5(3): eaav2104.
[http://dx.doi.org/10.1126/sciadv.aav2104] [PMID: 30906866]
[32]
Sinha AK, Winther KS. The RelA hydrolase domain acts as a molecular switch for (p)ppGpp synthesis. Commun Biol 2021; 4(1): 434.
[http://dx.doi.org/10.1038/s42003-021-01963-z] [PMID: 33790389]
[33]
Schreiber G, Metzger S, Aizenman E, Roza S, Cashel M, Glaser G. Overexpression of the relA gene in Escherichia coli. J Biol Chem 1991; 266(6): 3760-7.
[http://dx.doi.org/10.1016/S0021-9258(19)67860-9] [PMID: 1899866]
[34]
Taylor CM, Beresford M, Epton HAS, et al. Listeria monocytogenes relA and hpt mutants are impaired in surface-attached growth and virulence. J Bacteriol 2002; 184(3): 621-8.
[http://dx.doi.org/10.1128/JB.184.3.621-628.2002] [PMID: 11790730]
[35]
Biswas S, Cao L, Kim A, Biswas I. SepM, a streptococcal protease involved in quorum sensing, displays strict substrate specificity. J Bacteriol 2016; 198(3): 436-47.
[http://dx.doi.org/10.1128/JB.00708-15] [PMID: 26553848]
[36]
Spiro S. Regulators of bacterial responses to nitric oxide. FEMS Microbiol Rev 2007; 31(2): 193-211.
[http://dx.doi.org/10.1111/j.1574-6976.2006.00061.x] [PMID: 17313521]
[37]
Arora DP, Boon EM. Nitric oxide regulated two-component signaling in Pseudoalteromonas atlantica. Biochem Biophys Res Commun 2012; 421(3): 521-6.
[http://dx.doi.org/10.1016/j.bbrc.2012.04.037] [PMID: 22521885]
[38]
Meβmer UK, Reed JC, Brüne B. Bcl-2 protects macrophages from nitric oxide-induced apoptosis. J Biol Chem 1996; 271(33): 20192-7.
[http://dx.doi.org/10.1074/jbc.271.33.20192] [PMID: 8702745]
[39]
McNeill E, Crabtree MJ, Sahgal N, et al. Regulation of iNOS function and cellular redox state by macrophage Gch1 reveals specific requirements for tetrahydrobiopterin in NRF2 activation. Free Radic Biol Med 2015; 79: 206-16.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.10.575] [PMID: 25451639]
[40]
Heinrich J, Wiegert T. Regulated intramembrane proteolysis in the control of extracytoplasmic function sigma factors. Res Microbiol 2009; 160(9): 696-703.
[http://dx.doi.org/10.1016/j.resmic.2009.08.019] [PMID: 19778605]
[41]
Ellermeier CD, Losick R. Evidence for a novel protease governing regulated intramembrane proteolysis and resistance to antimicrobial peptides in Bacillus subtilis. Genes Dev 2006; 20(14): 1911-22.
[http://dx.doi.org/10.1101/gad.1440606] [PMID: 16816000]
[42]
Bausch-Fluck D, Hofmann A, Bock T, et al. A mass spectrometric-derived cell surface protein atlas. PLoS One 2015; 10(4): e0121314.
[http://dx.doi.org/10.1371/journal.pone.0121314] [PMID: 25894527]
[43]
Bausch-Fluck D, Goldmann U, Müller S, et al. The in silico human surfaceome. Proc Natl Acad Sci USA 2018; 115(46): E10988-97.
[http://dx.doi.org/10.1073/pnas.1808790115] [PMID: 30373828]
[44]
Kurachi S, Tashiro K, Sakurai F, et al. Fiber-modified adenovirus vectors containing the TAT peptide derived from HIV-1 in the fiber knob have efficient gene transfer activity. Gene Ther 2007; 14(15): 1160-5.
[http://dx.doi.org/10.1038/sj.gt.3302969] [PMID: 17508008]
[45]
Montrose K, Yang Y, Sun X, Wiles S, Krissansen GW. Xentry. A new class of cell-penetrating peptide uniquely equipped for delivery of drugs. Sci Rep 2013; 3(1): 1661.
[http://dx.doi.org/10.1038/srep01661] [PMID: 23588666]
[46]
Johnson M, Karanikolas BDW, Priceman SJ, et al. Titration of variant HSV1-tk gene expression to determine the sensitivity of 18F-FHBG PET imaging in a prostate tumor. J Nucl Med 2009; 50(5): 757-64.
[http://dx.doi.org/10.2967/jnumed.108.058438] [PMID: 19372484]
[47]
Gürlevik E, Schache P, Goez A, et al. Meganuclease-mediated virus self-cleavage facilitates tumor-specific virus replication. Mol Ther 2013; 21(9): 1738-48.
[http://dx.doi.org/10.1038/mt.2013.117] [PMID: 23752311]
[48]
Shetron-Rama LM, Marquis H, Bouwer HGA, Freitag NE. Intracellular induction of Listeria monocytogenes actA expression. Infect Immun 2002; 70(3): 1087-96.
[http://dx.doi.org/10.1128/IAI.70.3.1087-1096.2002] [PMID: 11854187]
[49]
Chai Q, Wang X, Qiang L, et al. A Mycobacterium tuberculosis surface protein recruits ubiquitin to trigger host xenophagy. Nat Commun 2019; 10(1): 1973.
[http://dx.doi.org/10.1038/s41467-019-09955-8] [PMID: 31036822]
[50]
Bayle JH, Grimley JS, Stankunas K, Gestwicki JE, Wandless TJ, Crabtree GR. Rapamycin analogs with differential binding specificity permit orthogonal control of protein activity. Chem Biol 2006; 13(1): 99-107.
[http://dx.doi.org/10.1016/j.chembiol.2005.10.017] [PMID: 16426976]
[51]
Luo M, Zhao X, Song Y, Cheng H, Zhou R. Nuclear autophagy: An evolutionarily conserved mechanism of nuclear degradation in the cytoplasm. Autophagy 2016; 12(11): 1973-83.
[http://dx.doi.org/10.1080/15548627.2016.1217381] [PMID: 27541589]
[52]
Ikeda K, Ichikawa T, Wakimoto H, et al. Oncolytic virus therapy of multiple tumors in the brain requires suppression of innate and elicited antiviral responses. Nat Med 1999; 5(8): 881-7.
[http://dx.doi.org/10.1038/11320] [PMID: 10426310]
[53]
Dhar D, Toth K, Wold WSM. Cycles of transient high-dose cyclophosphamide administration and oncolytic adenovirus vector intratumoral injection for long term tumor suppression in Syrian Hamsters. Cancer Gene Ther 2014; 21: 171-8.
[http://dx.doi.org/10.1038/cgt.2014.13] [PMID: 24722357]
[54]
Cheng CW, Adams GB, Perin L, et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic-stem-cell-based regeneration and reverse immunosuppression. Cell Stem Cell 2014; 14(6): 810-23.
[http://dx.doi.org/10.1016/j.stem.2014.04.014] [PMID: 24905167]
[55]
Esaki S, Rabkin SD, Martuza RL, Wakimoto H. Transient fasting enhances replication of oncolytic herpes simplex virus in glioblastoma. Am J Cancer Res 2016; 6(2): 300-11.
[PMID: 27186404]
[56]
Stritzker J, Hill PJ, Gentsche I, Szalay AA. Myristoylation negative msbB-mutants of probiotic E. coli Nissle 1917 retain tumor specific colonization properties but show less side effects in immunocompetent mice. Bioeng Bugs 2010; 1(2): 139-45.
[http://dx.doi.org/10.4161/bbug.1.2.10286] [PMID: 21326939]
[57]
Cronin M, Le Boeuf F, Murphy C, et al. Bacterial-mediated knockdown of tumor resistance to an oncolytic virus enhances therapy. Mol Ther 2014; 22(6): 1188-97.
[http://dx.doi.org/10.1038/mt.2014.23] [PMID: 24569832]
[58]
Fu X, Tao L, Zhang X. Genetically coating oncolytic herpes simplex virus with CD47 allows efficient systemic delivery and prolongs virus persistence at tumor site. Oncotarget 2018; 9(77): 34543-53.
[http://dx.doi.org/10.18632/oncotarget.26167] [PMID: 30349648]
[59]
Milani M, Annoni A, Moalli F, et al. Phagocytosis-shielded lentiviral vectors improve liver gene therapy in nonhuman primates. Sci Transl Med 2019; 11(493): eaav7325.
[http://dx.doi.org/10.1126/scitranslmed.aav7325] [PMID: 31118293]
[60]
Tuzmen C, Cairns TM, Atanasiu D, et al. Point mutations in retargeted gD eliminate the sensitivity of EGFR/EGFRvIII-Targeted HSV to key neutralizing antibodies. Mol Ther Methods Clin Dev 2020; 16: 145-54.
[http://dx.doi.org/10.1016/j.omtm.2019.12.013] [PMID: 32042851]
[61]
Liu Q, Segal DJ, Ghiara JB, Barbas CF III. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc Natl Acad Sci USA 1997; 94(11): 5525-30.
[http://dx.doi.org/10.1073/pnas.94.11.5525] [PMID: 9159105]
[62]
Varshavsky A. Targeting the absence: Homozygous DNA deletions as immutable signposts for cancer therapy. Proc Natl Acad Sci USA 2007; 104(38): 14935-40.
[http://dx.doi.org/10.1073/pnas.0706546104] [PMID: 17846424]
[63]
Slomovic S, Collins JJ. DNA sense-and-respond protein modules for mammalian cells. Nat Methods 2015; 12(11): 1085-90.
[http://dx.doi.org/10.1038/nmeth.3585] [PMID: 26389572]
[64]
Adamala KP, Martin-Alarcon DA, Boyden ES. Programmable RNA-binding protein composed of repeats of a single modular unit. Proc Natl Acad Sci USA 2016; 113(19): E2579-88.
[http://dx.doi.org/10.1073/pnas.1519368113] [PMID: 27118836]
[65]
Siciliano V, DiAndreth B, Monel B, et al. Engineering modular intracellular protein sensor-actuator devices. Nat Commun 2018; 9(1): 1881.
[http://dx.doi.org/10.1038/s41467-018-03984-5] [PMID: 29760420]
[66]
Stein V, Alexandrov K. Protease-based synthetic sensing and signal amplification. Proc Natl Acad Sci USA 2014; 111(45): 15934-9.
[http://dx.doi.org/10.1073/pnas.1405220111] [PMID: 25355910]
[67]
Shekhawat SS, Porter JR, Sriprasad A, Ghosh I. An autoinhibited coiled-coil design strategy for split-protein protease sensors. J Am Chem Soc 2009; 131(42): 15284-90.
[http://dx.doi.org/10.1021/ja9050857] [PMID: 19803505]
[68]
Sola M, Menon AP, Moreno B, et al. Aptamers against live targets: Is in vivo SELEX finally coming to the edge? Mol Ther Nucleic Acids 2020; 21: 192-204.
[http://dx.doi.org/10.1016/j.omtn.2020.05.025] [PMID: 32585627]
[69]
Chen L, Rashid F, Shah A, et al. The isolation of an RNA aptamer targeting to p53 protein with single amino acid mutation. Proc Natl Acad Sci USA 2015; 112(32): 10002-7.
[http://dx.doi.org/10.1073/pnas.1502159112] [PMID: 26216949]
[70]
Shi H, Fan X, Sevilimedu A, Lis JT. RNA aptamers directed to discrete functional sites on a single protein structural domain. Proc Natl Acad Sci USA 2007; 104(10): 3742-6.
[http://dx.doi.org/10.1073/pnas.0607805104] [PMID: 17360423]
[71]
Wellner A, McMahon C, Gilman MSA, et al. Rapid generation of potent antibodies by autonomous hypermutation in yeast. Nat Chem Biol 2021; 17(10): 1057-64.
[http://dx.doi.org/10.1038/s41589-021-00832-4] [PMID: 34168368]
[72]
Gootenberg JS, Abudayyeh OO, Lee JW, et al. Nucleic acid detection with CRISPR-Cas13a/C2c2. Science 2017; 356(6336): 438-42.
[http://dx.doi.org/10.1126/science.aam9321] [PMID: 28408723]
[73]
Price AA, Sampson TR, Ratner HK, Grakoui A, Weiss DS. Cas9-mediated targeting of viral RNA in eukaryotic cells. Proc Natl Acad Sci USA 2015; 112(19): 6164-9.
[http://dx.doi.org/10.1073/pnas.1422340112] [PMID: 25918406]
[74]
Moore MJ, Blachere NE, Fak JJ, et al. ZFP36 RNA-binding proteins restrain T cell activation and anti-viral immunity. eLife 2018; 7: e33057.
[http://dx.doi.org/10.7554/eLife.33057] [PMID: 29848443]
[75]
Auweter SD, Oberstrass FC, Allain FHT. Sequence-specific binding of single-stranded RNA: Is there a code for recognition? Nucleic Acids Res 2006; 34(17): 4943-59.
[http://dx.doi.org/10.1093/nar/gkl620] [PMID: 16982642]
[76]
Mandegar MA, Huebsch N, Frolov EB, et al. CRISPR interference efficiently induces specific and reversible gene silencing in human iPSCs. Cell Stem Cell 2016; 18(4): 541-53.
[http://dx.doi.org/10.1016/j.stem.2016.01.022] [PMID: 26971820]
[77]
de Lange O, Schreiber T, Schandry N, et al. Breaking the DNA-binding code of Ralstonia solanacearum TAL effectors provides new possibilities to generate plant resistance genes against bacterial wilt disease. New Phytol 2013; 199(3): 773-86.
[http://dx.doi.org/10.1111/nph.12324] [PMID: 23692030]
[78]
Hubbard BP, Badran AH, Zuris JA, et al. Continuous directed evolution of DNA-binding proteins to improve TALEN specificity. Nat Methods 2015; 12(10): 939-42.
[http://dx.doi.org/10.1038/nmeth.3515] [PMID: 26258293]
[79]
Álvarez B, Mencía M, de Lorenzo V, Fernández LÁ. In vivo diversification of target genomic sites using processive base deaminase fusions blocked by dCas9. Nat Commun 2020; 11(1): 6436.
[http://dx.doi.org/10.1038/s41467-020-20230-z] [PMID: 33353963]
[80]
Wood M, Yin H, McClorey G. Modulating the expression of disease genes with RNA-based therapy. PLoS Genet 2007; 3(6): e109.
[http://dx.doi.org/10.1371/journal.pgen.0030109] [PMID: 17604456]
[81]
Robson F, Khan KS, Le TK, et al. Coronavirus RNA proofreading: Molecular basis and therapeutic targeting. Mol Cell 2020; 79(5): 710-27.
[http://dx.doi.org/10.1016/j.molcel.2020.07.027] [PMID: 32853546]
[82]
Rogers CS, Vanoye CG, Sullenger BA, George AL Jr. Functional repair of a mutant chloride channel using a trans-splicing ribozyme. J Clin Invest 2002; 110(12): 1783-9.
[http://dx.doi.org/10.1172/JCI200216481] [PMID: 12488428]
[83]
Alexander RC, Baum DA, Testa SM. 5′ transcript replacement in vitro catalyzed by a group I intron-derived ribozyme. Biochemistry 2005; 44(21): 7796-804.
[http://dx.doi.org/10.1021/bi047284a] [PMID: 15909994]
[84]
Wellensiek BP, Larsen AC, Stephens B, et al. Genome-wide profiling of cap-independent translation enhancing elements in the human genome. Nat Methods 2013; 10: 747-50.
[http://dx.doi.org/10.1038/nmeth.2522] [PMID: 23770754]
[85]
Wellensiek BP, Larsen AC, Flores J, Jacobs BL, Chaput JC. A leader sequence capable of enhancing RNA expression and protein synthesis in mammalian cells. Protein Sci 2013; 22(10): 1392-8.
[http://dx.doi.org/10.1002/pro.2325] [PMID: 23908110]
[86]
Ostermeier M. Engineering allosteric protein switches by domain insertion. Protein Eng Des Sel 2005; 18(8): 359-64.
[http://dx.doi.org/10.1093/protein/gzi048] [PMID: 16043448]
[87]
Berman CM, Papa LJ III, Hendel SJ, et al. An adaptable platform for directed evolution in human cells. J Am Chem Soc 2018; 140(51): 18093-103.
[http://dx.doi.org/10.1021/jacs.8b10937] [PMID: 30427676]
[88]
Renteln M. Conditional replication of oncolytic viruses based on detection of oncogenic mRNA. Gene Ther 2018; 25(1): 1-3.
[http://dx.doi.org/10.1038/gt.2017.99] [PMID: 29350682]
[89]
Deidda G, Rossi N, Tocchini-Valentini GP. An archaeal endoribonuclease catalyzes cis- and trans- nonspliceosomal splicing in mouse cells. Nat Biotechnol 2003; 21(12): 1499-504.
[http://dx.doi.org/10.1038/nbt908] [PMID: 14595336]
[90]
Müller U. Design and experimental evolution of trans-splicing group I intron ribozymes. Molecules 2017; 22(1): 75.
[http://dx.doi.org/10.3390/molecules22010075] [PMID: 28045452]
[91]
Johnson AK, Sinha J, Testa SM. Trans insertion-splicing: Ribozyme-catalyzed insertion of targeted sequences into RNAs. Biochemistry 2005; 44(31): 10702-10.
[http://dx.doi.org/10.1021/bi0504815] [PMID: 16060679]
[92]
Bell MA, Johnson AK, Testa SM. Ribozyme-catalyzed excision of targeted sequences from within RNAs. Biochemistry 2002; 41(51): 15327-33.
[http://dx.doi.org/10.1021/bi0267386] [PMID: 12484771]
[93]
Xu C, Zhou Y, Xiao Q, et al. Programmable RNA editing with compact CRISPR–Cas13 systems from uncultivated microbes. Nat Methods 2021; 18(5): 499-506.
[http://dx.doi.org/10.1038/s41592-021-01124-4] [PMID: 33941935]
[94]
Sharma Y, Miladi M, Dukare S, et al. A pan-cancer analysis of synonymous mutations. Nat Commun 2019; 10(1): 2569.
[http://dx.doi.org/10.1038/s41467-019-10489-2] [PMID: 31189880]
[95]
Wang G, Shimada E, Nili M, Koehler CM, Teitell MA. Mitochondria-targeted RNA import. Methods Mol Biol 2015; 1264: 107-16.
[http://dx.doi.org/10.1007/978-1-4939-2257-4_11] [PMID: 25631008]
[96]
Karasneh GA, Shukla D. Herpes simplex virus infects most cell types in vitro: Clues to its success. Virol J 2011; 8(1): 481.
[http://dx.doi.org/10.1186/1743-422X-8-481] [PMID: 22029482]
[97]
Tanaka M, Kodaira H, Nishiyama Y, Sata T, Kawaguchi Y. Construction of recombinant herpes simplex virus type I expressing green fluorescent protein without loss of any viral genes. Microbes Infect 2004; 6(5): 485-93.
[http://dx.doi.org/10.1016/j.micinf.2004.01.011] [PMID: 15109964]
[98]
Morimoto T, Arii J, Akashi H, Kawaguchi Y. Identification of multiple sites suitable for insertion of foreign genes in herpes simplex virus genomes. Microbiol Immunol 2009; 53(3): 155-61.
[http://dx.doi.org/10.1111/j.1348-0421.2008.00104.x] [PMID: 19302526]
[99]
Venuti A, Musarra-Pizzo M, Pennisi R, et al. HSV-1stimulates miR-146a expression in a NF-κB-dependent manner in monocytic THP-1 cells. Sci Rep 2019; 9(1): 5157.
[http://dx.doi.org/10.1038/s41598-019-41530-5] [PMID: 30914680]
[100]
Bloss TA, Sugden B. Optimal lengths for DNAs encapsidated by Epstein-Barr virus. J Virol 1994; 68(12): 8217-22.
[http://dx.doi.org/10.1128/jvi.68.12.8217-8222.1994] [PMID: 7966614]
[101]
Cui X, McGregor A, Schleiss MR, McVoy MA. The impact of genome length on replication and genome stability of the herpes virus guinea pig cytomegalovirus. Virology 2009; 386(1): 132-8.
[http://dx.doi.org/10.1016/j.virol.2008.12.030] [PMID: 19174305]
[102]
Roizman B. The function of herpes simplex virus genes: a primer for genetic engineering of novel vectors. Proc Natl Acad Sci USA 1996; 93(21): 11307-12.
[http://dx.doi.org/10.1073/pnas.93.21.11307] [PMID: 8876131]
[103]
Ventosa M, Ortiz-Temprano A, Khalique H, Lim F. Synergistic effects of deleting multiple nonessential elements in nonreplicative HSV-1 BAC genomic vectors play a critical role in their viability. Gene Ther 2017; 24(7): 433-40.
[http://dx.doi.org/10.1038/gt.2017.43] [PMID: 28553928]
[104]
Retamal-Díaz AR, Tognarelli E, Kalergis AM, Bueno SM, González PA. Immune evasion by Herpes Simplex Viruses Herpesviridae. Intech Open 2016.
[http://dx.doi.org/10.5772/64128]
[105]
Roizman B, Campadelli-Fiume G. Alphaherpes viral genes and their functions.In: Arvin A, Ed Human Herpesviruses: Biology, Therapy, and Immunoprophylaxis. Cambridge University Press 2007.
[http://dx.doi.org/10.1017/CBO9780511545313.007]
[106]
Bauer DW, Huffman JB, Homa FL, Evilevitch A. Herpes virus genome, the pressure is on. J Am Chem Soc 2013; 135(30): 11216-21.
[http://dx.doi.org/10.1021/ja404008r] [PMID: 23829592]
[107]
Liu YT, Jih J, Dai X, Bi GQ, Zhou ZH. Cryo-EM structures of herpes simplex virus type 1 portal vertex and packaged genome. Nature 2019; 570(7760): 257-61.
[http://dx.doi.org/10.1038/s41586-019-1248-6] [PMID: 31142842]
[108]
Bhella D, Rixon FJ, Dargan DJ. Cryomicroscopy of human cytomegalovirus virions reveals more densely packed genomic DNA than in herpes simplex virus type 1. J Mol Biol 2000; 295(2): 155-61.
[http://dx.doi.org/10.1006/jmbi.1999.3344] [PMID: 10623515]
[109]
Chen X, Pham E, Truong K. TEV protease-facilitated stoichiometric delivery of multiple genes using a single expression vector. Protein Sci 2010; 19(12): 2379-88.
[http://dx.doi.org/10.1002/pro.518] [PMID: 20945357]
[110]
Oldfield LM, Grzesik P, Voorhies AA, et al. Genome-wide engineering of an infectious clone of herpes simplex virus type 1 using synthetic genomics assembly methods. Proc Natl Acad Sci USA 2017; 114(42): E8885-94.
[http://dx.doi.org/10.1073/pnas.1700534114] [PMID: 28928148]
[111]
Bertin B, Veron P, Leborgne C, et al. Capsid-specific removal of circulating antibodies to adeno-associated virus vectors. Sci Rep 2020; 10(1): 864.
[http://dx.doi.org/10.1038/s41598-020-57893-z] [PMID: 31965041]
[112]
Mingozzi F, Anguela XM, Pavani G, et al. Overcoming preexisting humoral immunity to AAV using capsid decoys. Sci Transl Med 2013; 5(194): 194ra92.
[http://dx.doi.org/10.1126/scitranslmed.3005795] [PMID: 23863832]
[113]
Huard J, Feero WG, Watkins SC, Hoffman EP, Rosenblatt DJ, Glorioso JC. The basal lamina is a physical barrier to herpes simplex virus-mediated gene delivery to mature muscle fibers. J Virol 1996; 70(11): 8117-23.
[http://dx.doi.org/10.1128/jvi.70.11.8117-8123.1996] [PMID: 8892937]
[114]
Schäfer S, Weibel S, Donat U, et al. Vaccinia virus-mediated intra-tumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors. BMC Cancer 2012; 12(1): 366.
[http://dx.doi.org/10.1186/1471-2407-12-366] [PMID: 22917220]
[115]
Sette P, Amankulor N, Li A, et al. GBM-Targeted oHSV armed with matrix metalloproteinase 9 enhances anti-tumor activity and animal survival. Mol Ther Oncolytics 2019; 15: 214-22.
[http://dx.doi.org/10.1016/j.omto.2019.10.005] [PMID: 31890868]
[116]
Khanna M, Ranasinghe C, Browne AM, Li JP, Vlodavsky I, Parish CR. Is host heparanase required for the rapid spread of heparan sulfate binding viruses? Virology 2019; 529: 1-6.
[http://dx.doi.org/10.1016/j.virol.2019.01.001] [PMID: 30622027]
[117]
McKee TD, Grandi P, Mok W, et al. Degradation of fibrillar collagen in a human melanoma xenograft improves the efficacy of an oncolytic herpes simplex virus vector. Cancer Res 2006; 66(5): 2509-13.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2242] [PMID: 16510565]
[118]
Guedan S, Rojas JJ, Gros A, Mercade E, Cascallo M, Alemany R. Hyaluronidase expression by an oncolytic adenovirus enhances its intratumoral spread and suppresses tumor growth. Mol Ther 2010; 18(7): 1275-83.
[http://dx.doi.org/10.1038/mt.2010.79] [PMID: 20442708]
[119]
Kim JH, Lee YS, Kim H, Huang JH, Yoon AR, Yun CO. Relaxin expression from tumor-targeting adenoviruses and its intratumoral spread, apoptosis induction, and efficacy. J Natl Cancer Inst 2006; 98(20): 1482-93.
[http://dx.doi.org/10.1093/jnci/djj397] [PMID: 17047197]
[120]
Rauschhuber C, Mueck-Haeusl M, Zhang W, Nettelbeck DM, Ehrhardt A. RNAi suppressor P19 can be broadly exploited for enhanced adenovirus replication and microRNA knockdown experiments. Sci Rep 2013; 3(1): 1363.
[http://dx.doi.org/10.1038/srep01363] [PMID: 23455436]
[121]
Simpson GR, Han Z, Liu B, Wang Y, Campbell G, Coffin RS. Combination of a fusogenic glycoprotein, prodrug activation, and oncolytic herpes simplex virus for enhanced local tumor control. Cancer Res 2006; 66(9): 4835-42.
[http://dx.doi.org/10.1158/0008-5472.CAN-05-4352] [PMID: 16651439]
[122]
Ribet D, Cossart P. How bacterial pathogens colonize their hosts and invade deeper tissues. Microbes Infect 2015; 17(3): 173-83.
[http://dx.doi.org/10.1016/j.micinf.2015.01.004] [PMID: 25637951]
[123]
Gessain G, Tsai YH, Travier L, et al. PI3-kinase activation is critical for host barrier permissiveness to Listeria monocytogenes. J Exp Med 2015; 212(2): 165-83.
[http://dx.doi.org/10.1084/jem.20141406] [PMID: 25624443]
[124]
Weinstock MT, Hesek ED, Wilson CM, Gibson DG. Vibrio natriegens as a fast-growing host for molecular biology. Nat Methods 2016; 13(10): 849-51.
[http://dx.doi.org/10.1038/nmeth.3970] [PMID: 27571549]
[125]
Grillot-Courvalin C, Goussard S, Huetz F, Ojcius DM, Courvalin P. Functional gene transfer from intracellular bacteria to mammalian cells. Nat Biotechnol 1998; 16(9): 862-6.
[http://dx.doi.org/10.1038/nbt0998-862] [PMID: 9743121]
[126]
Ray K, Marteyn B, Sansonetti PJ, Tang CM. Life on the inside: The intracellular lifestyle of cytosolic bacteria. Nat Rev Microbiol 2009; 7(5): 333-40.
[http://dx.doi.org/10.1038/nrmicro2112] [PMID: 19369949]
[127]
Pfeifer E, Michniewski S, Gätgens C, et al. Generation of a prophage-free variant of the fast-growing bacterium vibrio natriegens. Appl Environ Microbiol 2019; 85(17): e00853-19.
[http://dx.doi.org/10.1128/AEM.00853-19] [PMID: 31253674]
[128]
Manzanillo PS, Ayres JS, Watson RO, et al. The ubiquitin ligase parkin mediates resistance to intracellular pathogens. Nature 2013; 501(7468): 512-6.
[http://dx.doi.org/10.1038/nature12566] [PMID: 24005326]
[129]
Bingol B, Tea JS, Phu L, et al. The mitochondrial deubiquitinase USP30 opposes parkin-mediated mitophagy. Nature 2014; 510(7505): 370-5.
[http://dx.doi.org/10.1038/nature13418] [PMID: 24896179]
[130]
Yoshikawa Y, Ogawa M, Hain T, et al. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat Cell Biol 2009; 11(10): 1233-40.
[http://dx.doi.org/10.1038/ncb1967] [PMID: 19749745]
[131]
Cheng MI, Chen C, Engström P, Portnoy DA, Mitchell G. Actin‐based motility allows Listeria monocytogenes to avoid autophagy in the macrophage cytosol. Cell Microbiol 2018; 20(9): e12854.
[http://dx.doi.org/10.1111/cmi.12854] [PMID: 29726107]
[132]
Saleski T E. Optimized gene expression from bacterial chromosome by high-throughput integration and screening Sci Adv 2021; 7: eabe1767.
[http://dx.doi.org/10.1126/sciadv.abe1767]
[133]
Toesca IJ, French CT, Miller JF. The Type VI secretion system spike protein VgrG5 mediates membrane fusion during intercellular spread by pseudomallei group Burkholderia species. Infect Immun 2014; 82(4): 1436-44.
[http://dx.doi.org/10.1128/IAI.01367-13] [PMID: 24421040]
[134]
van de Ven M, Simons MJHG, Koffijberg H, et al. Whole genome sequencing in oncology: Using scenario drafting to explore future developments. BMC Cancer 2021; 21(1): 488.
[http://dx.doi.org/10.1186/s12885-021-08214-8] [PMID: 33933021]
[136]
China’s BGI says it can sequence a genome for just $100-MIT Technology Review. Available from:. https://www.technologyreview.com/2020/02/26/905658/china-bgi-100-dollar-genome/
[137]
Schwarze K, Buchanan J, Taylor JC, Wordsworth S. Are whole-exome and whole-genome sequencing approaches cost-effective? A systematic review of the literature. Genet Med 2018; 20(10): 1122-30.
[http://dx.doi.org/10.1038/gim.2017.247] [PMID: 29446766]
[138]
Schwarze K, Buchanan J, Fermont JM, et al. The complete costs of genome sequencing: A microcosting study in cancer and rare diseases from a single center in the United Kingdom. Genet Med 2020; 22(1): 85-94.
[http://dx.doi.org/10.1038/s41436-019-0618-7] [PMID: 31358947]
[139]
Ungerechts G, Bossow S, Leuchs B, et al. Moving oncolytic viruses into the clinic: Clinical-grade production, purification, and characterization of diverse oncolytic viruses. Mol Ther Methods Clin Dev 2016; 3: 16018.
[http://dx.doi.org/10.1038/mtm.2016.18] [PMID: 27088104]
[140]
Shcherbakova DM, Baloban M, Emelyanov AV, Brenowitz M, Guo P, Verkhusha VV. Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging. Nat Commun 2016; 7(1): 12405.
[http://dx.doi.org/10.1038/ncomms12405] [PMID: 27539380]
[141]
Iwano S, Sugiyama M, Hama H, et al. Single-cell bioluminescence imaging of deep tissue in freely moving animals. Science 2018; 359(6378): 935-9.
[http://dx.doi.org/10.1126/science.aaq1067] [PMID: 29472486]
[142]
Picco G, Petti C, Trusolino L, Bertotti A, Medico E. A diphtheria toxin resistance marker for in vitro and in vivo selection of stably transduced human cells. Sci Rep 2015; 5(1): 14721.
[http://dx.doi.org/10.1038/srep14721] [PMID: 26420058]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy