Abstract
Background: Formaldehyde (HCHO) is one of the sources of indoor air pollution and a recognized carcinogenic gas, which sets a huge threat to human health. Therefore, it is urgent to develop a formaldehyde gas sensor with high efficiency, low consumption, and low limit of detection.
Methods: With solvothermal and supramolecular assembly methods, we fabricate a nanocomposite of ZnO/5-aminonaphthalene-1-sulfonic acid (ANS)-reduced graphene oxide (rGO) through in situ assembling flower-like ZnO nanoclusters on ANS-modified graphene nanosheets for room temperature formaldehyde detection.
Results: The flower-like ZnO/ANS-rGO based gas sensor exhibits high response (32%, 5 ppm), ultra-fast response/recovery times (18/23 s), high selectivity, long-term stability and a low practical limit of detection (pLOD) of 1 ppm toward HCHO at room temperature, offering significant advantages and competitiveness in chemiresistive room temperature HCHO sensors.
Conclusion: The unique flower-like nanostructure of ZnO and the functionalization with ANS molecules jointly improved the HCHO sensing performance of the composite at room temperature. This work provides a new approach to designing and preparing high-performance room temperature gas sensing materials.
Graphical Abstract
[http://dx.doi.org/10.1088/1755-1315/692/3/032050]
[http://dx.doi.org/10.1021/acssensors.7b00896] [PMID: 29350520]
[http://dx.doi.org/10.1016/j.snb.2013.12.079]
[http://dx.doi.org/10.1039/D1TA06346D]
[http://dx.doi.org/10.1016/j.snb.2020.128331]
[http://dx.doi.org/10.1016/j.snb.2020.128166]
[http://dx.doi.org/10.1039/D0TC03750H]
[http://dx.doi.org/10.1016/j.snb.2013.06.073]
[http://dx.doi.org/10.1021/acsami.7b16832] [PMID: 29260847]
[http://dx.doi.org/10.1021/acsomega.0c02861] [PMID: 32905337]
[http://dx.doi.org/10.1016/j.carbon.2020.09.087]
[http://dx.doi.org/10.1039/C7NR04209D] [PMID: 29046916]
[http://dx.doi.org/10.1039/D1NR04641A] [PMID: 34730592]
[http://dx.doi.org/10.1016/j.apsusc.2018.01.166]
[http://dx.doi.org/10.1016/j.snb.2017.10.043]
[http://dx.doi.org/10.1016/j.microc.2020.105607]
[http://dx.doi.org/10.1063/1.4890583]
[http://dx.doi.org/10.1021/acs.iecr.2c00890] [PMID: 35571515]
[http://dx.doi.org/10.1016/j.apsusc.2022.153033]
[http://dx.doi.org/10.1016/j.snb.2015.07.102]
[http://dx.doi.org/10.1039/C4TA03665D]
[http://dx.doi.org/10.1039/D0TA10451E]
[http://dx.doi.org/10.1021/acsnano.7b08294] [PMID: 29512386]
[http://dx.doi.org/10.1039/C6TA01426G]
[http://dx.doi.org/10.1016/j.carbon.2007.02.034]
[http://dx.doi.org/10.1016/j.carbon.2011.08.050]
[http://dx.doi.org/10.1016/j.apsusc.2012.02.131]
[http://dx.doi.org/10.1002/adma.202110047] [PMID: 35100662]
[http://dx.doi.org/10.1021/acsami.0c03369] [PMID: 32633129]
[http://dx.doi.org/10.1021/acsami.1c20680] [PMID: 35275633]
[http://dx.doi.org/10.1002/adma.202200321] [PMID: 35230725]
[http://dx.doi.org/10.1021/acsami.9b00173] [PMID: 30811175]
[http://dx.doi.org/10.1021/acsanm.0c00812]
[http://dx.doi.org/10.1002/er.5906]
[http://dx.doi.org/10.1016/j.snb.2020.129326]
[http://dx.doi.org/10.1016/j.snb.2016.08.085]
[http://dx.doi.org/10.1109/TED.2019.2900848]
[http://dx.doi.org/10.1016/j.matlet.2016.11.046]
[http://dx.doi.org/10.1021/acsami.9b15200] [PMID: 32091868]
[http://dx.doi.org/10.1016/j.snb.2019.127317]
[http://dx.doi.org/10.1021/jp206352u]
[http://dx.doi.org/10.1039/C4RA03098B]
[http://dx.doi.org/10.1016/j.ceramint.2016.06.170]
[http://dx.doi.org/10.1016/j.snb.2015.09.102]