Generic placeholder image

Current Chinese Science

Editor-in-Chief

ISSN (Print): 2210-2981
ISSN (Online): 2210-2914

Research Article Section: Industrial Synthetic Chemistry

Construction of Flower-like ZnO Nanoclusters on Functionalized Graphene Nanosheets for Room Temperature Formaldehyde Sensing

Author(s): Huiyun Hu, Lanpeng Guo, Hongping Liang, Ruofei Lu, Sitao Lv, Chenxu Wang, Liming Liu, Haihong Yang, Yi-Kuen Lee, Paddy J. French, Hao Li, Yao Wang* and Guofu Zhou

Volume 3, Issue 4, 2023

Published on: 15 May, 2023

Page: [275 - 284] Pages: 10

DOI: 10.2174/2210298103666230501154634

Price: $65

Abstract

Background: Formaldehyde (HCHO) is one of the sources of indoor air pollution and a recognized carcinogenic gas, which sets a huge threat to human health. Therefore, it is urgent to develop a formaldehyde gas sensor with high efficiency, low consumption, and low limit of detection.

Methods: With solvothermal and supramolecular assembly methods, we fabricate a nanocomposite of ZnO/5-aminonaphthalene-1-sulfonic acid (ANS)-reduced graphene oxide (rGO) through in situ assembling flower-like ZnO nanoclusters on ANS-modified graphene nanosheets for room temperature formaldehyde detection.

Results: The flower-like ZnO/ANS-rGO based gas sensor exhibits high response (32%, 5 ppm), ultra-fast response/recovery times (18/23 s), high selectivity, long-term stability and a low practical limit of detection (pLOD) of 1 ppm toward HCHO at room temperature, offering significant advantages and competitiveness in chemiresistive room temperature HCHO sensors.

Conclusion: The unique flower-like nanostructure of ZnO and the functionalization with ANS molecules jointly improved the HCHO sensing performance of the composite at room temperature. This work provides a new approach to designing and preparing high-performance room temperature gas sensing materials.

Graphical Abstract

[1]
Zhang, B.; Hu, X.; Zhang, Y.; Gao, Y.; Wang, X.; Jiang, J.; He, G.; Chen, Y.; Zhang, C.; Sun, J.; Wu, F. Research progress on indoor formaldehyde pollution and its influencing factors in China, a Review. IOP Conf. Ser. Earth Environ. Sci., 2021, 692(3), 032050.
[http://dx.doi.org/10.1088/1755-1315/692/3/032050]
[2]
Wang, Z.; Hou, C.; De, Q.; Gu, F.; Han, D. One-step synthesis of co-doped In 2 O 3 nanorods for high response of formaldehyde sensor at low temperature. ACS Sens., 2018, 3(2), 468-475.
[http://dx.doi.org/10.1021/acssensors.7b00896] [PMID: 29350520]
[3]
Srinives, S.; Sarkar, T.; Mulchandani, A. Primary amine-functionalized polyaniline nanothin film sensor for detecting formaldehyde. Sens. Actuators B Chem., 2014, 194, 255-259.
[http://dx.doi.org/10.1016/j.snb.2013.12.079]
[4]
Hu, J.C.; Chen, M.P.; Rong, Q.; Zhang, Y.M.; Wang, H.P.; Zhang, D.M.; Zhao, X.B.; Zhou, S.Q.; Zi, B.Y.; Zhao, J.H.; Zhang, J.; Zhu, Z.Q.; Liu, Q.J. Formaldehyde sensing performance of reduced graphene oxide-wrapped hollow SnO2 nanospheres composites; Sensor Actuat B-Chem, 2020, p. 307.
[5]
Liang, H.; Guo, L.; Cao, N.; Hu, H.; Li, H.; Frans de Rooij, N.; Umar, A.; Algarni, H.; Wang, Y.; Zhou, G. Practical room temperature formaldehyde sensing based on a combination of visible-light activation and dipole modification. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(42), 23955-23967.
[http://dx.doi.org/10.1039/D1TA06346D]
[6]
Bouchikhi, B. Chludziński, T.; Saidi, T.; Smulko, J.; Bari, N.E.; Wen, H.; Ionescu, R. Formaldehyde detection with chemical gas sensors based on WO3 nanowires decorated with metal nanoparticles under dark conditions and UV light irradiation. Sens. Actuators B Chem., 2020, 320, 128331.
[http://dx.doi.org/10.1016/j.snb.2020.128331]
[7]
Prajesh, R.; Goyal, V.; Nahid, M.; Saini, V.; Singh, A.K.; Sharma, A.K.; Bhargava, J.; Agarwal, A. Nickel oxide (NiO) thin film optimization by reactive sputtering for highly sensitive formaldehyde sensing. Sens. Actuators B Chem., 2020, 318, 128166.
[http://dx.doi.org/10.1016/j.snb.2020.128166]
[8]
Han, Z.; Qi, Y.; Yang, Z.; Han, H.; Jiang, Y.; Du, W.; Zhang, X.; Zhang, J.; Dai, Z.; Wu, L.; Fletcher, C.; Wang, Z.; Liu, J.; Lu, G.; Wang, F. Recent advances and perspectives on constructing metal oxide semiconductor gas sensing materials for efficient formaldehyde detection. J. Mater. Chem. C Mater. Opt. Electron. Devices, 2020, 8(38), 13169-13188.
[http://dx.doi.org/10.1039/D0TC03750H]
[9]
Tian, S.; Ding, X.; Zeng, D.; Zhang, S.; Xie, C. Pore-size-dependent sensing property of hierarchical SnO2 mesoporous microfibers as formaldehyde sensors. Sens. Actuators B Chem., 2013, 186, 640-647.
[http://dx.doi.org/10.1016/j.snb.2013.06.073]
[10]
Gu, F.; Li, C.; Han, D.; Wang, Z. Manipulating the Defect Structure (VO) of In2O3 Nanoparticles for Enhancement of Formaldehyde Detection. ACS Appl. Mater. Interfaces, 2018, 10(1), 933-942.
[http://dx.doi.org/10.1021/acsami.7b16832] [PMID: 29260847]
[11]
Alzate-Carvajal, N.; Luican-Mayer, A. Functionalized graphene surfaces for selective gas sensing. ACS Omega, 2020, 5(34), 21320-21329.
[http://dx.doi.org/10.1021/acsomega.0c02861] [PMID: 32905337]
[12]
Rabchinskii, M.K.; Varezhnikov, A.S.; Sysoev, V.V.; Solomatin, M.A.; Ryzhkov, S.A.; Baidakova, M.V.; Stolyarova, D.Y.; Shnitov, V.V.; Pavlov, S.S.; Kirilenko, D.A.; Shvidchenko, A.V.; Lobanova, E.Y.; Gudkov, M.V.; Smirnov, D.A.; Kislenko, V.A.; Pavlov, S.V.; Kislenko, S.A.; Struchkov, N.S.; Bobrinetskiy, I.I.; Emelianov, A.V.; Liang, P.; Liu, Z.; Brunkov, P.N. Hole-matrixed carbonylated graphene: Synthesis, properties, and highly-selective ammonia gas sensing. Carbon, 2021, 172, 236-247.
[http://dx.doi.org/10.1016/j.carbon.2020.09.087]
[13]
Pei, W.; Zhang, T.; Wang, Y.; Chen, Z.; Umar, A.; Li, H.; Guo, W. Enhancement of charge transfer between graphene and donor–π-acceptor molecule for ultrahigh sensing performance. Nanoscale, 2017, 9(42), 16273-16280.
[http://dx.doi.org/10.1039/C7NR04209D] [PMID: 29046916]
[14]
Liu, W.; Zeng, J.; Gao, Y.; Li, H.; Rooij, N.F.; Umar, A.; Algarni, H.; Wang, Y.; Zhou, G. Charge transfer driven by redox dye molecules on graphene nanosheets for room-temperature gas sensing. Nanoscale, 2021, 13(44), 18596-18607.
[http://dx.doi.org/10.1039/D1NR04641A] [PMID: 34730592]
[15]
Jia, R.; Xie, P.; Feng, Y.; Chen, Z.; Umar, A.; Wang, Y. Dipole-modified graphene with ultrahigh gas sensibility. Appl. Surf. Sci., 2018, 440, 409-414.
[http://dx.doi.org/10.1016/j.apsusc.2018.01.166]
[16]
Bo, Z.; Yuan, M.; Mao, S.; Chen, X.; Yan, J.; Cen, K. Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sens. Actuators B Chem., 2018, 256, 1011-1020.
[http://dx.doi.org/10.1016/j.snb.2017.10.043]
[17]
Fan, J.; Li, H.; Hu, H.; Niu, Y.; Hao, R.; Umar, A.; Al-Assiri, M.S.; Alsaiari, M.A.; Wang, Y. An insight into improvement of room temperature formaldehyde sensitivity for graphene-based gas sensors. Microchem. J., 2021, 160, 105607.
[http://dx.doi.org/10.1016/j.microc.2020.105607]
[18]
Mu, H.; Zhang, Z.; Zhao, X.; Liu, F.; Wang, K.; Xie, H. High sensitive formaldehyde graphene gas sensor modified by atomic layer deposition zinc oxide films. Appl. Phys. Lett., 2014, 105(3), 033107.
[http://dx.doi.org/10.1063/1.4890583]
[19]
Nundy, S.; Ramaraj, S.G.; Muruganathan, M.; Ghosh, A.; Tahir, A.A.; Mallick, T.K.; Park, J.S.; Lee, H.J. Development of morphologically engineered flower-like hafnium-doped zno with experimental and DFT validation for low-temperature and ultrasensitive detection of NOX Gas. Ind. Eng. Chem. Res., 2022, 61(17), 5885-5897.
[http://dx.doi.org/10.1021/acs.iecr.2c00890] [PMID: 35571515]
[20]
Jiang, H.; Qu, Y.; Zhang, X.; Gao, R.; Cheng, X.; Gao, S.; Huo, L.; Major, Z.; Xu, Y. Light-enhanced NO2 sensing performance and sensing mechanism of flower-like Cl uniformly doped In2O3. Appl. Surf. Sci., 2022, 590, 153033.
[http://dx.doi.org/10.1016/j.apsusc.2022.153033]
[21]
Li, X.; Wang, J.; Xie, D.; Xu, J.; Dai, R.; Xiang, L.; Zhu, H.; Jiang, Y. Reduced graphene oxide/hierarchical flower-like zinc oxide hybrid films for room temperature formaldehyde detection. Sens. Actuators B Chem., 2015, 221, 1290-1298.
[http://dx.doi.org/10.1016/j.snb.2015.07.102]
[22]
Bai, S.; Chen, S.; Zhao, Y.; Guo, T.; Luo, R.; Li, D.; Chen, A. Gas sensing properties of Cd-doped ZnO nanofibers synthesized by the electrospinning method. J. Mater. Chem. A Mater. Energy Sustain., 2014, 2(39), 16697-16706.
[http://dx.doi.org/10.1039/C4TA03665D]
[23]
Lu, X.; Chen, Z.; Wu, H.; Cao, E.; Wang, Y.; Du, S.; Wu, Y.; Ren, Z. Isolating metallophthalocyanine sites into graphene-supported microporous polyaniline enables highly efficient sensing of ammonia. J. Mater. Chem. A Mater. Energy Sustain., 2021, 9(7), 4150-4158.
[http://dx.doi.org/10.1039/D0TA10451E]
[24]
Chen, Z.; Wang, J.; Pan, D.; Wang, Y.; Noetzel, R.; Li, H.; Xie, P.; Pei, W.; Umar, A.; Jiang, L.; Li, N.; Rooij, N.F.; Zhou, G. Mimicking a dog’s nose: Scrolling graphene nanosheets. ACS Nano, 2018, 12(3), 2521-2530.
[http://dx.doi.org/10.1021/acsnano.7b08294] [PMID: 29512386]
[25]
Wu, J.; Tao, K.; Zhang, J.; Guo, Y.; Miao, J.; Norford, L.K. Chemically functionalized 3D graphene hydrogel for high performance gas sensing. J. Mater. Chem. A Mater. Energy Sustain., 2016, 4(21), 8130-8140.
[http://dx.doi.org/10.1039/C6TA01426G]
[26]
Stankovich, S.; Dikin, D.A.; Piner, R.D.; Kohlhaas, K.A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S.T.; Ruoff, R.S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007, 45(7), 1558-1565.
[http://dx.doi.org/10.1016/j.carbon.2007.02.034]
[27]
Singh, G.; Choudhary, A.; Haranath, D.; Joshi, A.G.; Singh, N.; Singh, S.; Pasricha, R. ZnO decorated luminescent graphene as a potential gas sensor at room temperature. Carbon, 2012, 50(2), 385-394.
[http://dx.doi.org/10.1016/j.carbon.2011.08.050]
[28]
Zhou, X.; Shi, T.; Zhou, H. Hydrothermal preparation of ZnO-reduced graphene oxide hybrid with high performance in photocatalytic degradation. Appl. Surf. Sci., 2012, 258(17), 6204-6211.
[http://dx.doi.org/10.1016/j.apsusc.2012.02.131]
[29]
Xue, P.; Guo, C.; Li, L.; Li, H.; Luo, D.; Tan, L.; Chen, Z.A. MOF-derivative decorated hierarchical porous host enabling ultrahigh rates and superior long-term cycling of dendrite-free Zn metal anodes. Adv. Mater., 2022, 34(14), 2110047.
[http://dx.doi.org/10.1002/adma.202110047] [PMID: 35100662]
[30]
Lv, Y.K.; Li, Y.Y.; Zhou, R.H.; Pan, Y.P.; Yao, H.C.; Li, Z.J. N-doped graphene quantum dot-decorated three-dimensional ordered macroporous In2O3 for NO2 sensing at low temperatures. ACS Appl. Mater. Interfaces, 2020, 12(30), 34245-34253.
[http://dx.doi.org/10.1021/acsami.0c03369] [PMID: 32633129]
[31]
Hu, H.; Liang, H.; Fan, J.; Guo, L.; Li, H.; de Rooij, N.F.; Umar, A.; Algarni, H.; Wang, Y.; Zhou, G. Assembling hollow cactus-like ZnO nanorods with dipole-modified graphene nanosheets for practical room-temperature formaldehyde sensing. ACS Appl. Mater. Interfaces, 2022, 14(11), 13186-13195.
[http://dx.doi.org/10.1021/acsami.1c20680] [PMID: 35275633]
[32]
Parmar, D.H.M.; Pina, J.; Zhu, T.; Vafaie, M.; Atan, O.; Biondi, M.; Najjariyan, A.M.; Hoogland, S.; Sargent, E.H. Controlled crystal plane orientations in the ZnO transport layer enable high-responsivity, low-dark-current infrared photodetectors. Adv. Mater., 2022, 34(17), e2200321.
[http://dx.doi.org/10.1002/adma.202200321] [PMID: 35230725]
[33]
Na, H.B.; Zhang, X.F.; Deng, Z.P.; Xu, Y.M.; Huo, L.H.; Gao, S. Large-scale synthesis of hierarchically porous ZnO hollow tubule for fast response to ppb-Level H2S Gas. ACS Appl. Mater. Interfaces, 2019, 11(12), 11627-11635.
[http://dx.doi.org/10.1021/acsami.9b00173] [PMID: 30811175]
[34]
Verma, D.K.; Kuntail, J.; Kumar, B.; Singh, A.K.; Shukla, N. Kavita; Sinha, I.; Rastogi, R.B. Amino borate-functionalized reduced graphene oxide further functionalized with copper phthalocyanine nanotubes for reducing friction and wear. ACS Appl. Nano Mater., 2020, 3(6), 5530-5541.
[http://dx.doi.org/10.1021/acsanm.0c00812]
[35]
Ersozoglu, M.G.; Gursu, H.; Gencten, M.; Sarac, A.S.; Sahin, Y. A green approach to fabricate BINDER-FREE S-DOPED graphene oxide electrodes for vanadium redox battery. Int. J. Energy Res., 2021, 45(2), 2126-2137.
[http://dx.doi.org/10.1002/er.5906]
[36]
Mo, R.; Han, D.; Yang, C.; Tang, J.; Wang, F.; Li, C. MOF-derived porous Fe2O3 nanocubes combined with reduced graphene oxide for n-butanol room temperature gas sensing. Sens. Actuators B Chem., 2021, 330, 129326.
[http://dx.doi.org/10.1016/j.snb.2020.129326]
[37]
Zhang, D.; Liu, J.; Jiang, C.; Liu, A.; Xia, B. Quantitative detection of formaldehyde and ammonia gas via metal oxide-modified graphene-based sensor array combining with neural network model. Sens. Actuators B Chem., 2017, 240, 55-65.
[http://dx.doi.org/10.1016/j.snb.2016.08.085]
[38]
Manna, B.; Chakrabarti, I.; Guha, P.K. Platinum nanoparticles decorated graphene oxide based resistive device for enhanced formaldehyde sensing: First-principle study and its experimental correlation. IEEE Trans. Electron Dev., 2019, 66(4), 1942-1949.
[http://dx.doi.org/10.1109/TED.2019.2900848]
[39]
Li, X.; Wang, J.; Xie, D.; Xu, J.; Xia, Y.; Xiang, L.; Komarneni, S. Reduced graphene oxide/MoS2 hybrid films for room-temperature formaldehyde detection. Mater. Lett., 2017, 189, 42-45.
[http://dx.doi.org/10.1016/j.matlet.2016.11.046]
[40]
Zhang, D.; Cao, Y.; Yang, Z.; Wu, J. Nanoheterostructure construction and DFT study of ni-doped In2O3 Nanocubes/WS2 hexagon nanosheets for formaldehyde sensing at room temperature. ACS Appl. Mater. Interfaces, 2020, 12(10), 11979-11989.
[http://dx.doi.org/10.1021/acsami.9b15200] [PMID: 32091868]
[41]
Wang, J.; Deng, H.; Li, X.; Yang, C.; Xia, Y. Visible-light photocatalysis enhanced room-temperature formaldehyde gas sensing by MoS2/rGO hybrids. Sens. Actuators B Chem., 2020, 304, 127317.
[http://dx.doi.org/10.1016/j.snb.2019.127317]
[42]
Han, L.; Wang, D.; Lu, Y.; Jiang, T.; Liu, B.; Lin, Y. Visible-light-assisted HCHO gas sensing based on fe-doped flowerlike ZnO at room temperature. J. Phys. Chem. C, 2011, 115(46), 22939-22944.
[http://dx.doi.org/10.1021/jp206352u]
[43]
Das, P.; Mondal, B.; Mukherjee, K. Facile synthesis of pseudo-peanut shaped hematite iron oxide nano-particles and their promising ethanol and formaldehyde sensing characteristics. RSC Advances, 2014, 4(60), 31879-31886.
[http://dx.doi.org/10.1039/C4RA03098B]
[44]
Upadhyay, S.B.; Mishra, R.K.; Sahay, P.P. Cr-doped WO3 nanosheets: Structural, optical and formaldehyde sensing properties. Ceram. Int., 2016, 42(14), 15301-15310.
[http://dx.doi.org/10.1016/j.ceramint.2016.06.170]
[45]
Ye, Z.; Tai, H.; Xie, T.; Yuan, Z.; Liu, C.; Jiang, Y. Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide. Sens. Actuators B Chem., 2016, 223, 149-156.
[http://dx.doi.org/10.1016/j.snb.2015.09.102]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy