Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Transition Metals Catalyzed Direct C-H Chalcogenation of Arenes and Heteroarenes

Author(s): Atanu Mahata, Madhusudan Garain, Totan Roy, Dilip Gorai and Debasish Kundu*

Volume 21, Issue 6, 2024

Published on: 13 July, 2023

Page: [764 - 795] Pages: 32

DOI: 10.2174/1570179420666230428122124

Price: $65

Abstract

Transition metals catalyzed C-H bond activation reactions have appeared as an emerging field to introduce different functional groups in the inactivated saturated and unsaturated C-H bonds. C-S and C-Se bond constructions in aromatic scaffolds are very interesting due to the important applications of organochalcogen reagents in pharmaceutical chemistry and the material world. The introduction of sulphur or selenium moiety to an inert C-H functionality of an arene under transition metal catalysis has become one of the prime challenges and targets in recent years. In this perspective, various transition metals such as Cu, Ni, Co, Pd, Rh, Ru etc. have been extensively studied. Aromatic arenes owning bearing suitable directing groups appeared as the most promising coupling partners to selectively synthesize differently substituted aryl sulfones and aryl sulfides/selenides. The synthetic strategies were highly convenient owing to the regioselectivity of products, broad substrate scope, mild reaction conditions and excellent functional group tolerance. The current review article comprehensively summarizes the extent of C-S/Se bond formation via transition metal-catalyzed C-H bond activation with the assistance of directing groups to govern the site selectivity.

Graphical Abstract

[1]
Davies, H.M.L.; Morton, D. Recent advances in C–H functionalization. J. Org. Chem., 2016, 81(2), 343-350.
[http://dx.doi.org/10.1021/acs.joc.5b02818] [PMID: 26769355]
[2]
Yamaguchi, J.; Yamaguchi, A.D.; Itami, K. C-H bond functionalization: Emerging synthetic tools for natural products and pharmaceuticals. Angew. Chem. Int. Ed., 2012, 51(36), 8960-9009.
[http://dx.doi.org/10.1002/anie.201201666] [PMID: 22887739]
[3]
Wencel-Delord, J.; Dröge, T.; Liu, F.; Glorius, F. Towards mild metal-catalyzed C–H bond activation. Chem. Soc. Rev., 2011, 40(9), 4740-4761.
[http://dx.doi.org/10.1039/c1cs15083a] [PMID: 21666903]
[4]
Zhu, Y.Q.; He, J.L.; Niu, Y.X.; Kang, H.Y.; Han, T.F.; Li, H.Y. AgSbF 6 -Mediated Selective Thiolation and Selenylation at C-4 Position of Isoquinolin-1(2 H)-ones. J. Org. Chem., 2018, 83(17), 9958-9967.
[http://dx.doi.org/10.1021/acs.joc.8b01361] [PMID: 29993245]
[5]
Mandal, A.; Dana, S.; Sahoo, H.; Grandhi, G.S.; Baidya, M. Ruthenium(II)-Catalyzed ortho -C–H chalcogenation of benzoic acids via weak o-coordination: Synthesis of chalcogenoxanthones. Org. Lett., 2017, 19(9), 2430-2433.
[http://dx.doi.org/10.1021/acs.orglett.7b00996] [PMID: 28429594]
[6]
Wei, Y.; Hu, P.; Zhang, M.; Su, W. Metal-catalyzed decarboxylative C–H functionalization. Chem. Rev., 2017, 117(13), 8864-8907.
[http://dx.doi.org/10.1021/acs.chemrev.6b00516] [PMID: 28266216]
[7]
Jakubczyk, M.; Mkrtchyan, S.; Madura, I.D.; Marek, P.H.; Iaroshenko, V.O. Copper-catalyzed direct C–H arylselenation of 4-nitro-pyrazoles and other heterocycles with selenium powder and aryl iodides. Access to unsymmetrical heteroaryl selenides. RSC Advances, 2019, 9(44), 25368-25376.
[http://dx.doi.org/10.1039/C9RA05004C] [PMID: 35530113]
[8]
Abrams, D.J.; Provencher, P.A.; Sorensen, E.J. Recent applications of C–H functionalization in complex natural product synthesis. Chem. Soc. Rev., 2018, 47(23), 8925-8967.
[http://dx.doi.org/10.1039/C8CS00716K] [PMID: 30426998]
[9]
Bagley, M.C.; Davis, T.; Dix, M.C.; Fusillo, V.; Pigeaux, M.; Rokicki, M.J.; Kipling, D. Microwave-assisted Ullmann C-S bond formation: Synthesis of the P38α MAPK clinical candidate VX-745. J. Org. Chem., 2009, 74(21), 8336-8342.
[http://dx.doi.org/10.1021/jo9017155] [PMID: 19778055]
[10]
Wang, Z.; Wang, Y.; Li, W.; Mao, F.; Sun, Y.; Huang, L.; Li, X. Design, synthesis, and evaluation of multitarget-directed selenium-containing clioquinol derivatives for the treatment of Alzheimer’s disease. ACS Chem. Neurosci., 2014, 5(10), 952-962.
[http://dx.doi.org/10.1021/cn500119g] [PMID: 25121395]
[11]
Yang, S.; Sun, J.; He, P.; Deng, X.; Wang, Z.; Hu, C.; Ding, G.; Xie, X. Selenium doped graphene quantum dots as an ultrasensitive redox fluorescent switch. Chem. Mater., 2015, 27(6), 2004-2011.
[http://dx.doi.org/10.1021/acs.chemmater.5b00112]
[12]
Chaudhary, S.; Umar, A.; Mehta, S.K. Selenium nanomaterials: An overview of recent developments in synthesis, properties and potential applications. Prog. Mater. Sci., 2016, 83, 270-329.
[http://dx.doi.org/10.1016/j.pmatsci.2016.07.001]
[13]
Wang, B.; Li, P.; Yu, F.; Song, P.; Sun, X.; Yang, S.; Lou, Z.; Han, K. A reversible fluorescence probe based on Se–BODIPY for the redox cycle between HClO oxidative stress and H 2 S repair in living cells. Chem. Commun., 2013, 49(10), 1014-1016.
[http://dx.doi.org/10.1039/C2CC37803E] [PMID: 23258194]
[14]
Ahrens, J.; Böker, B.; Brandhorst, K.; Funk, M.; Bröring, M. Sulfur-Bridged BODIPY DYEmers. Chemistry, 2013, 19(34), 11382-11395.
[http://dx.doi.org/10.1002/chem.201300893] [PMID: 23843344]
[15]
Ackermann, L. Modern Arylation Methods; Wiley-VCH, 2009, p. 543.
[http://dx.doi.org/10.1002/9783527627325]
[16]
Brückl, T.; Baxter, R.D.; Ishihara, Y.; Baran, P.S. Innate and guided C-H functionalization logic. Acc. Chem. Res., 2012, 45(6), 826-839.
[http://dx.doi.org/10.1021/ar200194b] [PMID: 22017496]
[17]
Roger, J.; Gottumukkala, A.L.; Doucet, H. Palladium-catalyzed C3 or C4 direct arylation of heteroaromatic compounds with aryl halides by ch bond activation. ChemCatChem, 2010, 2(1), 20-40.
[http://dx.doi.org/10.1002/cctc.200900074]
[18]
Reddy, G.M.; Rao, N.S.; Maheswaran, H. Highly meta -selective halogenation of 2-phenylpyridine with a ruthenium(I) catalyst. Org. Chem. Front., 2018, 5(7), 1118-1123.
[http://dx.doi.org/10.1039/C7QO01133D]
[19]
Warratz, S.; Burns, D.J.; Zhu, C.; Korvorapun, K.; Rogge, T.; Scholz, J.; Jooss, C.; Gelman, D.; Ackermann, L. meta ‐C−H bromination on purine bases by heterogeneous ruthenium catalysis. Angew. Chem. Int. Ed., 2017, 56(6), 1557-1560.
[http://dx.doi.org/10.1002/anie.201609014] [PMID: 28044396]
[20]
Liu, W.; Ackermann, L. Ortho- and para-selective ruthenium-catalyzed C(sp2)-H oxygenations of phenol derivatives. Org. Lett., 2013, 15(13), 3484-3486.
[http://dx.doi.org/10.1021/ol401535k] [PMID: 23799802]
[21]
Bu, Q.; Kuniyil, R.; Shen, Z.; Gońka, E.; Ackermann, L. Insights into ruthenium(II/IV)‐catalyzed distal C−H oxygenation by weak coordination. Chemistry, 2020, 26(69), 16450-16454.
[http://dx.doi.org/10.1002/chem.202003062] [PMID: 32596872]
[22]
Jing, K.; Li, Z.Y.; Wang, G.W. Direct decarboxylative Meta -selective acylation of arenes via an ortho -ruthenation strategy. ACS Catal., 2018, 8(12), 11875-11881.
[http://dx.doi.org/10.1021/acscatal.8b03695]
[23]
Korvorapun, K.; Kaplaneris, N.; Rogge, T.; Warratz, S.; Stückl, A.C.; Ackermann, L. Sequential meta -/ortho -C–H Functionalizations by One-Pot Ruthenium(II/III) Catalysis. ACS Catal., 2018, 8(2), 886-892.
[http://dx.doi.org/10.1021/acscatal.7b03648]
[24]
Luan, Y.Y.; Gou, X.Y.; Shi, W.Y.; Liu, H.C.; Chen, X.; Liang, Y.M. Three-component ruthenium-catalyzed meta -C–H alkylation of phenol derivatives. Org. Lett., 2022, 24(5), 1136-1140.
[http://dx.doi.org/10.1021/acs.orglett.1c04182] [PMID: 35084198]
[25]
Gensch, T.; Hopkinson, M.N.; Glorius, F.; Wencel-Delord, J. Mild metal-catalyzed C–H activation: Examples and concepts. Chem. Soc. Rev., 2016, 45(10), 2900-2936.
[http://dx.doi.org/10.1039/C6CS00075D] [PMID: 27072661]
[26]
Shu, S.; Fan, Z.; Yao, Q.; Zhang, A. Ru(II)-catalyzed direct C(sp2)–H activation/selenylation of arenes with selenyl chlorides. J. Org. Chem., 2016, 81(13), 5263-5269.
[http://dx.doi.org/10.1021/acs.joc.6b00634] [PMID: 27104776]
[27]
Iwasaki, M.; Kaneshika, W.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. Palladium-catalyzed peri-selective chalcogenation of naphthylamines with diaryl disulfides and diselenides via C-H bond cleavage. J. Org. Chem., 2014, 79(23), 11330-11338.
[http://dx.doi.org/10.1021/jo502274t] [PMID: 25399697]
[28]
Chu, J.C.K.; Rovis, T. Complementary strategies for directed C(sp3)−H functionalization: A comparison of transition-metal-catalyzed activation, hydrogen atom transfer, and carbene/nitrene transfer. Angew. Chem. Int. Ed., 2018, 57(1), 62-101.
[http://dx.doi.org/10.1002/anie.201703743] [PMID: 29206316]
[29]
Pulis, A.P.; Procter, D.J. C−H coupling reactions directed by sulfoxides: Teaching an old functional group new tricks. Angew. Chem. Int. Ed., 2016, 55(34), 9842-9860.
[http://dx.doi.org/10.1002/anie.201601540] [PMID: 27409984]
[30]
Yang, Y.; Li, K.; Cheng, Y.; Wan, D.; Li, M.; You, J. Rhodium-catalyzed annulation of arenes with alkynes through weak chelation-assisted C–H activation. Chem. Commun., 2016, 52(14), 2872-2884.
[http://dx.doi.org/10.1039/C5CC09180B] [PMID: 26757884]
[31]
Saba, S.; Rafique, J.; Braga, A.L. DMSO/iodine-catalyzed oxidative C–Se/C–S bond formation: a regioselective synthesis of unsymmetrical chalcogenides with nitrogen- or oxygen-containing arenes. Catal. Sci. Technol., 2016, 6(9), 3087-3098.
[http://dx.doi.org/10.1039/C5CY01503K]
[32]
Son, S.I.; Lee, W.K.; Choi, J.; Ha, H.J. Atom economical synthesis of oxindoles by metal-catalyzed intramolecular C–C bond formation under solvent-free and aerobic conditions. Green Chem., 2015, 17(6), 3306-3309.
[http://dx.doi.org/10.1039/C5GC00703H]
[33]
Sun, C.L.; Shi, Z.J. Transition-metal-free coupling reactions. Chem. Rev., 2014, 114(18), 9219-9280.
[http://dx.doi.org/10.1021/cr400274j] [PMID: 25184859]
[34]
Sheldon, R.A.; Arends, I.W.C.E.; Hanefeld, U. Green Chemistry and Catalysis; Wiley VCH, 2007.
[http://dx.doi.org/10.1002/9783527611003]
[35]
Iwasaki, M.; Tsuchiya, Y.; Nakajima, K.; Nishihara, Y. Chelate-assisted direct selenation of aryl C-H bonds with diselenides catalyzed by palladium. Org. Lett., 2014, 16(18), 4920-4923.
[http://dx.doi.org/10.1021/ol502439m] [PMID: 25207677]
[36]
Iwasaki, M.; Nishihara, Y. Palladium-catalysed direct thiolation and selenation of aryl C–H bonds assisted by directing groups. Dalton Trans., 2016, 45(39), 15278-15284.
[http://dx.doi.org/10.1039/C6DT02167K] [PMID: 27530276]
[37]
Samanta, R.; Antonchick, A.P. Palladium-catalyzed double C-H activation directed by sulfoxides in the synthesis of dibenzothiophenes. Angew. Chem. Int. Ed., 2011, 50(22), 5217-5220.
[http://dx.doi.org/10.1002/anie.201100775] [PMID: 21506222]
[38]
Zhang, S.; Qian, P.; Zhang, M.; Hu, M.; Cheng, J. Copper-catalyzed thiolation of the di- or trimethoxybenzene arene C-H bond with disulfides. J. Org. Chem., 2010, 75(19), 6732-6735.
[http://dx.doi.org/10.1021/jo1014849] [PMID: 20822119]
[39]
Chen, Z.; Wang, B.; Zhang, J.; Yu, W.; Liu, Z.; Zhang, Y. Transition metal-catalyzed C–H bond functionalizations by the use of diverse directing groups. Org. Chem. Front., 2015, 2(9), 1107-1295.
[http://dx.doi.org/10.1039/C5QO00004A]
[40]
Xu, Y.; Liu, P.; Li, S.L.; Sun, P. Palladium-catalyzed ortho-sulfonylation of 2-aryloxypyridines and subsequent formation of ortho-sulfonylated phenols. J. Org. Chem., 2015, 80(2), 1269-1274.
[http://dx.doi.org/10.1021/jo5026095] [PMID: 25496234]
[41]
Li, G.; Zhu, B.; Ma, X.; Jia, C.; Lv, X.; Wang, J.; Zhao, F.; Lv, Y.; Yang, S. Ruthenium-Catalyzed ortho/meta -Selective Dual C–H Bonds Functionalizations of Arenes. Org. Lett., 2017, 19(19), 5166-5169.
[http://dx.doi.org/10.1021/acs.orglett.7b02439] [PMID: 28915049]
[42]
Liu, J.; Zheng, L. Recent advances in transition‐metal‐mediated chelation‐ assisted sulfonylation of unactivated C−H bonds. Adv. Synth. Catal., 2019, 361(8), 1710-1732.
[http://dx.doi.org/10.1002/adsc.201801307]
[43]
Rampon, D.S.; Luz, E.Q.; Lima, D.B.; Balaguez, R.A.; Schneider, P.H.; Alves, D. Transition metal catalysed direct selanylation of arenes and heteroarenes. Dalton Trans., 2019, 48(27), 9851-9905.
[http://dx.doi.org/10.1039/C9DT00473D] [PMID: 31120472]
[44]
Wang, K.; Wang, G.; Duan, G.; Xia, C. Cobalt(II)-catalyzed remote C5-selective C–H sulfonylation of quinolines via insertion of sulfur dioxide. RSC Advances, 2017, 7(81), 51313-51317.
[http://dx.doi.org/10.1039/C7RA11363C]
[45]
Gensch, T.; Klauck, F.J.R.; Glorius, F. Cobalt-catalyzed C−H thiolation through dehydrogenative cross-coupling. Angew. Chem. Int. Ed., 2016, 55(37), 11287-11291.
[http://dx.doi.org/10.1002/anie.201605193] [PMID: 27435021]
[46]
Gao, F.; Zhu, W.; Zhang, D.; Li, S.; Wang, J.; Liu, H. Nickel-catalyzed ortho -C-H Thiolation of N -Benzoyl α-Amino acid derivatives. J. Org. Chem., 2016, 81(19), 9122-9130.
[http://dx.doi.org/10.1021/acs.joc.6b01702] [PMID: 27626937]
[47]
Wu, Z.; Song, H.; Cui, X.; Pi, C.; Du, W.; Wu, Y. Sulfonylation of quinoline N-oxides with aryl sulfonyl chlorides via copper-catalyzed C-H bonds activation. Org. Lett., 2013, 15(6), 1270-1273.
[http://dx.doi.org/10.1021/ol400178k] [PMID: 23461790]
[48]
Liang, H.W.; Jiang, K.; Ding, W.; Yuan, Y.; Shuai, L.; Chen, Y.C.; Wei, Y. Selective remote C–H sulfonylation of aminoquinolines with arylsulfonyl chlorides via copper catalysis. Chem. Commun., 2015, 51(95), 16928-16931.
[http://dx.doi.org/10.1039/C5CC05527J] [PMID: 26439889]
[49]
Ackermann, L.; Korvorapun, K.; Samanta, R.C.; Rogge, T.; Remote, C. Remote C–H functionalizations by ruthenium catalysis. Synthesis, 2021, 53(17), 2911-2946.
[http://dx.doi.org/10.1055/a-1485-5156]
[50]
Sun, Y.; Cramer, N. Rhodium(III)-Catalyzed Enantiotopic C−H Activation Enables Access to P -Chiral Cyclic Phosphinamides. Angew. Chem. Int. Ed., 2017, 56(1), 364-367.
[http://dx.doi.org/10.1002/anie.201606637] [PMID: 27572545]
[51]
Yang, S.; Feng, B.; Yang, Y. Rh(III)-catalyzed direct ortho -chalcogenation of phenols and anilines. J. Org. Chem., 2017, 82(23), 12430-12438.
[http://dx.doi.org/10.1021/acs.joc.7b02221] [PMID: 29094940]
[52]
Zhao, X.; Dimitrijević, E.; Dong, V.M. Palladium-catalyzed C-H bond functionalization with arylsulfonyl chlorides. J. Am. Chem. Soc., 2009, 131(10), 3466-3467.
[http://dx.doi.org/10.1021/ja900200g] [PMID: 19243177]
[53]
Hegedus, L.L.; McCabe, R.W. Catalyst Poisoning; Mercel Dekker: New York, 1984, p. 128.
[54]
Hutton, A.T. Comprehensive Coordination Chemistry; Wilkinson, G.; Gillard, R.D.; McCleverty, J.A., Eds.; Pergamon: Oxford, 1984, Vol. 5, .
[55]
Engle, K.M.; Mei, T.S.; Wasa, M.; Yu, J.Q. Weak coordination as a powerful means for developing broadly useful C-H functionalization reactions. Acc. Chem. Res., 2012, 45(6), 788-802.
[http://dx.doi.org/10.1021/ar200185g] [PMID: 22166158]
[56]
Neufeldt, S.R.; Sanford, M.S. Controlling site selectivity in palladium-catalyzed C-H bond functionalization. Acc. Chem. Res., 2012, 45(6), 936-946.
[http://dx.doi.org/10.1021/ar300014f] [PMID: 22554114]
[57]
Iwasaki, M.; Iyanaga, M.; Tsuchiya, Y.; Nishimura, Y.; Li, W.; Li, Z.; Nishihara, Y. Palladium-catalyzed direct thiolation of aryl C-H bonds with disulfides. Chemistry, 2014, 20(9), 2459-2462.
[http://dx.doi.org/10.1002/chem.201304717] [PMID: 24488804]
[58]
Yang, Y.; Hou, W.; Qin, L.; Du, J.; Feng, H.; Zhou, B.; Li, Y. Rhodium-catalyzed directed sulfenylation of arene C-H bonds. Chemistry, 2014, 20(2), 416-420.
[http://dx.doi.org/10.1002/chem.201303730] [PMID: 24288217]
[59]
Reddy, V.P.; Qiu, R.; Iwasaki, T.; Kambe, N. Nickel-catalyzed synthesis of diarylsulfides and sulfones via C–H bond functionalization of arylamides. Org. Biomol. Chem., 2015, 13(24), 6803-6813.
[http://dx.doi.org/10.1039/C5OB00149H] [PMID: 26006765]
[60]
Müller, T.; Ackermann, L. Nickel-catalyzed C−H chalcogenation of anilines. Chemistry, 2016, 22(40), 14151-14154.
[http://dx.doi.org/10.1002/chem.201603092] [PMID: 27501081]
[61]
Daydé-Cazals, B.; Fauvel, B.; Singer, M.; Feneyrolles, C.; Bestgen, B.; Gassiot, F.; Spenlinhauer, A.; Warnault, P.; Van Hijfte, N.; Borjini, N.; Chevé, G.; Yasri, A. Rational design, synthesis, and biological evaluation of 7-azaindole derivatives as potent focused multi-targeted kinase inhibitors. J. Med. Chem., 2016, 59(8), 3886-3905.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00087] [PMID: 27010810]
[62]
Baltus, C.B.; Jorda, R.; Marot, C.; Berka, K.; Bazgier, V.; Kryštof, V.; Prié, G.; Viaud-Massuard, M.C. Synthesis, biological evaluation and molecular modeling of a novel series of 7-azaindole based tri-heterocyclic compounds as potent CDK2/Cyclin E inhibitors. Eur. J. Med. Chem., 2016, 108, 701-719.
[http://dx.doi.org/10.1016/j.ejmech.2015.12.023] [PMID: 26741853]
[63]
Vats, T.K.; Mishra, A.; Deb, I. Rhodium-catalyzed direct and selective ortho C−H Chalcogenation of N -(Hetero)aryl-7-azaindoles. Adv. Synth. Catal., 2018, 360(12), 2291-2296.
[http://dx.doi.org/10.1002/adsc.201800090]
[64]
Ru-Jian, Y.; Chun-Yan, Z.; Xiang, Z.; Xiong, Y.S.; Duan, X.M. Copper-catalyzed ortho -selective direct sulfenylation of N -aryl-7-azaindoles with disulfides. Org. Biomol. Chem., 2021, 19(13), 2901-2906.
[http://dx.doi.org/10.1039/D1OB00106J] [PMID: 33725070]
[65]
Deng, K.Z.; Zhang, L.L.; Chen, Y.F.; Xie, H.X.; Xu, X.B.; Xia, C.C.; Ji, Y.F. Copper-mediated direct thiolation of aryl C–H bonds with disulfides. Org. Biomol. Chem., 2019, 17(29), 7055-7065.
[http://dx.doi.org/10.1039/C9OB01255A] [PMID: 31304943]
[66]
Li, J.Y.; Huang, J.; Zhang, S.J.; Yao, C.; Sun, W.W.; Liu, B.; Zhou, Y.; Wu, B. Synthesis of diaryl sulfides through C H bond functionalization of arylamides with cobalt salt and elemental sulfur. Tetrahedron Lett., 2019, 60(13), 895-899.
[http://dx.doi.org/10.1016/j.tetlet.2019.02.032]
[67]
Chiu, K.Y.; Ha Tran, T.T.; Chang, S.H.; Yang, T.F.; Su, Y.O. A new series of azobenzene-bridged metal-free organic dyes and application on DSSC. Dyes Pigments, 2017, 146, 512-519.
[http://dx.doi.org/10.1016/j.dyepig.2017.07.049]
[68]
Shi, Y.W.; Liu, X.Q.; Shi, P.; Zhang, X.Y. Characterization of zinc-binding properties of a novel imidase from Pseudomonas putida YZ-26. Arch. Biochem. Biophys., 2010, 494(1), 1-6.
[http://dx.doi.org/10.1016/j.abb.2009.11.016] [PMID: 19931221]
[69]
Wang, R.; Jin, C.; Zhu, X.; Zhou, L.; Xuan, W.; Liu, Y.; Liu, Q.; Tan, W. Artificial base zT as Functional “Element” for constructing photoresponsive DNA nanomolecules. J. Am. Chem. Soc., 2017, 139(27), 9104-9107.
[http://dx.doi.org/10.1021/jacs.7b02865] [PMID: 28585836]
[70]
Broichhagen, J.; Frank, J.A.; Trauner, D. A roadmap to success in photopharmacology. Acc. Chem. Res., 2015, 48(7), 1947-1960.
[http://dx.doi.org/10.1021/acs.accounts.5b00129] [PMID: 26103428]
[71]
Bandara, H.M.D.; Burdette, S.C. Photoisomerization in different classes of azobenzene. Chem. Soc. Rev., 2012, 41(5), 1809-1825.
[http://dx.doi.org/10.1039/C1CS15179G] [PMID: 22008710]
[72]
Yu, X.; Zhao, X.; Zhu, L.; Zou, C.; Liu, X.; Zhao, Z.; Huang, J.; Li, H. Discovery of novel inhibitors for human farnesyltransferase (hFTase) via structure-based virtual screening. MedChemComm, 2013, 4(6), 962-971.
[http://dx.doi.org/10.1039/c3md00058c]
[73]
Zhu, M.; Zhou, H. Azobenzene-based small molecular photoswitches for protein modulation. Org. Biomol. Chem., 2018, 16(44), 8434-8445.
[http://dx.doi.org/10.1039/C8OB02157K] [PMID: 30375620]
[74]
Zhang, D.; Cui, X.; Zhang, Q.; Wu, Y. Pd-catalyzed direct C-H bond sulfonylation of azobenzenes with arylsulfonyl chlorides. J. Org. Chem., 2015, 80(3), 1517-1522.
[http://dx.doi.org/10.1021/jo502451k] [PMID: 25558920]
[75]
Sasmal, A.; Bera, J.K.; Doucet, H.; Soulé, J.F. Synthesis of (Poly)halo-Substituted Diarylsulfones through Palladium-Catalyzed C-H Bond Sulfonylation Using (Poly). Halobenzenesulfonyl Chlorides. Eur. J. Org. Chem., 2018, 2018(44), 6114-6120.
[http://dx.doi.org/10.1002/ejoc.201800819]
[76]
Liu, H.; Fujiwara, T.; Nishikawa, T.; Mishima, Y.; Nagai, H.; Shida, T.; Tachibana, K.; Kobayashi, M.R.E.P.; Namikoshi, M. Three new polysulfur alkaloids, from the ascidian Lissoclinum cf. Badium. Tetrahedron, 2005, 61(36), 8611-8615.
[http://dx.doi.org/10.1016/j.tet.2005.07.002]
[77]
Oda, T.; Fujiwara, T.; Liu, H.; Ukai, K.; Mangindaan, R.; Mochizuki, M.; Namikoshi, M. Effects of lissoclibadins and lissoclinotoxins, isolated from a tropical ascidian lissoclinum cf. badium, on IL-8 production in a PMA-stimulated promyelocytic leukemia cell line. Mar. Drugs, 2006, 4(1), 15-21.
[http://dx.doi.org/10.3390/md401015]
[78]
Nakazawa, T.; Xu, J.; Nishikawa, T.; Oda, T.; Fujita, A.; Ukai, K.; Mangindaan, R.E.P.; Rotinsulu, H.; Kobayashi, H.; Namikoshi, M. Lissoclibadins 4-7, polysulfur aromatic alkaloids from the Indonesian ascidian Lissoclinum cf. badium. J. Nat. Prod., 2007, 70(3), 439-442.
[http://dx.doi.org/10.1021/np060593c] [PMID: 17269824]
[79]
Grombein, C.M.; Hu, Q.; Heim, R.; Rau, S.; Zimmer, C.; Hartmann, R.W. 1-Phenylsulfinyl-3-(pyridin-3-yl)naphthalen-2-ols: A new class of potent and selective aldosterone synthase inhibitors. Eur. J. Med. Chem., 2015, 89, 597-605.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.027] [PMID: 25462268]
[80]
Kajiwara, R.; Takamatsu, K.; Hirano, K.; Miura, M. Copper-Mediated Regioselective C–H Sulfenylation and Selenation of Phenols with Phenanthroline Bidentate Auxiliary. Org. Lett., 2020, 22(15), 5915-5919.
[http://dx.doi.org/10.1021/acs.orglett.0c02012] [PMID: 32672467]
[81]
Li, M.; Wang, J.J. Cobalt-catalyzed direct C–H thiolation of aromatic amides with disulfides: Application to the synthesis of quetiapine. Org. Lett., 2018, 20(20), 6490-6493.
[http://dx.doi.org/10.1021/acs.orglett.8b02812] [PMID: 30284837]
[82]
Fan, C.L.; Zhang, L.B.; Liu, J.; Hao, X.Q.; Niu, J.L.; Song, M.P. Copper-mediated direct sulfonylation of C(sp 2)–H bonds employing TosMIC as a sulfonyl source. Org. Chem. Front., 2019, 6(13), 2215-2219.
[http://dx.doi.org/10.1039/C9QO00391F]
[83]
Arockiam, P.B.; Bruneau, C.; Dixneuf, P.H. Ruthenium(II)-catalyzed C-H bond activation and functionalization. Chem. Rev., 2012, 112(11), 5879-5918.
[http://dx.doi.org/10.1021/cr300153j] [PMID: 22934619]
[84]
Nareddy, P.; Jordan, F.; Szostak, M. Recent developments in ruthenium-catalyzed C–H arylation: Array of mechanistic manifolds. ACS Catal., 2017, 7(9), 5721-5745.
[http://dx.doi.org/10.1021/acscatal.7b01645]
[85]
Saidi, O.; Marafie, J.; Ledger, A.E.W.; Liu, P.M.; Mahon, M.F.; Kociok-Köhn, G.; Whittlesey, M.K.; Frost, C.G. Ruthenium-catalyzed meta sulfonation of 2-phenylpyridines. J. Am. Chem. Soc., 2011, 133(48), 19298-19301.
[http://dx.doi.org/10.1021/ja208286b] [PMID: 22047022]
[86]
Marcé, P.; Paterson, A.J.; Mahon, M.F.; Frost, C.G. Mechanistic insight into ruthenium catalysed meta-sulfonation of 2-phenylpyridine. Catal. Sci. Technol., 2016, 6(19), 7068-7076.
[http://dx.doi.org/10.1039/C6CY01254J]
[87]
Li, G.; Lv, X.; Guo, K.; Wang, Y.; Yang, S.; Yu, L.; Yu, Y.; Wang, J. Ruthenium-catalyzed meta-selective C–H sulfonation of azoarenes with arylsulfonyl chlorides. Org. Chem. Front., 2017, 4(6), 1145-1148.
[http://dx.doi.org/10.1039/C7QO00004A]
[88]
Wei, J.; Jiang, J.; Xiao, X.; Lin, D.; Deng, Y.; Ke, Z.; Jiang, H.; Zeng, W. Copper-catalyzed regioselective C–H sulfonylation of 8-aminoquinolines. J. Org. Chem., 2016, 81(3), 946-955.
[http://dx.doi.org/10.1021/acs.joc.5b02509] [PMID: 26745434]
[89]
Manna, D.; Roy, G.; Mugesh, G. Antithyroid drugs and their analogues: Synthesis, structure, and mechanism of action. Acc. Chem. Res., 2013, 46(11), 2706-2715.
[http://dx.doi.org/10.1021/ar4001229] [PMID: 23883148]
[90]
Kumar, S.; Yan, J.; Poon, J.; Singh, V.P.; Lu, X.; Karlsson Ott, M.; Engman, L.; Kumar, S. Multifunctional antioxidants: Regenerable radical-trapping and hydroperoxide-decomposing ebselenols. Angew. Chem. Int. Ed., 2016, 55(11), 3729-3733.
[http://dx.doi.org/10.1002/anie.201510947] [PMID: 26879742]
[91]
Rafique, J.; Saba, S.; Canto, R.; Frizon, T.; Hassan, W.; Waczuk, E.; Jan, M.; Back, D.; Da Rocha, J.; Braga, A. Synthesis and biological evaluation of 2-picolylamide-based diselenides with non-bonded interactions. Molecules, 2015, 20(6), 10095-10109.
[http://dx.doi.org/10.3390/molecules200610095] [PMID: 26039333]
[92]
Barbosa, F.A.R.; Canto, R.F.S.; Saba, S.; Rafique, J.; Braga, A.L. Synthesis and evaluation of dihydropyrimidinone-derived selenoesters as multi-targeted directed compounds against Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(22), 5762-5770.
[http://dx.doi.org/10.1016/j.bmc.2016.09.031] [PMID: 27681239]
[93]
Jin, W.; Zheng, P.; Wong, W.T.; Law, G.L. Efficient palladium-catalyzed direct C−H Phenylselenylation of (Hetero)arenes in water. Asian J. Org. Chem., 2015, 4(9), 875-878.
[http://dx.doi.org/10.1002/ajoc.201500192]
[94]
Ma, W.; Weng, Z.; Rogge, T.; Gu, L.; Lin, J.; Peng, A.; Luo, X.; Gou, X.; Ackermann, L. Ruthenium(II)-Catalyzed C−H chalcogenation of anilides. Adv. Synth. Catal., 2018, 360(4), 704-710.
[http://dx.doi.org/10.1002/adsc.201701147]
[95]
Qiu, R.; Reddy, V.P.; Iwasaki, T.; Kambe, N. The palladium-catalyzed intermolecular C-H chalcogenation of arenes. J. Org. Chem., 2015, 80(1), 367-374.
[http://dx.doi.org/10.1021/jo502402d] [PMID: 25437148]
[96]
Xie, W.; Li, B.; Wang, B. Rh(III)-Catalyzed C7-thiolation and selenation of indolines. J. Org. Chem., 2016, 81(2), 396-403.
[http://dx.doi.org/10.1021/acs.joc.5b01943] [PMID: 26686383]
[97]
Gandeepan, P.; Koeller, J.; Ackermann, L. Expedient C–H chalcogenation of indolines and indoles by positional-selective copper catalysis. ACS Catal., 2017, 7(2), 1030-1034.
[http://dx.doi.org/10.1021/acscatal.6b03236]
[98]
Yu, S.; Wan, B.; Li, X. Rh(III)-catalyzed selenylation of arenes with selenenyl chlorides/diselenides via C-H activation. Org. Lett., 2015, 17(1), 58-61.
[http://dx.doi.org/10.1021/ol503231p] [PMID: 25515149]
[99]
Mandal, A.; Sahoo, H.; Baidya, M. Copper-Catalyzed 8-Aminoquinoline-directed selenylation of arene and heteroarene C–H bonds. Org. Lett., 2016, 18(13), 3202-3205.
[http://dx.doi.org/10.1021/acs.orglett.6b01420] [PMID: 27309343]
[100]
Singh, B.K.; Bairy, G.; Jana, R. A general copper/manganese cocatalyzed C-H selenation of arenes, heteroarenes, and alkenes under Air. ChemistrySelect, 2017, 2(28), 9227-9232.
[http://dx.doi.org/10.1002/slct.201701758]
[101]
Qiao, H.; Sun, B.; Yu, Q.; Huang, Y.Y.; Zhou, Y.; Zhang, F.L. Palladium-catalyzed direct ortho-C–H selenylation of benzaldehydes using benzidine as a transient directing group. Org. Lett., 2019, 21(17), 6914-6918.
[http://dx.doi.org/10.1021/acs.orglett.9b02530] [PMID: 31448617]
[102]
Ma, W.; Weng, Z.; Fang, X.; Gu, L.; Song, Y.; Ackermann, L. Ruthenium-catalyzed C-H selenylations of benzamides. Eur. J. Org. Chem., 2019, 2019(1), 41-45.
[http://dx.doi.org/10.1002/ejoc.201801532]
[103]
He, M.; Gu, L.; Tan, Y.; Wang, Y.; Wang, Y.; Zhang, C.; Ma, W. Palladium‐catalyzed distal C−H selenylation of 2‐aryl acetamides with diselenides and selenyl chlorides. Adv. Synth. Catal., 2020, 362(24), 5708-5715.
[http://dx.doi.org/10.1002/adsc.202000948]
[104]
Bag, R.; Sarkar, T.; Kumar, S.V.; Talukdar, K.; Punniyamurthy, T. BINOL accelerated Ru(II)-catalyzed regioselective C-H functionalization of arenes with disulfides and diselenides. J. Chem. Sci., 2019, 131(12), 115.
[http://dx.doi.org/10.1007/s12039-019-1709-3]
[105]
Nguyen, H.; Daugulis, O. N-Aminopyridinium Ylide-Directed, copper-promoted chalcogenation of arene C–H bonds. J. Org. Chem., 2020, 85(20), 13069-13079.
[http://dx.doi.org/10.1021/acs.joc.0c01757] [PMID: 33000944]
[106]
Ricordi, V.G.; Thurow, S.; Penteado, F.; Schumacher, R.F.; Perin, G.; Lenardão, E.J.; Alves, D. Copper-catalyzed direct arylselenation of anilines by C-H bond cleavage. Adv. Synth. Catal., 2015, 357(5), 933-939.
[http://dx.doi.org/10.1002/adsc.201400804]
[107]
Beletskaya, I.P.; Ananikov, V.P. Transition-metal-catalyzed C–S, C–Se, and C–Te Bond formations via cross-coupling and atom-economic addition reactions. achievements and challenges. Chem. Rev., 2022, 122(21), 16110-16293.
[http://dx.doi.org/10.1021/acs.chemrev.1c00836] [PMID: 36112510]
[108]
Kong, X.; Zhao, X.; Li, C.; Jia, Z.; Yang, C.; Wu, Z.; Zhao, X.; Zhao, Y.; He, F.; Ren, Y.; Yang, P.; Liu, Z. Terminal group‐oriented self‐assembly to controllably synthesize a layer‐by‐layer SnSe 2 and MXene heterostructure for ultrastable lithium storage. Small, 2023, 19, 2206563.
[http://dx.doi.org/10.1002/smll.202206563] [PMID: 36642823]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy