Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Preclinical to Clinical Profile of Curcuma longa as Antidiabetic Therapeutics

Author(s): Shikha Kaushik, Neeraj Masand, Malliga R. Iyer and Vaishali M. Patil*

Volume 23, Issue 24, 2023

Published on: 19 May, 2023

Page: [2267 - 2276] Pages: 10

DOI: 10.2174/1568026623666230428101440

Price: $65

conference banner
Abstract

Natural product substances have historically served as the most significant source of new leads for pharmaceutical development. Presently, drug discovery and development have adopted rational approaches to explore herbal resources for treating lifestyle-related diseases such as diabetes. For the treatment of diabetes, Curcumin longa has been extensively studied for evaluation of its antidiabetic potential using various in vivo and in vitro models. Literature resources such as PubMed and Google Scholar have been extensively searched to collect documented studies. Various parts of the plant and extracts have proven antidiabetic effects, namely, anti-hyperglycemic, antioxidant, and anti-inflammatory action, through different mechanisms. It is reported that the plant extract or its phytoconstituents regulate glucose and lipid metabolism. The reported study concluded the diversified antidiabetic role of C. longa and its phytoconstituents and, thus, its potential use as an antidiabetic agent.

Next »
Graphical Abstract

[1]
Diabetes, 2022. Available from: who.int/news-room/fact-sheets/detail/diabetes
[2]
American Diabetes Association. Diabetes Care in the Hospital: Standards of medical care in diabetes. Diabetes Care, 2021, 44(Suppl. 1), S211-S220.
[http://dx.doi.org/10.2337/dc21-S015] [PMID: 33298426]
[3]
Taylor, S.I.; Yazdi, Z.S.; Beitelshees, A.L. Pharmacological treatment of hyperglycemia in type 2 diabetes. J. Clin. Invest., 2021, 131(2)e142243
[http://dx.doi.org/10.1172/JCI142243] [PMID: 33463546]
[4]
Chaudhury, A.; Duvoor, C.; Reddy Dendi, V.S.; Kraleti, S.; Chada, A.; Ravilla, R.; Marco, A.; Shekhawat, N.S.; Montales, M.T.; Kuriakose, K.; Sasapu, A.; Beebe, A.; Patil, N.; Musham, C.K.; Lohani, G.P.; Mirza, W. Clinical review of antidiabetic drugs: implications for type 2 diabetes mellitus management. Front. Endocrinol., 2017, 8, 6.
[http://dx.doi.org/10.3389/fendo.2017.00006] [PMID: 28167928]
[5]
Padhi, S.; Nayak, A.K.; Behera, A. Type II diabetes mellitus: a review on recent drug based therapeutics. Biomed. Pharmacother., 2020, 131110708
[http://dx.doi.org/10.1016/j.biopha.2020.110708] [PMID: 32927252]
[6]
Anagnostis, P.; Siolos, P.; Christou, K.; Gkekas, N.K.; Kosmidou, N.; Athyros, V.G.; Karagiannis, A. The effect of antidiabetic medications on the cardiovascular system: a critical appraisal of current data. Hormones, 2018, 17(1), 83-95.
[http://dx.doi.org/10.1007/s42000-018-0017-5] [PMID: 29858866]
[7]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[8]
Patil, V.M.; Mandal, A.; Tomar, S.; Kumar, L.; Masand, N. Phytochemical and pharmacological profile of Diospyros melanoxylon. Nat. Prod. J., 2017, 7(4), 267-275.
[http://dx.doi.org/10.2174/2210315507666170810155154]
[9]
Thomford, N.; Senthebane, D.; Rowe, A.; Munro, D.; Seele, P.; Maroyi, A.; Dzobo, K. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int. J. Mol. Sci., 2018, 19(6), 1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[10]
Patil, V.M.; Masand, N. Anticancer potential of flavonoids: chemistry, biological activities, and future perspectives. In: Studies in Natural Products Chemistry, 1st ed; Rahman, A., Ed.; Elsevier: Amsterdam, The Netherlands 2019, 59, pp. 401-430.
[11]
Fu, Q.Y.; Li, Q.S.; Lin, X.M.; Qiao, R.Y.; Yang, R.; Li, X.M.; Dong, Z.B.; Xiang, L.P.; Zheng, X.Q.; Lu, J.L.; Yuan, C.B.; Ye, J.H.; Liang, Y.R. Antidiabetic effects of Tea. Molecules, 2017, 22(5), 849-868.
[http://dx.doi.org/10.3390/molecules22050849] [PMID: 28531120]
[12]
Ferreira-Santos, P.; Genisheva, Z.; Botelho, C.; Santos, J.; Ramos, C.; Teixeira, J.A.; Rocha, C.M.R. Unravelling the biological potential of Pinus pinaster bark extracts. Antioxidants, 2020, 9(4), 334.
[http://dx.doi.org/10.3390/antiox9040334] [PMID: 32325962]
[13]
Huang, M.; Deng, S.; Han, Q.; Zhao, P.; Zhou, Q.; Zheng, S.; Ma, X.; Xu, C.; Yang, J.; Yang, X. Hypoglycemic activity and the potential mechanism of the flavonoid rich extract from Sophora tonkinensis Gagnep. in KK-Ay Mice. Front. Pharmacol., 2016, 7, 288.
[http://dx.doi.org/10.3389/fphar.2016.00288] [PMID: 27656144]
[14]
Akhtar, N.; Akram, M.; Daniyal, M.; Ahmad, S. Evaluation of antidiabetic activity of Ipomoea batatas L. extract in alloxan-induced diabetic rats. Int. J. Immunopathol. Pharmacol., 2018, 32.
[http://dx.doi.org/10.1177/2058738418814678] [PMID: 30477357]
[15]
Lekshmi, P.C.; Arimboor, R.; Nisha, V.M.; Menon, A.N.; Raghu, K.G. In vitro antidiabetic and inhibitory potential of turmeric (Curcuma longa L) rhizome against cellular and LDL oxidation and angiotensin converting enzyme. J. Food Sci. Technol., 2014, 51(12), 3910-3917.
[http://dx.doi.org/10.1007/s13197-013-0953-7] [PMID: 25477660]
[16]
Marton, L.T.; Pescinini-e-Salzedas, L.M.; Camargo, M.E.C.; Barbalho, S.M.; Haber, J.F.S.; Sinatora, R.V.; Detregiachi, C.R.P.; Girio, R.J.S.; Buchaim, D.V.; Cincotto dos Santos Bueno, P. The effects of curcumin on diabetes mellitus: a systematic review. Front. Endocrinol., 2021, 12669448
[http://dx.doi.org/10.3389/fendo.2021.669448] [PMID: 34012421]
[17]
Rivera-Mancía, S.; Trujillo, J.; Chaverri, J.P. Utility of curcumin for the treatment of diabetes mellitus: Evidence from preclinical and clinical studies. J. Nutr. Intermed. Metab., 2018, 14, 29-41.
[http://dx.doi.org/10.1016/j.jnim.2018.05.001]
[18]
Zang, Y.; Sato, H.; Igarashi, K. Anti-diabetic effects of a kaempferol glycoside-rich fraction from unripe soybean (Edamame, Glycine max L. Merrill. ‘Jindai’) leaves on KK-A(y) mice. Biosci. Biotechnol. Biochem., 2011, 75(9), 1677-1684.
[http://dx.doi.org/10.1271/bbb.110168] [PMID: 21897048]
[19]
Akhani, S.P.; Vishwakarma, S.L.; Goyal, R.K. Anti-diabetic activity of Zingiber officinale in streptozotocin-induced type I diabetic rats. J. Pharm. Pharmacol., 2010, 56(1), 101-105.
[http://dx.doi.org/10.1211/0022357022403] [PMID: 14980006]
[20]
Gharib, E.; Montasser Kouhsari, S. Study of the antidiabetic activity of Punica granatum L. fruits aqueous extract on the alloxan-diabetic wistar rats. Iran. J. Pharm. Res., 2019, 18(1), 358-368.
[PMID: 31089370]
[21]
Ramirez, A.M.; Perez, R.M.; Garcia, E.; Garcia, F. Antidiabetic activity of aloe vera leaves. Evi. Based Compl. Alter. Medi., 2020, 4, 1-19.
[22]
Mahmoud, M.F.; El Zahraa, F.Z.; Ashry, El.; Nablia, N.; Maraghy, El.; Fahmy, A. Studies on the antidiabetic activities of Momordica Chirantia fruit juice in streptozotocin-induced diabetic rats. Pharm. Biol., 2017, 55(1), 758-765.
[http://dx.doi.org/10.1080/13880209.2016.1275026] [PMID: 28064559]
[23]
Panda, V.; Deshmukh, A.; Singh, S.; Shah, T.; Hingorani, L. An Ayurvedic formulation of Emblica officinalis and Curcuma longa alleviates insulin resistance in diabetic rats: Involvement of curcuminoids and polyphenolics. J. Ayurveda Integr. Med., 2021, 12(3), 506-513.
[http://dx.doi.org/10.1016/j.jaim.2021.05.005] [PMID: 34376352]
[24]
Akaberi, M.; Sahebkar, A.; Emami, S.A. Turmeric and Curcumin: From traditional to modern medicine. Adv. Exp. Med. Biol., 2021, 1291, 15-39.
[http://dx.doi.org/10.1007/978-3-030-56153-6_2] [PMID: 34331682]
[25]
Choudhary, A.K.; Rahi, S. Organic cultivation of high yielding turmeric (Curcuma longa L.) cultivars: a viable alternative to enhance rhizome productivity, profitability, quality and resource-use efficiency in monkey-menace areas of north-western Himalayas. Ind. Crops Prod., 2018, 124, 495-504.
[http://dx.doi.org/10.1016/j.indcrop.2018.07.069]
[26]
Pivari, F.; Mingione, A.; Brasacchio, C.; Soldati, L. Curcumin and type 2 diabetes mellitus: prevention and treatment. Nutrients, 2019, 11(8), 1837.
[http://dx.doi.org/10.3390/nu11081837] [PMID: 31398884]
[27]
Hajavi, J.; Momtazi, A.A.; Johnston, T.P.; Banach, M.; Majeed, M.; Sahebkar, A. Curcumin: A naturally occurring modulator of adipokines in diabetes. J. Cell. Biochem., 2017, 118(12), 4170-4182.
[http://dx.doi.org/10.1002/jcb.26121] [PMID: 28485496]
[28]
Panahi, Y.; Ahmadi, Y.; Teymouri, M.; Johnston, T.P.; Sahebkar, A. Curcumin as a potential candidate for treating hyperlipidemia: A review of cellular and metabolic mechanisms. J. Cell. Physiol., 2018, 233(1), 141-152.
[http://dx.doi.org/10.1002/jcp.25756] [PMID: 28012169]
[29]
Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Reiner, Ž.; Majeed, M.; Sahebkar, A. Curcuminoids modify lipid profile in type 2 diabetes mellitus: A randomized controlled trial. Complement. Ther. Med., 2017, 33, 1-5.
[http://dx.doi.org/10.1016/j.ctim.2017.05.006] [PMID: 28735818]
[30]
Altobelli, E.; Angeletti, P.M.; Marziliano, C.; Mastrodomenico, M.; Giuliani, A.R.; Petrocelli, R. Potential therapeutic effects of curcumin on glycemic and lipid profile in uncomplicated type 2 diabetes—a meta-analysis of randomized controlled trial. Nutrients, 2021, 13(2), 404.
[http://dx.doi.org/10.3390/nu13020404] [PMID: 33514002]
[31]
Bustanji, Y.; Taha, M.O.; Almasri, I.M.; Al-Ghussein, M.A.S.; Mohammad, M.K.; Alkhatib, H.S. Inhibition of glycogen synthase kinase by curcumin: Investigation by simulated molecular docking and subsequent in vitro/in vivo evaluation. J. Enzyme Inhib. Med. Chem., 2009, 24(3), 771-778.
[http://dx.doi.org/10.1080/14756360802364377] [PMID: 18720192]
[32]
Yu, W.; Wu, J.; Cai, F.; Xiang, J.; Zha, W.; Fan, D.; Guo, S.; Ming, Z.; Liu, C. Curcumin alleviates diabetic cardiomyopathy in experimental diabetic rats. PLoS One, 2012, 7(12)e52013
[http://dx.doi.org/10.1371/journal.pone.0052013] [PMID: 23251674]
[33]
Pari, L.; Murugan, P. Antihyperlipidemic effect of curcumin and tetrahydrocurcumin in experimental type 2 diabetic rats. Ren. Fail., 2007, 29(7), 881-889.
[http://dx.doi.org/10.1080/08860220701540326] [PMID: 17994458]
[34]
Jang, E.M.; Choi, M.S.; Jung, U.J.; Kim, M.J.; Kim, H.J.; Jeon, S.M.; Shin, S.K.; Seong, C.N.; Lee, M.K. Beneficial effects of curcumin on hyperlipidemia and insulin resistance in high-fat-fed hamsters. Metabolism, 2008, 57(11), 1576-1583.
[http://dx.doi.org/10.1016/j.metabol.2008.06.014] [PMID: 18940397]
[35]
Kalaycıoğlu, Z.; Gazioğlu, I.; Erim, F.B. Comparison of antioxidant, anticholinesterase, and antidiabetic activities of three curcuminoids isolated from Curcuma longa L. Nat. Prod. Res., 2017, 31(24), 2914-2917.
[http://dx.doi.org/10.1080/14786419.2017.1299727] [PMID: 28287280]
[36]
Anto, R.J.; Kuttan, G.; Babu, K.V.D.; Rajasekharan, K.N.; Kuttan, R. Anti-inflammatory activity of natural and synthetic curcuminoids. Pharm. Pharmacol. Commun., 1998, 4, 103-106.
[37]
Maithilikarpagaselvi, N.; Sridhar, M.G.; Swaminathan, R.P.; Sripradha, R. Preventive effect of curcumin on inflammation, oxidative stress and insulin resistance in high-fat fed obese rats. J. Complement. Integr. Med., 2016, 13(2), 137-143.
[http://dx.doi.org/10.1515/jcim-2015-0070] [PMID: 26845728]
[38]
Maithilikarpagaselvi, N.; Sridhar, M.G.; Swaminathan, R.P.; Zachariah, B. Curcumin prevents inflammatory response, oxidative stress and insulin resistance in high fructose fed male Wistar rats: Potential role of serine kinases. Chem. Biol. Interact., 2016, 244, 187-194.
[http://dx.doi.org/10.1016/j.cbi.2015.12.012] [PMID: 26713546]
[39]
Soetikno, V.; Sari, F.R.; Veeraveedu, P.T.; Thandavarayan, R.A.; Harima, M.; Sukumaran, V.; Lakshmanan, A.P.; Suzuki, K.; Kawachi, H.; Watanabe, K. Curcumin ameliorates macrophage infiltration by inhibiting NF-κB activation and proinflammatory cytokines in streptozotocin induced-diabetic nephropathy. Nutr. Metab. (Lond.), 2011, 8(1), 35.
[http://dx.doi.org/10.1186/1743-7075-8-35] [PMID: 21663638]
[40]
Yekollu, S.K.; Thomas, R.; O’Sullivan, B. Targeting curcusomes to inflammatory dendritic cells inhibits NF-κB and improves insulin resistance in obese mice. Diabetes, 2011, 60(11), 2928-2938.
[http://dx.doi.org/10.2337/db11-0275] [PMID: 21885868]
[41]
Rashid, K.; Chowdhury, S.; Ghosh, S.; Sil, P.C. Curcumin attenuates oxidative stress induced NFκB mediated inflammation and endoplasmic reticulum dependent apoptosis of splenocytes in diabetes. Biochem. Pharmacol., 2017, 143, 140-155.
[http://dx.doi.org/10.1016/j.bcp.2017.07.009] [PMID: 28711624]
[42]
Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol., 2007, 47(1), 89-116.
[http://dx.doi.org/10.1146/annurev.pharmtox.46.120604.141046] [PMID: 16968214]
[43]
David, J.A.; Rifkin, W.J.; Rabbani, P.S.; Ceradini, D.J. The Nrf2/Keap1/ARE pathway and oxidative stress as a therapeutic target in type II diabetes mellitus. J. Diabetes Res., 2017, 2017, 1-15.
[http://dx.doi.org/10.1155/2017/4826724] [PMID: 28913364]
[44]
Sano, R.; Reed, J.C. ER stress-induced cell death mechanisms. Biochim. Biophys. Acta Mol. Cell Res., 2013, 1833(12), 3460-3470.
[http://dx.doi.org/10.1016/j.bbamcr.2013.06.028] [PMID: 23850759]
[45]
Viskupicova, J.; Rezbarikova, P. Natural polyphenols as SERCA activators: Role in the endoplasmic reticulum stress-related diseases. Molecules, 2022, 27(16), 5095.
[http://dx.doi.org/10.3390/molecules27165095] [PMID: 36014327]
[46]
Brown, M.K.; Naidoo, N. The endoplasmic reticulum stress response in aging and age-related diseases. Front. Physiol., 2012, 3, 263.
[http://dx.doi.org/10.3389/fphys.2012.00263] [PMID: 22934019]
[47]
Rashid, K.; Sil, P.C. Curcumin ameliorates testicular damage in diabetic rats by suppressing cellular stress-mediated mitochondria and endoplasmic reticulum-dependent apoptotic death. Biochim. Biophys. Acta Mol. Basis Dis., 2015, 1852(1), 70-82.
[http://dx.doi.org/10.1016/j.bbadis.2014.11.007] [PMID: 25446996]
[48]
Afrin, R.; Arumugam, S.; Soetikno, V.; Thandavarayan, R.A.; Pitchaimani, V.; Karuppagounder, V.; Sreedhar, R.; Harima, M.; Suzuki, H.; Miyashita, S.; Nomoto, M.; Suzuki, K.; Watanabe, K. Curcumin ameliorates streptozotocin-induced liver damage through modulation of endoplasmic reticulum stress-mediated apoptosis in diabetic rats. Free Radic. Res., 2015, 49(3), 279-289.
[http://dx.doi.org/10.3109/10715762.2014.999674] [PMID: 25536420]
[49]
Charoensuk, L.; Pinlaor, P.; Prakobwong, S.; Hiraku, Y.; Laothong, U.; Ruangjirachuporn, W.; Yongvanit, P.; Pinlaor, S. Curcumin induces a nuclear factor-erythroid 2-related factor 2-driven response against oxidative and nitrative stress after praziquantel treatment in liver fluke-infected hamsters. Int. J. Parasitol., 2011, 41(6), 615-626.
[http://dx.doi.org/10.1016/j.ijpara.2010.12.011] [PMID: 21256849]
[50]
Karlowicz-Bodalska, K.; Han, S.; Freier, J.; Smolenski, M.; Bodalska, A. Curcuma longa as a medicinal herb in the treatment of diabetic complications. Acta Pol. Pharm., 2017, 74(2), 605-610.
[PMID: 29624265]
[51]
Park, H.; Lee, J.H.; Sim, J.H.; Park, J.; Choi, S.S.; Leem, J.G. Effects of curcumin treatment in a diabetic neuropathic pain model of rats: Involvement of c-Jun N-terminal kinase located in the astrocytes and neurons of the dorsal root ganglion. Pain Res. Manag., 2021, 2021, 1-9.
[http://dx.doi.org/10.1155/2021/8787231] [PMID: 33532012]
[52]
Asadi, S.; Gholami, M.S.; Siassi, F.; Qorbani, M.; Khamoshian, K.; Sotoudeh, G. Nano curcumin supplementation reduced the severity of diabetic sensorimotor polyneuropathy in patients with type 2 diabetes mellitus: A randomized double-blind placebo- controlled clinical trial. Complement. Ther. Med., 2019, 43, 253-260.
[http://dx.doi.org/10.1016/j.ctim.2019.02.014] [PMID: 30935539]
[53]
Asadi, S.; Gholami, M.S.; Siassi, F.; Qorbani, M.; Sotoudeh, G. Beneficial effects of nano-curcumin supplement on depression and anxiety in diabetic patients with peripheral neuropathy: A randomized, double-blind, placebo-controlled clinical trial. Phytother. Res., 2020, 34(4), 896-903.
[http://dx.doi.org/10.1002/ptr.6571] [PMID: 31788880]
[54]
Sharma, S.; Kulkarni, S.K.; Agrewala, J.N.; Chopra, K. Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur. J. Pharmacol., 2006, 536(3), 256-261.
[http://dx.doi.org/10.1016/j.ejphar.2006.03.006] [PMID: 16584726]
[55]
Ji, F.T.; Liang, J.J.; Liu, L.; Cao, M.H.; Li, F. Curcumin exerts antinociceptive effects by inhibiting the activation of astrocytes in spinal dorsal horn and the intracellular extracellular signal-regulated kinase signaling pathway in rat model of chronic constriction injury. Chin. Med. J., 2013, 126(6), 1125-1131.
[PMID: 23506591]
[56]
Cao, H.; Zheng, J.; Li, J.; Meng, B.; Li, J.; Ge, R. Effects of curcumin on pain threshold and on the expression of nuclear factor κ B and CX3C receptor 1 after sciatic nerve chronic constrictive injury in rats. Chin. J. Integr. Med., 2014, 20(11), 850-856.
[http://dx.doi.org/10.1007/s11655-013-1549-9] [PMID: 24474673]
[57]
Zhao, X.; Xu, Y.; Zhao, Q.; Chen, C.R.; Liu, A.M.; Huang, Z.L. Curcumin exerts antinociceptive effects in a mouse model of neuropathic pain: Descending monoamine system and opioid receptors are differentially involved. Neuropharmacology, 2012, 62(2), 843-854.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.050] [PMID: 21945716]
[58]
Pastrana-Quintos, T.; Salgado-Moreno, G.; Pérez-Ramos, J.; Coen, A.; Godínez-Chaparro, B. Anti-allodynic effect induced by curcumin in neuropathic rat is mediated through the NO-cyclic-GMP-ATP sensitive K+ channels pathway. BMC Compl. Med. Therap., 2020, 20(1), 83.
[http://dx.doi.org/10.1186/s12906-020-2867-z] [PMID: 32171311]
[59]
Meng, B.; Shen, L.; Shi, X.; Gong, Y.; Fan, X.; Li, J.; Cao, H. Effects of curcumin on TTX-R sodium currents of dorsal root ganglion neurons in type 2 diabetic rats with diabetic neuropathic pain. Neurosci. Lett., 2015, 605, 59-64.
[http://dx.doi.org/10.1016/j.neulet.2015.08.011] [PMID: 26282904]
[60]
Banafshe, H.R.; Hamidi, G.A.; Noureddini, M.; Mirhashemi, S.M.; Mokhtari, R.; Shoferpour, M. Effect of curcumin on diabetic peripheral neuropathic pain: Possible involvement of opioid system. Eur. J. Pharmacol., 2014, 723, 202-206.
[http://dx.doi.org/10.1016/j.ejphar.2013.11.033] [PMID: 24315931]
[61]
Zheng, J.; Cheng, J.; Zheng, S.; Feng, Q.; Xiao, X. Curcumin is a polyphenolic curcuminoid with its protective effects and molecular mechanisms in diabetes and diabetic cardiomyopathy. Front. Pharmacol., 2018, 9, 472.
[http://dx.doi.org/10.3389/fphar.2018.00472] [PMID: 29867479]
[62]
Anand, P.; Kunnumakkara, A.B.; Newman, R.A.; Aggarwal, B.B. Bioavailability of curcumin: problems and promises. Mol. Pharm., 2007, 4(6), 807-818.
[http://dx.doi.org/10.1021/mp700113r] [PMID: 17999464]
[63]
Kaur, G.; Invally, M.; Chintamaneni, M. Influence of piperine and quercetin on antidiabetic potential of curcumin. J. Complement. Integr. Med., 2016, 13(3), 247-255.
[http://dx.doi.org/10.1515/jcim-2016-0016] [PMID: 27343476]
[64]
Al-Ali, K.; Abdel Fatah, H.S.; El-Badry, Y.A.M. Dual effect of curcumin zinc complex in controlling diabetes mellitus in experimentally induced diabetic rats. Biol. Pharm. Bull., 2016, 39(11), 1774-1780.
[http://dx.doi.org/10.1248/bpb.b16-00137] [PMID: 27803448]
[65]
Sabet, S.; Rashidinejad, A.; Melton, L.D.; McGillivray, D.J. Recent advances to improve curcumin oral bioavailability. Trends Food Sci. Technol., 2021, 110, 253-266.
[http://dx.doi.org/10.1016/j.tifs.2021.02.006]
[66]
Pawar, H.D.; Mahajan, U.B.; Nakhate, K.T.; Agrawal, Y.O.; Patil, C.R.; Meeran, M.F.N.; Sharma, C.; Ojha, S.; Goyal, S.N. Curcumin protects diabetic mice against isoproterenol-Induced Myocardial Infarction by Modulating CB2 cannabinoid receptors. Life, 2022, 12(5), 624.
[http://dx.doi.org/10.3390/life12050624] [PMID: 35629293]
[67]
El-Far, Y.M.; Zakaria, M.M.; Gabr, M.M.; El Gayar, A.M.; Eissa, L.A.; El-Sherbiny, I.M. Nanoformulated natural therapeutics for management of streptozotocin-induced diabetes: potential use of curcumin nanoformulation. Nanomedicine, 2017, 12(14), 1689-1711.
[http://dx.doi.org/10.2217/nnm-2017-0106] [PMID: 28635562]
[68]
Fujimoto, K.; Polonsky, K.S. Pdx1 and other factors that regulate pancreatic β-cell survival. Diabetes Obes. Metab., 2009, 11(S4), 30-37.
[http://dx.doi.org/10.1111/j.1463-1326.2009.01121.x] [PMID: 19817786]
[69]
Taylor, B.L.; Benthuysen, J.; Sander, M. Postnatal β-cell proliferation and mass expansion is dependent on the transcription factor Nkx6.1. Diabetes, 2015, 64(3), 897-903.
[http://dx.doi.org/10.2337/db14-0684] [PMID: 25277396]
[70]
Panahi, Y.; Khalili, N.; Sahebi, E.; Namazi, S.; Karimian, M.S.; Majeed, M.; Sahebkar, A. Antioxidant effects of curcuminoids in patients with type 2 diabetes mellitus: a randomized controlled trial. Inflammopharmacology, 2017, 25(1), 25-31.
[http://dx.doi.org/10.1007/s10787-016-0301-4] [PMID: 27928704]
[71]
Grama, C.N.; Suryanarayana, P.; Patil, M.A.; Raghu, G.; Balakrishna, N.; Kumar, M.N.V.R.; Reddy, G.B. Efficacy of biodegradable curcumin nanoparticles in delaying cataract in diabetic rat model. PLoS One, 2013, 8(10)e78217
[http://dx.doi.org/10.1371/journal.pone.0078217] [PMID: 24155984]
[72]
Abu-Taweel, G.M.; Attia, M.F.; Hussein, J.; Mekawi, E.M.; Galal, H.M.; Ahmed, E.I.; Allam, A.A.; El-Naggar, M.E. Curcumin nanoparticles have potential antioxidant effect and restore tetrahydrobiopterin levels in experimental diabetes. Biomed. Pharmacother., 2020, 131110688
[http://dx.doi.org/10.1016/j.biopha.2020.110688] [PMID: 33152905]
[73]
Kambale, E.K.; Quetin-Leclercq, J.; Memvanga, P.B.; Beloqui, A. An overview of herbal-based antidiabetic drug delivery systems: Focus on lipid- and inorganic based nano formulations. Pharmaceutics, 2022, 14(10), 2135.
[http://dx.doi.org/10.3390/pharmaceutics14102135] [PMID: 36297570]
[74]
Shankar, T.N.; Shantha, N.V.; Ramesh, H.P.; Murthy, I.A.; Murthy, V.S. Toxicity studies on turmeric (Curcuma longa): acute toxicity studies in rats, guineapigs & monkeys. Indian J. Exp. Biol., 1980, 18(1), 73-75.
[PMID: 6772551]
[75]
Lao, C.D.; Ruffin, M.T., IV; Normolle, D.; Heath, D.D.; Murray, S.I.; Bailey, J.M.; Boggs, M.E.; Crowell, J.; Rock, C.L.; Brenner, D.E. Dose escalation of a curcuminoid formulation. BMC Complement. Altern. Med., 2006, 6(1), 10.
[http://dx.doi.org/10.1186/1472-6882-6-10] [PMID: 16545122]
[76]
Chainani-Wu, N.; Silverman, S., Jr; Reingold, A.; Bostrom, A.; Mc Culloch, C.; Lozada-Nur, F.; Weintraub, J. A randomized, placebo-controlled, double-blind clinical trial of curcuminoids in oral lichen planus. Phytomedicine, 2007, 14(7-8), 437-446.
[http://dx.doi.org/10.1016/j.phymed.2007.05.003] [PMID: 17604143]
[77]
Hsu, Y.C.; Weng, H.C.; Lin, S.; Chien, Y.W. Curcuminoids-cellular uptake by human primary colon cancer cells as quantitated by a sensitive HPLC assay and its relation with the inhibition of proliferation and apoptosis. J. Agric. Food Chem., 2007, 55(20), 8213-8222.
[http://dx.doi.org/10.1021/jf070684v] [PMID: 17760412]
[78]
Mohammed, A.; Islam, M.S. Spice-derived bioactive ingredients: Potential agents or food adjuvant in the management of diabetes mellitus. Front. Pharmacol., 2018, 9, 893.
[http://dx.doi.org/10.3389/fphar.2018.00893] [PMID: 30186162]
[79]
Rahimi, H.R.; Mohammadpour, A.H.; Dastani, M.; Jaafari, M.R.; Abnous, K.; Ghayour Mobarhan, M.; Kazemi Oskuee, R. The effect of nano-curcumin on HbA1c, fasting blood glucose, and lipid profile in diabetic subjects: a randomized clinical trial. Avicenna J. Phytomed., 2016, 6(5), 567-577.
[PMID: 27761427]
[80]
Na, L.X.; Yan, B.L.; Jiang, S.; Cui, H.L.; Li, Y.; Sun, C.H. Curcuminoids target decreasing serum adipocyte-fatty acid binding protein levels in their glucose-lowering effect in patients with type 2 diabetes. Biomed. Environ. Sci., 2014, 27(11), 902-906.
[PMID: 25374024]
[81]
Maithili Karpaga Selvi, N.; Sridhar, M.G.; Swaminathan, R.P.; Sripradha, R. Efficacy of turmeric as adjuvant therapy in type 2 diabetic patients. Indian J. Clin. Biochem., 2015, 30(2), 180-186.
[http://dx.doi.org/10.1007/s12291-014-0436-2] [PMID: 25883426]
[82]
Na, L.X.; Li, Y.; Pan, H.Z.; Zhou, X.L.; Sun, D.J.; Meng, M.; Li, X.X.; Sun, C.H. Curcuminoids exert glucose-lowering effect in type 2 diabetes by decreasing serum free fatty acids: a double-blind, placebo-controlled trial. Mol. Nutr. Food Res., 2013, 57(9), 1569-1577.
[http://dx.doi.org/10.1002/mnfr.201200131] [PMID: 22930403]
[83]
Explore 447,472 research studies in all 50 states and in 221 countries. Available from: https://clinicaltrials.gov/
[84]
Wickenberg, J.; Ingemansson, S.L.; Hlebowicz, J. Effects of Curcuma longa (turmeric) on postprandial plasma glucose and insulin in healthy subjects. Nutr. J., 2010, 9(1), 43.
[http://dx.doi.org/10.1186/1475-2891-9-43] [PMID: 20937162]
[85]
Chuengsamarn, S.; Rattanamongkolgul, S.; Luechapudiporn, R.; Phisalaphong, C.; Jirawatnotai, S. Curcumin extract for prevention of type 2 diabetes. Diabetes Care, 2012, 35(11), 2121-2127.
[http://dx.doi.org/10.2337/dc12-0116] [PMID: 22773702]
[86]
Zhang, F.; Altorki, N.K.; Mestre, J.R.; Subbaramaiah, K.; Dannenberg, A.J. Curcumin inhibits cyclooxygenase-2 transcription in bile acid- and phorbol ester-treated human gastrointestinal epithelial cells. Carcinogenesis, 1999, 20(3), 445-451.
[http://dx.doi.org/10.1093/carcin/20.3.445] [PMID: 10190560]
[87]
Patil, V.M.; Das, S.; Balasubramanian, K. Quantum chemical and docking insights into bioavailability enhancement of curcumin by piperine in pepper. J. Phys. Chem. A, 2016, 120(20), 3643-3653.
[http://dx.doi.org/10.1021/acs.jpca.6b01434] [PMID: 27111639]
[88]
Liu, S.; Liu, J.; He, L.; Liu, L.; Cheng, B.; Zhou, F.; Cao, D.; He, Y. A comprehensive review on the benefits and problems of curcumin with respect to human health. Molecules, 2022, 27(14), 4400.
[http://dx.doi.org/10.3390/molecules27144400] [PMID: 35889273]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy