Generic placeholder image

Recent Advances in Anti-Infective Drug Discovery

Editor-in-Chief

ISSN (Print): 2772-4344
ISSN (Online): 2772-4352

Research Article

Eco-friendly Biosynthesis of Ag-NPs by Streptomyces griseus with Anti-Candida albicans and Antitumor Activity

Author(s): Inas M. Abou El-Enain, Nermine N. Abed, Eman E. Helal, Eman S. Abdelkhalek, Waleed Suleiman, Nesreen A. Safwat and Mohammed Yosri*

Volume 19, Issue 1, 2024

Published on: 15 May, 2023

Page: [73 - 87] Pages: 15

DOI: 10.2174/2772434418666230427165013

Price: $65

Abstract

Background: The most significant sexually transmissible fungal disease, semen candidiasis, is caused by Candida albicans and impacts male reproductive potential. Actinomycetes are a group of microorganisms that could be isolated from various habitats and used for the biosynthesis of various nanoparticles with biomedical applications.

Objective: Testing antifungal activity of biosynthesized Ag nanoparticles versus isolated C. albicans from semen as well as its anticancer activity versus the CaCO2 cell line.

Methods: Screening 17 isolated actinomycetes for the biosynthesis of Ag nanoparticle biosynthesis. Characterization of biosynthesized nanoparticles, testing its anti-Candida albicans, and antitumor activity.

Results: Streptomyces griseus was the isolate that identified silver nanoparticles using UV, FTIR, XRD and TEM. Biosynthesized nanoparticles have promising anti-Candida albicans with MIC (125 ± 0.8) μg/ml and accelerate apoptotic rate versus CaCO2 cells (IC50 = 7.30 ± 0.54 μg/ml) with minimal toxicity (CC50 = 142.74 ± 4.71 μg/ml) versus Vero cells.

Conclusion: Certain actinomycetes could be used for the biosynthesis of nanoparticles with successive antifungal and anticancer activity to be verified by in vivo studies.

« Previous
Graphical Abstract

[1]
Makhoba X, Pouris A. Bibliometric analysis of the development of nanoscience research in South Africa. S Afr J Sci 2017; 113(11/12): 9.
[http://dx.doi.org/10.17159/sajs.2017/20160381]
[2]
Kargozar S, Mozafari M. Nanotechnology and Nanomedicine: Start small, think big. Mater Today Proc 2018; 5(7): 15492-500.
[http://dx.doi.org/10.1016/j.matpr.2018.04.155]
[3]
Ferreira AJ, Cemlyn-Jones J, Robalo CC. Nanoparticles, nanotechnology and pulmonary nanotoxicology. Rev Port Pneumol 2013; 19(1): 28-37.
[http://dx.doi.org/10.1016/j.rppneu.2012.09.003] [PMID: 23265236]
[4]
Shah SS, Shaikh MN, Khan MY, Alfasane MA, Rahman MM, Aziz MA. Present status and future prospects of jute in nanotechnology: A review. Chem Rec 2021; 21(7): 1631-65.
[http://dx.doi.org/10.1002/tcr.202100135] [PMID: 34132038]
[5]
Sahu SC, Hayes AW. Toxicity of nanomaterials found in human environment. Toxicology Research and Application 2017; p. 1.
[http://dx.doi.org/10.1177/2397847317726352]
[6]
Gao L, Zhang D, Chen M. Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res 2008; 10(5): 845-62.
[http://dx.doi.org/10.1007/s11051-008-9357-4]
[7]
Duan H, Wang D, Li Y. Green chemistry for nanoparticle synthesis. Chem Soc Rev 2015; 44(16): 5778-92.
[http://dx.doi.org/10.1039/C4CS00363B] [PMID: 25615873]
[8]
Golinska P, Wypij M, Ingle AP, Gupta I, Dahm H, Rai M. Biogenic synthesis of metal nanoparticles from actinomycetes: Biomedical applications and cytotoxicity. Appl microbiol biotechnol 2014; 98(19): 8083-97.
[http://dx.doi.org/10.1007/s00253-014-5953-7] [PMID: 25158833]
[9]
Ghosh S, Ahmad R, Zeyaullah M, Khare SK. Microbial Nano-Factories: Synthesis and biomedical applications. Front Chem 2021; 9: 626834.
[http://dx.doi.org/10.3389/fchem.2021.626834] [PMID: 33937188]
[10]
Spirescu VA, Chircov C, Grumezescu AM, Vasile BȘ. Andronescu E. Inorganic nanoparticles and composite Films for antimicrobial therapies B. Int J Mol Sci 2021; 22(9): 4595.
[http://dx.doi.org/10.3390/ijms22094595] [PMID: 33925617]
[11]
Gudikandula K, Charya Maringanti S. Synthesis of silver nanoparticles by chemical and biological methods and their antimicrobial properties. J Exp Nanosci 2016; 11(9): 714-21.
[http://dx.doi.org/10.1080/17458080.2016.1139196]
[12]
Karade VC, Patil RB, Parit SB, Kim JH, Chougale AD, Dawkar VV. Insights into shape-based silver nanoparticles: A weapon to cope with pathogenic attacks. ACS Sustain Chem& Eng 2021; 9(37): 12476-507.
[http://dx.doi.org/10.1021/acssuschemeng.1c03797]
[13]
Ivanov M, Kannan A, Stojković DS, et al. Camphor and eucalyptol-anticandidal spectrum, antivirulence effect, efflux pumps interference and cytotoxicity. Int J Mol Sci 2021; 22(2): 483.
[http://dx.doi.org/10.3390/ijms22020483] [PMID: 33418931]
[14]
Ciurea CN, Kosovski IB, Mare AD, Toma F, Pintea-Simon IA, Man A. Candida and candidiasis-opportunism versus pathogenicity: A Review of the Virulence Traits. Microorganisms 2020; 8(6): 857.
[http://dx.doi.org/10.3390/microorganisms8060857] [PMID: 32517179]
[15]
Mba IE, Nweze EI. Mechanism of candida pathogenesis: revisiting the vital drivers. Eur J Clin Microbiol Infect Dis 2020; 39(10): 1797-819.
[http://dx.doi.org/10.1007/s10096-020-03912-w] [PMID: 32372128]
[16]
Castrillón-Duque EX, Puerta SJ, Cardona Maya WD. yeast and fertility: Effects of in vitro activity of candida spp. On sperm quality. J Reprod Infertil 2018; 19(1): 49-55.
[PMID: 29850447]
[17]
Kumari S, Tehri N, Gahlaut A, Hooda V. Actinomycetes mediated synthesis, characterization, and applications of metallic nanoparticles. Inorganic and Nano-Metal Chemistry 2020; pp. 1-10.
[http://dx.doi.org/10.1080/24701556.2020.1835978]
[18]
Soliman AM, Abdel-Latif W, Shehata IH, Fouda A, Abdo AM, Ahmed YM. Green approach to overcome the resistance pattern of Candida spp. using biosynthesized silver nanoparticles fabricated by Penicillium chrysogenum F9. Biol Trace Elem Res 2021; 199(2): 800-11.
[http://dx.doi.org/10.1007/s12011-020-02188-7] [PMID: 32451695]
[19]
Yang H, Zhang J, Xue Z, et al. Potential pathogenic bacteria in seminal microbiota of patients with Different Types of Dysspermatism. Sci Rep 2020; 10(1): 6876.
[http://dx.doi.org/10.1038/s41598-020-63787-x] [PMID: 32327694]
[20]
Menkveld R, Wong WY, Lombard CJ, et al. Semen parameters, including WHO and strict criteria morphology, in a fertile and subfertile population: An effort towards standardization of in vivo thresholds. Hum Reprod 2001; 16(6): 1165-71.
[http://dx.doi.org/10.1093/humrep/16.6.1165] [PMID: 11387287]
[21]
Gad et al A, Suleiman WB, Beltagy EA, El-Sheikh H, Ibrahim HA. Characterization and screening of marine-derived fungi along the coastline of Alexandria, Mediterranean Sea, Egypt. Egyptian Journal of Aquatic Biology and Fisheries 2021; 25(5): 215-39.
[http://dx.doi.org/10.21608/ejabf.2021.198560]
[22]
Tarini NMA, Wahid MH, Ibrahim F, Yasmon A. Djauzi, S. Development of multiplex-PCR assay for rapid detection of Candida spp. Med J Indones 2020; 19(2): 83-7.
[23]
Gad AM, Suleiman WB, El-Sheikh HH, Elmezayen HA, Beltagy EA. Characterization of cellulase from Geotrichum candidum strain Gad1 approaching bioethanol production. Arab J Sci Eng 2022; 47(6): 6837-50.
[http://dx.doi.org/10.1007/s13369-021-06391-z]
[24]
Abdel-Razek AS, El-Sheikh HH, Suleiman WB, Taha TH, Mohamed MK. Bioelimination of phenanthrene using degrading bacteria isolated from petroleum soil: Safe approach. Desalination Water Treat 2020; 181: 131-40.
[http://dx.doi.org/10.5004/dwt.2020.25109]
[25]
Suleiman WB, El Bous M, Ibrahim M, El Baz H. In vitro evaluation of Syzygium aromaticum L. ethanol extract as biocontrol agent against postharvest tomato and potato diseases. Egypt J Bot 2019; 59(1): 81-94.
[26]
Vieira FCS, Nahas E. Comparison of microbial numbers in soils by using various culture media and temperatures. Microbiol Res 2005; 160(2): 197-202.
[http://dx.doi.org/10.1016/j.micres.2005.01.004] [PMID: 15881837]
[27]
Ghanem NB, Sabry SA, El-Sherif ZM, Abu El-Ela GA. Isolation and enumeration of marine actinomycetes from seawater and sediments in Alexandria. J Gen Appl Microbiol 2000; 46(3): 105-11.
[http://dx.doi.org/10.2323/jgam.46.105] [PMID: 12483583]
[28]
El-Gamal MS, Salem SS, Abdo AM. Biosynthesis, characterization, and antimicrobial activities of silver nanoparticles synthesized by endophytic Streptomyces sp. J Biotechnol 2018; 56: 69-85.
[29]
Sayed R, Safwat NA, Amin BH, Yosri M. Study of the dual biological impacts of aqueous extracts of normal and gamma-irradiated Galleria mellonella larvae. J Taibah Univ Med Sci 2022; 17(5): 765-73.
[http://dx.doi.org/10.1016/j.jtumed.2021.12.016] [PMID: 36050949]
[30]
Kuster E. Simple Working Key for the Classification and Identification of Named Taxa Included in the International Streptomyces Project1, 2. Int J Syst Evol Microbiol 1972; 22(3): 139-48.
[31]
Singh V, Haque S, Singh H, et al. Isolation, screening, and identification of novel isolates of actinomycetes from India for antimicrobial applications. Front Microbiol 2016; 7: 1921.
[http://dx.doi.org/10.3389/fmicb.2016.01921] [PMID: 27999566]
[32]
Augustine N, Peter AW, Kerkar S, Thomas S. Arctic actinomycetes as potential inhibitors of Vibrio cholerae biofilm. Curr Microbiol 2012; 64(4): 338-42.
[http://dx.doi.org/10.1007/s00284-011-0073-4] [PMID: 22231452]
[33]
Lechevalier MP, Lechevalier H. Chemical composition as a criterion in the classification of aerobic actinomycetes. Int J Syst Evol Microbiol 1970; 20(4): 435-43.
[34]
Hashem AH, Abu-Elreesh G, El-Sheikh HH, Suleiman WB. Isolation, identification, and statistical optimization of a psychrotolerant Mucor racemosus for sustainable lipid production. Biomass Convers Biorefin 2023; 13: 3415-26.
[35]
Bahri SBS, Wahyudi AT, Mubarik NR. Genetic diversity of plant growth promoting rhizobacteria of Bacillus sp. based on 16S rRNA sequence and amplified rDNA restriction analysis. Microbiol Indones 2009; 3(1): 2-2.
[36]
Amer MM, Mekky HM, Fedawy HS. Molecular identification of Mycoplasma synoviae from breeder chicken flock showing arthritis in Egypt. Vet World 2019; 12(4): 535-41.
[http://dx.doi.org/10.14202/vetworld.2019.535-541] [PMID: 31190708]
[37]
Ali OM, Hasanin MS, Suleiman WB, Helal EEH, Hashem AH. Green biosynthesis of titanium dioxide quantum dots using watermelon peel waste: Antimicrobial, antioxidant, and anticancer activities. Biomass Convers Biorefin 2022; 12: 1-12.
[http://dx.doi.org/10.1007/s13399-022-02772-y]
[38]
Elbahnasawy MA, Shehabeldine AM, Khattab AM, Amin BH, Hashem AH. Green biosynthesis of silver nanoparticles using novel endophytic Rothia endophytica: Characterization and anticandidal activity. J Drug Deliv Sci Technol 2021; 62: 102401.
[http://dx.doi.org/10.1016/j.jddst.2021.102401]
[39]
Yosri M, Elaasser MM, Abdel-Aziz MM, et al. Determination of Therapeutic and Safety Effects of Zygophyllum coccineum Extract in Induced Inflammation in Rats. BioMed Res Int 2022; 2022: 1-17.
[http://dx.doi.org/10.1155/2022/7513155] [PMID: 35898689]
[40]
Tian YH, Xiong JW, Hu L, Huang DH, Xiong CL. Candida albicans and filtrates interfere with human spermatozoal motility and alter the ultrastructure of spermatozoa: An in vitro study. Int J Androl 2007; 30(5): 421-9.
[http://dx.doi.org/10.1111/j.1365-2605.2006.00734.x] [PMID: 17298548]
[41]
Ibrahim HM. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. Journal of radiation research and applied sciences 2015; 8(3): 265-75.
[42]
Salem SS, EL-Belely EF, Niedbała G, et al. Bactericidal and in-vitro cytotoxic efficacy of silver nanoparticles (Ag-NPs) fabricated by endophytic actinomycetes and their use as coating for the textile fabrics. Nanomaterials 2020; 10(10): 2082.
[http://dx.doi.org/10.3390/nano10102082] [PMID: 33096854]
[43]
Menazea AA, Abdelghany AM. Precipitation of silver nanoparticle within silicate glassy matrix via Nd:YAG laser for biomedical applications. Radiat Phys Chem 2020; 174: 108958.
[http://dx.doi.org/10.1016/j.radphyschem.2020.108958]
[44]
Al-Dhabi NA, Ghilan AKM, Esmail GA, Arasu MV, Duraipandiyan V, Ponmurugan K. Environmental friendly synthesis of silver nanomaterials from the promising Streptomyces parvus strain Al-Dhabi-91 recovered from the Saudi Arabian marine regions for antimicrobial and antioxidant properties. J Photochem Photobiol B 2019; 197: 111529.
[http://dx.doi.org/10.1016/j.jphotobiol.2019.111529] [PMID: 31220803]
[45]
Bhat M, Chakraborty B, Kumar RS, et al. Biogenic synthesis, characterization and antimicrobial activity of Ixora brachypoda (DC) leaf extract mediated silver nanoparticles. J King Saud Univ Sci 2021; 33(2): 101296.
[http://dx.doi.org/10.1016/j.jksus.2020.101296]
[46]
Vazquez-Muñoz R, Avalos-Borja M, Castro-Longoria E. Ultrastructural analysis of Candida albicans when exposed to silver nanoparticles. PLoS One 2014; 9(10): e108876.
[http://dx.doi.org/10.1371/journal.pone.0108876] [PMID: 25290909]
[47]
Kim KJ, Sung WS, Suh BK, et al. Antifungal activity and mode of action of silver nano-particles on Candida albicans. Biometals 2009; 22(2): 235-42.
[http://dx.doi.org/10.1007/s10534-008-9159-2] [PMID: 18769871]
[48]
Gutiérrez JA, Caballero S, Díaz LA, Guerrero MA, Ruiz J, Ortiz CC. High antifungal activity against Candida species of monometallic and bimetallic nanoparticles synthesized in nanoreactors. ACS Biomater Sci Eng 2018; 4(2): 647-53.
[http://dx.doi.org/10.1021/acsbiomaterials.7b00511] [PMID: 33418753]
[49]
Sri SM, Mekala M, Suganya K, Nandhini B. Biosynthesis of silver nanoparticles using Streptomyces griseus PDS1 for anticancer activity. IOSR-JPB 2017; 12(6): 11-6.
[50]
Baygar T, Ugur A. Biosynthesis of Silver Nanoparticles by Streptomyces griseorubens isolated from Soil and Their Antioxidant Activity. IET Nanobiotechnol 2017; 11(3): 286-91.
[http://dx.doi.org/10.1049/iet-nbt.2015.0127] [PMID: 28476986]
[51]
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2018; 68(6): 394-424.
[http://dx.doi.org/10.3322/caac.21492] [PMID: 30207593]
[52]
Saravanakumar K, Chelliah R. MubarakAli D, Oh DH, Kathiresan K, Wang MH. Unveiling the potentials of biocompatible silver nanoparticles on human lung carcinoma A549 cells and Helicobacter pylori. Sci Rep 2019; 9(1): 5787.
[http://dx.doi.org/10.1038/s41598-019-42112-1] [PMID: 30962456]
[53]
Barai AC, Paul K, Dey A, et al. Green synthesis of Nerium oleander-conjugated gold nanoparticles and study of its in vitro anticancer activity on MCF-7 cell lines and catalytic activity. Nano Converg 2018; 5(1): 10.
[http://dx.doi.org/10.1186/s40580-018-0142-5] [PMID: 29682442]
[54]
Hwang IS, Lee J, Hwang JH, Kim KJ, Lee DG. Silver nanoparticles induce apoptotic cell death in Candida albicans through the increase of hydroxyl radicals. Febs J 2012; 279: 1327-38.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy