[1]
Luo, D.; Pu, Y.; Tian, H.; Wu, W.; Sun, X.; Zhou, T.; Tao, Y.; Yuan, J.; Shen, X.; Feng, Y.; Mei, S. Association of in utero exposure to organochlorine pesticides with thyroid hormone levels in cord blood of newborns. Environ. Pollut., 2017, 231(Pt 1), 78-86.
[http://dx.doi.org/10.1016/j.envpol.2017.07.091]
[http://dx.doi.org/10.1016/j.envpol.2017.07.091]
[2]
Yamazaki, K.; Itoh, S.; Araki, A.; Miyashita, C.; Minatoya, M.; Ikeno, T.; Kato, S.; Fujikura, K.; Mizutani, F.; Chisaki, Y.; Kishi, R. Associations between prenatal exposure to organochlorine pesticides and thyroid hormone levels in mothers and infants: The Hokkaido study on environment and children’s health. Environ. Res., 2020.189109840
[http://dx.doi.org/10.1016/j.envres.2020.109840]
[http://dx.doi.org/10.1016/j.envres.2020.109840]
[3]
Howe, C.G.; Eckel, S.P.; Habre, R.; Girguis, M.S.; Gao, L.; Lurmann, F.W.; Gilliland, F.D.; Breton, C.V. Association of Prenatal Exposure to Ambient and Traffic-Related Air Pollution With Newborn Thyroid Function: Findings From the Children’s Health Study. JAMA Netw., Open, 2018, 1(5)e182172
[http://dx.doi.org/10.1001/jamanetworkopen.2018.217]
[http://dx.doi.org/10.1001/jamanetworkopen.2018.217]
[4]
Janssen, B.G.; Saenen, N.D.; Roels, H.A.; Madhloum, N.; Gyselaers, W.; Lefebvre, W.; Penders, J.; Vanpoucke, C.; Vrijens, K.; Nawrot, T.S. Fetal Thyroid Function, Birth Weight, and in Utero Exposure to Fine Particle Air Pollution: A Birth Cohort Study. Environ. Health Perspect., 2017, 125(4), 699-705.
[http://dx.doi.org/10.1289/EHP508]
[http://dx.doi.org/10.1289/EHP508]
[5]
Vaccarella, S.; Lortet-Tieulent, J.; Colombet, M.; Davies, L.; Stiller, C.A.; Schüz, J.; Togawa, K.; Bray, F.; Franceschi, S.; Dal Maso, L.; Steliarova-Foucher, E. Global patterns and trends in incidence and mortality of thyroid cancer in children and adolescents: a population-based study. Lancet Diabetes Endocrinol., 2021, 9(3), 144-152.
[http://dx.doi.org/10.1016/S2213-8587(20)30401-0]
[http://dx.doi.org/10.1016/S2213-8587(20)30401-0]
[6]
Jacobson, M.H.; Darrow, L.A.; Barr, D.B.; Howards, P.P.; Lyles, R.H.; Terrell, M.L.; Smith, A.K.; Conneely, K.N.; Marder, M.E.; Marcus, M. Serum Polybrominated Biphenyls (PBBs) and Polychlorinated Biphenyls (PCBs) and Thyroid Function among Michigan Adults Several Decades after the 1973-1974 PBB Contamination of Livestock Feed. Environ. Health Perspect., 2017, 125(9)097020
[http://dx.doi.org/10.1289/EHP1302]
[http://dx.doi.org/10.1289/EHP1302]
[7]
Zhao, X.; Yang, X.; Du, Y.; Li, R.; Zhou, T.; Wang, Y.; Chen, T.; Wang, D.; Shi, Z. Polybrominated diphenyl ethers in serum from residents living in a brominated flame retardant production area:Occurrence, influencing factors, and relationships with thyroid and liver function. Environ. Pollut., 2021.270116046
[http://dx.doi.org/10.1016/j.envpol.2020.116046]
[http://dx.doi.org/10.1016/j.envpol.2020.116046]
[8]
Sheikh, I.A.; Beg, M.A. Structural studies on the endocrine-disrupting role of polybrominated diphenyl ethers (PBDEs) in thyroid diseases. Environ. Sci. Pollut. Res. Int., 2020, 27(30), 37866-37876.
[http://dx.doi.org/10.1007/s11356-020-09913-8]
[http://dx.doi.org/10.1007/s11356-020-09913-8]
[9]
Derakhshan, A.; Philips, E.M.; Ghassabian, A.; Santos, S.; Asimakopoulos, A.G.; Kannan, K.; Kortenkamp, A.; Jaddoe, V.W.V.; Trasande, L.; Peeters, R.P.; Korevaar, T.I.M. Association of urinary bisphenols during pregnancy with maternal, cord blood and childhood thyroid function. Environ. Int., 2021.146106160
[http://dx.doi.org/10.1016/j.envint.2020.106160]
[http://dx.doi.org/10.1016/j.envint.2020.106160]
[10]
Kwon, J.A.; Shin, B.; Kim, B. Urinary bisphenol A and thyroid function by BMI in the Korean National Environmental Health Survey (KoNEHS) 2012-2014. Chemosphere, 2020.240124918
[http://dx.doi.org/10.1016/j.chemosphere.2019.124918]
[http://dx.doi.org/10.1016/j.chemosphere.2019.124918]
[11]
Zhang, M.; Deng, Y.L.; Liu, C.; Chen, P.P.; Luo, Q.; Miao, Y.; Cui, F.P.; Wang, L.Q.; Jiang, M.; Zeng, Q. Urinary phthalate metabolite concentrations, oxidative stress and thyroid function biomarkers among patients with thyroid nodules. Environ. Pollut., 2021.272116416
[http://dx.doi.org/10.1016/j.envpol.2020.116416]
[http://dx.doi.org/10.1016/j.envpol.2020.116416]
[12]
Souter, I.; Bellavia, A.; Williams, P.L.; Korevaar, T.I.M.; Meeker, J.D.; Braun, J.M.; de Poortere, R.A.; Broeren, M.A.; Ford, J.B.; Calafat, A.M.; Chavarro, J.E.; Hauser, R.; Mínguez-Alarcón, L. Urinary Concentrations of Phthalate Metabolite Mixtures in Relation to Serum Biomarkers of Thyroid Function and Autoimmunity among Women from a Fertility Center. Environ. Health Perspect., 2020, 128(6), 67007.
[http://dx.doi.org/10.1289/EHP6740]
[http://dx.doi.org/10.1289/EHP6740]
[13]
Huang, P.C.; Chang, W.H.; Wu, M.T.; Chen, M.L.; Wang, I.J.; Shih, S.F.; Hsiung, C.A.; Liao, K.W. Characterization of phthalate exposure in relation to serum thyroid and growth hormones, and estimated daily intake levels in children exposed to phthalate-tainted products: A longitudinal cohort study. Environ. Pollut., 2020.264114648
[http://dx.doi.org/10.1016/j.envpol.2020.114648]
[http://dx.doi.org/10.1016/j.envpol.2020.114648]
[14]
Meeker, J.D.; Calafat, A.M.; Di Hauser, R. (2-ethylhexyl) phthalate metabolites may alter thyroid hormone levels in men. Environ. Health Perspect., 2007, 115(7), 1029-1034.
[http://dx.doi.org/10.1289/ehp.9852]
[http://dx.doi.org/10.1289/ehp.9852]
[15]
Skarha, J.; Mínguez-Alarcón, L.; Williams, P.L.; Korevaar, T.I.M.; de Poortere, R.A.; Broeren, M.A.C.; Ford, J.B.; Eliot, M.; Hauser, R.; Braun, J.M. Cross-sectional associations between urinary triclosan and serum thyroid function biomarker concentrations in women. Environ. Int., 2019, 122, 256-262.
[http://dx.doi.org/10.1016/j.envint.2018.11.015]
[http://dx.doi.org/10.1016/j.envint.2018.11.015]
[16]
Geens, T.; Dirtu, A.C.; Dirinck, E.; Malarvannan, G.; Van Gaal, L.; Jorens, P.G.; Covaci, A. Daily intake of bisphenol A and triclosan and their association with anthropometric data, thyroid hormones and weight loss in overweight and obese individuals. Environ. Int., 2015, 76, 98-105.
[http://dx.doi.org/10.1016/j.envint.2014.12.003]
[http://dx.doi.org/10.1016/j.envint.2014.12.003]
[17]
Koeppe, E.S.; Ferguson, K.K.; Colacino, J.A.; Meeker, J.D. Relationship between urinary triclosan and paraben concentrations and serum thyroid measures in NHANES 2007-2008. Sci. Total Environ., 2013, 445-446, 299-305.
[http://dx.doi.org/10.1016/j.scitotenv.2012.12.052]
[http://dx.doi.org/10.1016/j.scitotenv.2012.12.052]
[18]
de Souza, J.S.; Kizys, M.M.; da Conceição, R.R.; Glebocki, G.; Romano, R.M.; Ortiga-Carvalho, T.M.; Giannocco, G.; da Silva, I.D.; Dias da Silva, M.R.; Romano, M.A.; Chiamolera, M.I. Perinatal exposure to glyphosate-based herbicide alters the thyrotrophic axis and causes thyroid hormone homeostasis imbalance in male rats. Toxicology, 2017, 377, 25-37.
[http://dx.doi.org/10.1016/j.tox.2016.11.005]
[http://dx.doi.org/10.1016/j.tox.2016.11.005]
[19]
Crivellente, F.; Hart, A.; Hernandez-Jerez, A.F.; Hougaard Bennekou, S.; Pedersen, R.; Terron, A.; Wolterink, G.; Mohimont, L. Establishment of cumulative assessment groups of pesticides for their effects on the thyroid. EFSA J., 2019, 17(9)e05801
[20]
Eşmekaya, M.A.; Seyhan, N.; Ömeroğlu, S. Pulse modulated 900 MHz radiation induces hypothyroidism and apoptosis in thyroid cells: A light, electron microscopy and immunohistochemical study. Int. J. Radiat. Biol., 2010, 86(12), 1106-1116.
[http://dx.doi.org/10.3109/09553002.2010.502960]
[http://dx.doi.org/10.3109/09553002.2010.502960]
[21]
Asl, J.F.; Larijani, B.; Zakerkish, M.; Rahim, F.; Shirbandi, K.; Akbari, R. The possible global hazard of cell phone radiation on thyroid cells and hormones: A systematic review of evidences. Environ. Sci. Pollut. Res. Int., 2019, 26(18), 18017-18031.
[http://dx.doi.org/10.1007/s11356-019-05096-z]
[http://dx.doi.org/10.1007/s11356-019-05096-z]
[22]
Diaz, G.D.; Paraskeva, C.; Thomas, M.G.; Binderup, L.; Hague, A. Apoptosis is induced by the active metabolite of vitamin D3 and its analogue EB1089 in colorectal adenoma and carcinoma cells: possible implications for prevention and therapy. Cancer Res., 2000, 60(8), 2304-2312.
[23]
Scaglione-Sewell, B.A.; Bissonnette, M.; Skarosi, S.; Abraham, C.; Brasitus, T.A. A vitamin D3 analog induces a G1-phase arrest in CaCo-2 cells by inhibiting cdk2 and cdk6: roles of cyclin E, p21Waf1, and p27Kip1. Endocrinology, 2000, 141(11), 3931-3939.
[http://dx.doi.org/10.1210/endo.141.11.7782]
[http://dx.doi.org/10.1210/endo.141.11.7782]
[24]
Pawlowska, E.; Szczepanska, J.; Blasiak, J. Pro- and antioxidant effects of vitamin C in cancer in correspondence to Its dietary and pharmacological concentrations. Oxid Med Cell Longev., 2019 Dec 24, 2019, 7286737.
[http://dx.doi.org/10.1155/2019/7286737.eCollection2019.]
[http://dx.doi.org/10.1155/2019/7286737.eCollection2019.]
[25]
Yang, CS; Luo, P; Zeng, Z; Wang, H; Malafa, M; Suh, N Vitamin E and cancer prevention: Studies with different forms of tocopherols and tocotrienols. Mol. Carcinog., 2020 Apr, 59(4), 365-389.
[http://dx.doi.org/10.1002/mc.23160]
[http://dx.doi.org/10.1002/mc.23160]
[26]
Zeng, Y.; Du, Q.; Zhang, Z.; Ma, J.; Jan, L.; Wang, Y; Yang, L; Tao, N; Qin, Z Curcumin promotes cancer-associated fibroblasts apoptosis via ROS-mediated endoplasmic reticulum stress. Arch Biochem Biophys Actions, 2020, 694108613
[27]
Talib, W.H.; Alsayed, A.R.; Farhan, F.; Al Kury, L.T. Resveratrol and tumor microenvironment: mechanistic basis and therapeutic targets. Molecules, 2020 Sep 18, 25(18), 4282.
[http://dx.doi.org/10.3390/molecules25184282]
[http://dx.doi.org/10.3390/molecules25184282]
[28]
Weinberg, SE; Sun, LY; Yang, AL; Liao, J; Yang, GY Overview of inositol and inositol phosphates on chemoprevention of colitis-induced carcinogenesis. Molecules, 2021, 26, 31.
[http://dx.doi.org/10.3390/molecules26010031]
[http://dx.doi.org/10.3390/molecules26010031]
[29]
Boon-Peng, P.; Juriyati, J.; Ali, A.; Yusof, K. New insights into molecular mechanism behind anti-cancer activities of lycopene. Molecules, 2021, 26, 3888.
[http://dx.doi.org/10.3390/molecules26133888]
[http://dx.doi.org/10.3390/molecules26133888]
[30]
Kim, Y.; Kim, J. N-6 polyunsaturated fatty acids and risk of cancer: accumulating evidence from prospective studies. Nutrients, 2020 Aug 20, 12(9), 2523.
[http://dx.doi.org/10.3390/nu12092523]
[http://dx.doi.org/10.3390/nu12092523]
[31]
Devarajan, N.; Jayaraman, S.; Mahendra, J.; Venkatratnam, P.; Rajagopal, P.; Palaniappan, H.; Ganesan, S.K.; Devarajan, N. etal.Berberine. A potent chemosensitizer and chemoprotector to conventional cancer therapies. Phytother. Res., 2021 Jun, 35(6), 3059-3077.
[http://dx.doi.org/10.1002/ptr.7032]
[http://dx.doi.org/10.1002/ptr.7032]
[32]
Mali, A.V.; Padhye, S.B.; Anant, S.; Hegde, M.V.; Kadam, S.S. Anticancer and antimetastatic potential of enterolactone: Clinical, preclinical and mechanistic perspectives. Eur. J. Pharmacol., 2019 Jun 5, 852, 107-124.
[http://dx.doi.org/10.1016/j.ejphar.2019.02.022]
[http://dx.doi.org/10.1016/j.ejphar.2019.02.022]
[33]
Cutone, A.; Rosa, L.; Ianiro, G.; Lepanto, M.S.; Bonaccorsi di Patti, M.C.; Valenti, P.; Musci, G. Lactoferrin’s anti-cancer properties: safety, selectivity, and wide range of action. Biomolecules, 2020 Mar 15, 10(3), 456.
[http://dx.doi.org/10.3390/biom10030456]
[http://dx.doi.org/10.3390/biom10030456]
[34]
O’Neill, E.J.; Termini, D.; Albano, A.; Tsiani, E. Anti-cancer properties of theaflavins. Molecules, 2021, 26(4), 987.
[http://dx.doi.org/10.3390/molecules26040987]
[http://dx.doi.org/10.3390/molecules26040987]
[35]
Imran, M.; Rauf, A.; Shah, Z.A.; Saeed, F.; Imran, A.; Arshad, M.U.; Ahmad, B.; Bawazeer, S.; Atif, M.; Peters, D.G.; Mubarak, M.S. Chemo-preventive and therapeutic effect of the dietary flavonoid kaempferol: A comprehensive review. Phytother. Res., 2019 Feb, 33(2), 263-275. [doi:]
[36]
Doraiswamy, S; Jithesh, A; Mamtani, R; Abraham, A; Cheema, S Telehealth use in geriatrics care during the COVID-19 pandemic— a scoping review and evidence synthesis. Int. J. Environ. Res. Public Health, 2021, 18(4), 1755.https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7918552/[cited: 31st May 2021]10.1002/ptr.6227
[37]
Giebel, C; Harvey, Akpan, A; Chamberlain, P Reducing hospital admissions in older care home residents: a 4-year evaluation of the care home innovation programme (CHIP). BMC Health Serv Res., 2020, 20(94) https://bmchealthservres.biomedcentral.com/articles/10.1186/s12913-020-4945-9[cited: 20th June 2021]
[38]
Sepúlveda-Loyola, W.; Rodríguez-Sánchez, I.; Pérez-Rodríguez, P. etal. Impact of social isolation due to COVID-19 on health in older people: mental and physical effects and recommendations. J. Nutr. Health Aging, 2020, 1 Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514226/ [cited: 2nd July 2021]