Generic placeholder image

Recent Advances in Electrical & Electronic Engineering

Editor-in-Chief

ISSN (Print): 2352-0965
ISSN (Online): 2352-0973

Research Article

Optimization of Holding Force for a Climbing Robot Based on a Differential Evolutionary Algorithm

Author(s): Rujeko Masike, Karamjit Kaur*, Rajesh Arora and Somalapura Nagappa Shridhara

Volume 17, Issue 1, 2024

Published on: 09 June, 2023

Page: [54 - 59] Pages: 6

DOI: 10.2174/2352096516666230427141327

Price: $65

conference banner
Abstract

Background: The advancements in robotic technology have completely revolutionized day-to-day life. In industrial applications, the implementation of robotics is quite advantageous as it may help in performing dangerous tasks like climbing high walls, working in a high-temperature environment, high radiation exposure conditions etc.

Methods: This paper presents the design and development of a wall-climbing robot for dam wall inspection using an adaptive aerodynamic adhesion technique. The optimization of a robot design is done using a differential evolutionary algorithm.

Results: In the proposed model, the principle of Bernoulli adhesion is used for designing the suction pad. The optimization of various variables is done using a differential evolutionary algorithm to improve the efficiency and effectiveness of the wall climbing robot adhesion.

Conclusion: The results of the proposed system show that the approach can find an optimal holding force and can be effectively used for applications like dam wall climbing for inspection.

Graphical Abstract

[1]
G. Cui, K. Liang, J. Guo, H. Li, and D. Gu, "Design of a climbing robot based on electrically controllable adhesion technology", In International Conference on Solid State and Materials, vol. 22, Macao, China, 2012, p. 90
[2]
K.A. Daltorio, S. Gorb, A. Peressadko, A.D. Horchler, T.E. Wei, R.E. Ritzmann, and R.D. Quinn, "Microstructured polymer adhesive feet for climbing robots", MRS Bull., vol. 32, no. 6, pp. 504-508, 2007.
[http://dx.doi.org/10.1557/mrs2007.85]
[3]
S. Kim, and M. Spenko, "Whole body adhesion: Hierarchical, directional and distributed control of adhesive forces for climbing robot", In IEEE International Conference on Robotics and Automation, Roma, Italy, 2007, pp. 1268-1273
[http://dx.doi.org/10.1109/ROBOT.2007.363159]
[4]
F. Bonaccorso, S. D’urso, D. Longo, and G. Muscato, "Finite element modelling of the vortex based climbing robot", Conference Proceedings of the 16th International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Sydney, Australia, 2013.
[5]
P. Jain, "Dr. M. J. Nigam, “Design of a model reference adaptive controller using modified mit rule for a second order system”", Adv. Electron. Electr. Engin., vol. 3, no. 4, pp. 477-484, 2013.
[6]
J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer, "Self-adapting control parameters in differential evolution: A Comparative Study on numerical benchmark problems", IEEE Trans. Evol. Comput., vol. 10, no. 6, pp. 646-657, 2006.
[http://dx.doi.org/10.1109/TEVC.2006.872133]
[7]
H. Kazerooni, "Design and analysis of pneumatic force generators for mobile robotic systems", IEEE/ASME Transactions on. Mechatronics,., vol. 10, no. 4, pp. 411-418, 2005.
[http://dx.doi.org/10.1109/TMECH.2005.852394]
[8]
J. Xiao, and A. Calle, "Modular wall climbing robots with transition capability", In IEEE International Conference on Robotics and Biomimetics, ROBIO, Shatin, China, 2005, pp. 246-250
[9]
Z. Qian, Y. Zhao, and Z. Fu, "Development of wall-climbing robots with sliding suction cups", In 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China, 2006, pp. 3417-3422
[http://dx.doi.org/ 10.1109/IROS.2006.282579]
[10]
T. Zhu, R. Liu, X.D. Wang, and K. Wang, "Principle and application of vibrating suction method", In Proceedings of the IEEE International Conference on Robotics and Biomimetics, Kunming, China, 2006, pp. 491-495
[http://dx.doi.org/ 10.1109/ROBIO.2006.340241]
[11]
G.P. Slota, M.L. Latash, and V.M. Zatsiorsky, "Grip forces during object manipulation: Experiment, mathematical model, and validation", Exp. Brain Res., vol. 213, no. 1, pp. 125-139, 2011.
[http://dx.doi.org/10.1007/s00221-011-2784-y] [PMID: 21735245]
[12]
X.Q. Chen, M. Wager, M. Nayyerloo, W. Wang, and J.G. Chase, "A novel wall climbing robot based on bernoulli effect", In IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications, Beijing, China, 2008, pp. 210-215
[13]
O. Unver, A. Uneri, A. Aydemir, and M. Sitti, "Geckobot: A Gecko Inspired Climbing Robot using Elastomer Adhesives", In Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, FL, USA, 2006, p. 2329
[http://dx.doi.org/10.1109/ROBOT.2006.1642050]
[14]
H. Qi, G.M. Bone, and Y. Zhang, "Position Control of Pneumatic Actuators Using Three-Mode Discrete-Valued Model Predictive Control", Actuators, vol. 8, p. 56, 2019.
[15]
J.E. Bobrow, and B.W. McDonell, "Modeling, identification, and control of a pneumatically actuated, force controllable robot", IEEE Trans. Robot. Autom., vol. 14, no. 5, pp. 732-742, 1998.
[http://dx.doi.org/10.1109/70.720349]
[16]
V.G. Chashchukhin, "Fixing device aerodynamics of the wall climbing robot", In 23rd International Conference on Climbing and Walking Robots and the Support Technologies for Mobile Machines, Moscow, Russian Federation, 2020, p. 75
[17]
Kaige. Shi, and Xin. Li, "Vacuum suction unit based on the zero pressure difference method", Physic. Fluid, vol. 32, no. 1, p. 017104, 2020.
[18]
A. Papadimitrou, G. Andrikopoulos, A. Brusell, and G. Nikolakopoulos, "On adhesion modelling and control of a vortex actuator for climbing robots", In IEEE International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 2019, pp. 571-576
[19]
D. Schmidt, and K. Berns, "Climbing robots for maintenance and inspections of vertical structures-A survey of design aspects and technologies", Robot. Auton. Syst., vol. 61, no. 12, pp. 1288-1305, 2013.
[http://dx.doi.org/10.1016/j.robot.2013.09.002]
[20]
R. Zhang, and J.C. Latombe, "Capuchin: A free-climbing robot", Int. J. Adv. Robot. Syst., vol. 10, no. 4, p. 194, 2013.
[http://dx.doi.org/10.5772/56469]
[21]
T. Guo, Z.D. Deng, X. Liu, D. Song, and H. Yang, "Development of a new hull adsorptive underwater climbing robot using the Bernoulli negative pressure effect", Ocean Eng., vol. 243, p. 110306, 2022.
[http://dx.doi.org/10.1016/j.oceaneng.2021.110306]
[22]
B. Gao, H. Guan, W. Tang, W. Han, and S. Xue, "Research on position recognition and control method of single-leg joint of hydraulic quadruped robot", Recent Adv. Electr. Electron. Eng., vol. 14, no. 8, pp. 802-811, 2021.
[http://dx.doi.org/10.2174/2352096514666211027150816]
[23]
F. Hutter, H.H. Hoos, and K. Leyton-Brown, "Sequential modelbased optimization for general algorithm configuration", Lect. Notes Comput. Sci., vol. 668, pp. 507–-523, 2011.
[http://dx.doi.org/10.1007/978-3-642-25566-3_40]
[24]
O. Hagendorf, T. Pawletta, and R. Larek, "An approach to simulation-based parameter and structure optimization of MATLAB/Simulink models using evolutionary algorithms", Simulation, vol. 89, no. 9, pp. 1115-1127, 2013.
[http://dx.doi.org/10.1177/0037549713500066]
[25]
R. Sarker, J. Kamruzzaman, and C. Newton, evolutionary optimization (evopt): a brief review and analysis", Int. J. Comput. Intell. Appl., vol. 3. 2003, no. 4, pp. 311-330.
[http://dx.doi.org/10.1142/S1469026803001051]
[26]
E. Elbeltagi, T. Hegazy, and D. Grierson, "Comparison among five evolutionary-based optimization algorithms", Adv. Eng. Inform., vol. 19, no. 1, pp. 43-53, 2005.
[http://dx.doi.org/10.1016/j.aei.2005.01.004]
[27]
O. Hstrka, "A. Kuˇcerov’a, M. Lepˇs, J. Zeman, “A competitive comparison of different types of evolutionary algorithms”", Comput. Struc., vol. 81, pp. 8-19, 2009.
[28]
E. Haasdijk, N. Bredeche, and A.E. Eiben, "Combining environment-driven adaptation and task-driven optimisation in evolutionary robotics", PLoS One, vol. 9, no. 6, p. e98466, 2014.
[http://dx.doi.org/10.1371/journal.pone.0098466] [PMID: 24901702]
[29]
A.L. da Silva, S.A. da Sliva, C.J. Coelho, and J. van Baalen, "An evolutionary algorithm for autonomous robot navigation", Procedia Comput. Sci., vol. 80, pp. 2261-2265, 2016.
[30]
Noel Rodriguez Maya,, and Juan.J. Flores, "Performance comparison of evolutionary algorithms for university course timetabling problem", Comp. Sist, vol. 20, no. 4, 2016.
[31]
S.V. Konstantinov, and A.A. Baryshnikov, "“Comparative analysis of evolutionary algorithms for the problem of parametric optimization of PID controllers”, 7th Int. Symposium Intelligent Syst", Procedia Comput. Sci., vol. 103, no. C, pp. 100-107, 2016.
[32]
S. Baressi Šegota, N. Anđelić, M. Šercer, and H. Meštrić, "Dynamics modeling of industrial robotic manipulators: A machine learning approach based on synthetic data", Mathematics, vol. 10, no. 7, p. 1174, 2022.
[http://dx.doi.org/10.3390/math10071174]
[33]
D.B.M.M. Fontes, J.F. Goncalves, and F.A.C.C. Fontes, "An evolutionary approach to the maximum edge weight clique problem", Recent Adv. Electr. Electron. Eng., vol. 11, no. 3, pp. 260-266, 2018.
[http://dx.doi.org/10.2174/2352096511666180214105643]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy