Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

General Review Article

Recent Advancement in Multicomponent Synthesis of Fused Coumarin Derivatives

Author(s): Vinita Yadav, Ajay Thakur, Ruchi Bharti*, Monika Verma and Renu Sharma

Volume 21, Issue 3, 2024

Published on: 07 July, 2023

Page: [303 - 330] Pages: 28

DOI: 10.2174/1570179420666230427110019

Price: $65

Abstract

The synthesis of coumarin derivatives has been an essential topic since its discovery in 1820. In bioactive compounds, the coumarin moiety serves as a backbone, as many such bioactive compounds with the coumarin moiety play a significant role in their bioactivities. Given this moiety's relevance, several researchers are developing fused-coumarin derivatives to create new drugs. Mostly the approach done for this purpose was a multicomponent reaction based. Over the years, the multicomponent reaction has gained enormous popularity, and this approach has evolved as a replacement for conventional synthetic methods. Because of all these perspectives, we have reported the various fused-coumarin derivatives synthesized using multicomponent reactions in recent years.

Graphical Abstract

[1]
Musa, M.A.; Latinwo, L.M.; Virgile, C.; Badisa, V.L.D.; Gbadebo, A.J. Synthesis and in vitro evaluation of 3-(4-nitrophenyl)coumarin derivatives in tumor cell lines. Bioorg. Chem., 2015, 58, 96-103.
[http://dx.doi.org/10.1016/j.bioorg.2014.11.009] [PMID: 25553414]
[2]
Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues in medicinal chemistry: Occurrence, synthesis and biological activity. Curr. Med. Chem., 2005, 12(8), 887-916.
[http://dx.doi.org/10.2174/0929867053507315] [PMID: 15853704]
[3]
Hosseinzadeh, Z.; Ramazani, A.; Razzaghi-asl, N. Plants of the genus heracleum as a source of coumarin and furanocoumarin. Journal of Chemical Reviews, 2019, 1(2), 78-98.
[http://dx.doi.org/10.33945/SAMI/JCR.2019.1.7898]
[4]
Lacy, A.; O’Kennedy, R. Studies on coumarins and coumarin-related compounds to determine their therapeutic role in the treatment of cancer. Curr. Pharm. Des., 2004, 10(30), 3797-3811.
[http://dx.doi.org/10.2174/1381612043382693] [PMID: 15579072]
[5]
Peng, X-M.; Damu, G.L.; Zhou, C. Current developments of coumarin compounds in medicinal chemistry. Curr. Pharm. Des., 2013, 19(21), 3884-3930.
[http://dx.doi.org/10.2174/1381612811319210013] [PMID: 23438968]
[6]
Egan, D.; O’kennedy, R.; Moran, E.; Cox, D.; Prosser, E.; Thornes, R.D. The pharmacology, metabolism, analysis, and applications of coumarin and coumarin-related compounds. Drug Metab. Rev., 1990, 22(5), 503-529.
[http://dx.doi.org/10.3109/03602539008991449] [PMID: 2078993]
[7]
Tolba, M.S.; ul-Malik, M.A.A.; El-Dean, A.M.K.; Geies, A.A.; Radwan, S.M.; Zaki, R.M.; Sayed, M.; Mohamed, S.K.; Abdel-Raheem, S.A.A. An overview on synthesis and reactions of coumarin based compounds. Current Chemistry Letters, 2022, 11(1), 29-42.
[http://dx.doi.org/10.5267/j.ccl.2021.9.007]
[8]
Garg, S.S.; Gupta, J.; Sharma, S.; Sahu, D. An insight into the therapeutic applications of coumarin compounds and their mechanisms of action. Eur. J. Pharm. Sci., 2020, 152, 105424.
[http://dx.doi.org/10.1016/j.ejps.2020.105424] [PMID: 32534193]
[9]
Cao, D.; Liu, Z.; Verwilst, P.; Koo, S.; Jangjili, P.; Kim, J.S.; Lin, W. Coumarin-based small-molecule fluorescent chemosensors. Chem. Rev., 2019, 119(18), 10403-10519.
[http://dx.doi.org/10.1021/acs.chemrev.9b00145] [PMID: 31314507]
[10]
Sun, X.; Liu, T.; Sun, J.; Wang, X. Synthesis and application of coumarin fluorescence probes. RSC Advances, 2020, 10(18), 10826-10847.
[http://dx.doi.org/10.1039/C9RA10290F] [PMID: 35492912]
[11]
Pereira, T.M.; Franco, D.P.; Vitorio, F.; Kummerle, A.E. Coumarin compounds in medicinal chemistry: Some important examples from the last years. Curr. Top. Med. Chem., 2018, 18(2), 124-148.
[http://dx.doi.org/10.2174/1568026618666180329115523] [PMID: 29595110]
[12]
Emami, S.; Dadashpour, S. Current developments of coumarin-based anti-cancer agents in medicinal chemistry. Eur. J. Med. Chem., 2015, 102, 611-630.
[http://dx.doi.org/10.1016/j.ejmech.2015.08.033] [PMID: 26318068]
[13]
Sashidhara, K.V.; Kumar, A.; Chatterjee, M.; Rao, K.B.; Singh, S.; Verma, A.K.; Palit, G. Discovery and synthesis of novel 3-phenylcoumarin derivatives as antidepressant agents. Bioorg. Med. Chem. Lett., 2011, 21(7), 1937-1941.
[http://dx.doi.org/10.1016/j.bmcl.2011.02.040] [PMID: 21377878]
[14]
Abdel-Latif, N.A. Synthesis and antidepressant activity of some new coumarin derivatives. Sci. Pharm., 2005, 73(4), 193-216.
[http://dx.doi.org/10.3797/scipharm.aut-05-15]
[15]
Al-Majedy, Y.K.; Kadhum, A.A.H.; Al-Amiery, A.A.; Mohamad, A.B. Coumarins: The antimicrobial agents. Systematic Reviews in Pharmacy, 2017, 8(1), 62-70.
[http://dx.doi.org/10.5530/srp.2017.1.11]
[16]
Kawase, M.; Varu, B.; Shah, A.; Motohashi, N.; Tani, S.; Saito, S.; Debnath, S.; Mahapatra, S.; Dastidar, S.; Chakrabarty, A. Antimicrobial activity of new coumarin derivatives. Arzneimittelforschung, 2011, 51(1), 67-71.
[http://dx.doi.org/10.1055/s-0031-1300004] [PMID: 11215328]
[17]
Widelski, J.; Luca, S.; Skiba, A.; Chinou, I.; Marcourt, L.; Wolfender, J.L.; Skalicka-Wozniak, K. Isolation and antimicrobial activity of coumarin derivatives from fruits of Peucedanum luxurians Tamamsch. Molecules, 2018, 23(5), 1222.
[http://dx.doi.org/10.3390/molecules23051222] [PMID: 29783770]
[18]
Al-Majedy, Y.; Al-Amiery, A.; Kadhum, A.A.; BakarMohamad, A. Antioxidant activity of coumarins. Systematic Reviews in Pharmacy, 2016, 8(1), 24-30.
[http://dx.doi.org/10.5530/srp.2017.1.6]
[19]
Kostova, I.; Bhatia, S.; Grigorov, P.; Balkansky, S.; Parmar, V.S.; Prasad, A.K.; Saso, L. Coumarins as antioxidants. Curr. Med. Chem., 2011, 18(25), 3929-3951.
[http://dx.doi.org/10.2174/092986711803414395] [PMID: 21824098]
[20]
Bansal, Y.; Sethi, P.; Bansal, G. Coumarin: A potential nucleus for anti-inflammatory molecules. Med. Chem. Res., 2013, 22(7), 3049-3060.
[http://dx.doi.org/10.1007/s00044-012-0321-6]
[21]
Di Stasi, L.C. Coumarin derivatives in inflammatory bowel disease. Molecules, 2021, 26(2), 422.
[http://dx.doi.org/10.3390/molecules26020422] [PMID: 33467396]
[22]
Fylaktakidou, K.; Hadjipavlou-Litina, D.; Litinas, K.; Nicolaides, D. Natural and synthetic coumarin derivatives with anti-inflammatory/antioxidant activities. Curr. Pharm. Des., 2004, 10(30), 3813-3833.
[http://dx.doi.org/10.2174/1381612043382710] [PMID: 15579073]
[23]
Cheriyan, B.V., Sr; Kadhirvelu, P., Sr; Nadipelly, J., Jr; Shanmugasundaram, J.; Sayeli, V., Sr; Subramanian, V., Sr Anti-nociceptive Effect of 7-methoxy Coumarin from Eupatorium Triplinerve vahl (Asteraceae). Pharmacogn. Mag., 2017, 13(49), 81-84.
[http://dx.doi.org/10.4103/0973-1296.197650] [PMID: 28216887]
[24]
De Almeida Barros, T.A.; De Freitas, L.A.R.; Filho, J.M.B.; Nunes, X.P.; Giulietti, A.M.; De Souza, G.E.; Dos Santos, R.R.; Soares, M.B.P.; Villarreal, C.F. Antinociceptive and anti-inflammatory properties of 7-hydroxycoumarin in experimental animal models: potential therapeutic for the control of inflammatory chronic pain. J. Pharm. Pharmacol., 2010, 62(2), 205-213.
[http://dx.doi.org/10.1211/jpp.62.02.0008] [PMID: 20487200]
[25]
Musa, M.; Cooperwood, J.; Khan, M.O. A review of coumarin derivatives in pharmacotherapy of breast cancer. Curr. Med. Chem., 2008, 15(26), 2664-2679.
[http://dx.doi.org/10.2174/092986708786242877] [PMID: 18991629]
[26]
Kaur, M.; Kohli, S.; Sandhu, S.; Bansal, Y.; Bansal, G. Coumarin: A promising scaffold for anticancer agents. Anticancer Agents in Medicinal Chemistry, 2015, 15(8), 1032-1048.
[27]
Venkata Sairam, K.; Gurupadayya, B.M.; Chandan, R.S.; Nagesha, D.K.; Vishwanathan, B. A review on chemical profile of coumarins and their therapeutic role in the treatment of cancer. Curr. Drug Deliv., 2016, 13(2), 186-201.
[http://dx.doi.org/10.2174/1567201812666150702102800] [PMID: 26135671]
[28]
Wang, J.; Fu, Y.; Wei, Z.; He, X.; Shi, M.; Kou, J.; Zhou, E.; Liu, W.; Yang, Z.; Guo, C. Anti-asthmatic activity of osthole in an ovalbumin-induced asthma murine model. Respir. Physiol. Neurobiol., 2017, 239, 64-69.
[http://dx.doi.org/10.1016/j.resp.2017.01.011] [PMID: 28143779]
[29]
Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke, S.L.; Lee, K.H. Recent progress in the development of coumarin derivatives as potent anti-HIV agents. Med. Res. Rev., 2003, 23(3), 322-345.
[http://dx.doi.org/10.1002/med.10034] [PMID: 12647313]
[30]
Xu, Z.; Chen, Q.; Zhang, Y.; Liang, C. Coumarin-based derivatives with potential anti-HIV activity. Fitoterapia, 2021, 150, 104863.
[http://dx.doi.org/10.1016/j.fitote.2021.104863] [PMID: 33582266]
[31]
Lei, L.; Xue, Y.; Liu, Z.; Peng, S.; He, Y.; Zhang, Y.; Fang, R.; Wang, J.; Luo, Z.; Yao, G.; Zhang, J.; Zhang, G.; Song, H.; Zhang, Y. Coumarin derivatives from Ainsliaea fragrans and their anticoagulant activity. Sci. Rep., 2015, 5(1), 13544.
[http://dx.doi.org/10.1038/srep13544] [PMID: 26315062]
[32]
Kennedy, R.O.; Thornes, R.D. Suggested modes of action of coumarins and some comments on their significance; Coumarins Biol. Appl. Mode Action, 1997.
[33]
Green, G.R.; Evans, J.M.; Vong, A.K.; Katritzky, A.R.; Rees, C.W.; Scriven, E.F. Pyrans and their benzo derivatives synthesis. Compr. Heterocycl. Chem. II, 1995, 5, 469.
[34]
Zahradnik, M. The production and application of fluorescent brightening agents; John Wiley & Sons: Chichester, 1992.
[35]
Hepworth, J.D.; Gabbutt, C.D.; Heron, B.M.V. Compr. Heterocycl. Chem. II; Pergamon: Oxford, 1996, 5, pp. 301-350.
[36]
Bhatia, R.; Pathania, S.; Singh, V.; Rawal, R.K. Metal-catalyzed synthetic strategies toward coumarin derivatives. Chem. Heterocycl. Compd., 2018, 54(3), 280-291.
[http://dx.doi.org/10.1007/s10593-018-2262-6]
[37]
Vijay Avin, B.R.; Thirusangu, P.; Lakshmi Ranganatha, V.; Firdouse, A.; Prabhakar, B.T.; Khanum, S.A. Synthesis and tumor inhibitory activity of novel coumarin analogs targeting angiogenesis and apoptosis. Eur. J. Med. Chem., 2014, 75, 211-221.
[http://dx.doi.org/10.1016/j.ejmech.2014.01.050] [PMID: 24534537]
[38]
Upadhyay, P.K.; Kumar, P. A novel synthesis of coumarins employing triphenyl(α-carboxymethylene)phosphorane imidazolide as a C-2 synthon. Tetrahedron Lett., 2009, 50(2), 236-238.
[http://dx.doi.org/10.1016/j.tetlet.2008.10.133]
[39]
Von Pechmann, H.; Duisberg, C. On the compounds of phenols with acetoacetic ether. Ber. Dtsch. Chem. Ges., 1883, 16(2), 2119-2128.
[http://dx.doi.org/10.1002/cber.188301602117]
[40]
Pechmann, V.; Neue Bildungsweise Der Cumarine, H. Synthesis of Daphnetin. I. Ber. Dtsch. Chem. Ges., 1884, 17(1), 929-936.
[http://dx.doi.org/10.1002/cber.188401701248]
[41]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[42]
Singh, M.S.; Chowdhury, S. Recent developments in solvent-free multicomponent reactions: A perfect synergy for eco-compatible organic synthesis. RSC Advances, 2012, 2(11), 4547-4592.
[http://dx.doi.org/10.1039/c2ra01056a]
[43]
Kerru, N.; Gummidi, L.; Maddila, S.; Jonnalagadda, S. A review of recent advances in the green synthesis of azole- and pyran-based fused heterocycles using MCRs and sustainable catalysts. Curr. Org. Chem., 2021, 25(1), 4-39.
[http://dx.doi.org/10.2174/18755348MTEwiNzgw2]
[44]
Elnagdi, M.H.; Moustafa, M.S.; Al-Mousawi, S.M.; Mekheimer, R.A.; Sadek, K.U. Recent developments in utility of green multi-component reactions for the efficient synthesis of polysubstituted pyrans, thiopyrans, pyridines, and pyrazoles. Mol. Divers., 2015, 19(3), 625-651.
[http://dx.doi.org/10.1007/s11030-015-9594-2] [PMID: 25894364]
[45]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[46]
Verma, M.; Thakur, A.; Sharma, R.; Bharti, R. Recent advancement in the one-pot synthesis of the tri-substituted methanes (TRSMs) and their biological applications. Curr. Org. Synth., 2022, 19(1), 86-114.
[http://dx.doi.org/10.2174/1570179418666210910105342] [PMID: 34515005]
[47]
Thakur, A.; Verma, M.; Bharti, R.; Sharma, R. Oxazole and isoxazole: From one-pot synthesis to medical applications. Tetrahedron, 2022, 119, 132813.
[http://dx.doi.org/10.1016/j.tet.2022.132813]
[48]
Thakur, A.; Verma, M.; Setia, P. DFT analysis and in vitro studies of isoxazole derivatives as potent antioxidant and antibacterial agents synthesized via one-pot methodology. Res. Chem. Intermed., 2022.
[http://dx.doi.org/10.1007/s11164-022-04910-7]
[49]
Thakur, A.; Bharti, R.; Sharma, R. Effect of methods and catalysts on the one-pot synthesis of tetrahydropyridine derivatives: A mini-review. Orbital: Electron. J. Chem, 2021, 335-349.
[http://dx.doi.org/10.17807/orbital.v13i4.1585]
[50]
Thakur, A.; Verma, M.; Bharti, R.; Sharma, R. Recent advances in utilization of deep eutectic solvents: An environmentally friendly pathway for multi-component synthesis. Curr. Org. Chem., 2022, 26(3), 299-323.
[http://dx.doi.org/10.2174/1385272826666220126165925]
[51]
Verma, M.; Thakur, A.; Kapil, S.; Sharma, R.; Sharma, A.; Bharti, R. Antibacterial and antioxidant assay of novel heteroaryl-substituted methane derivatives synthesized via ceric ammonium nitrate (CAN) catalyzed one-pot green approach. Mol. Divers., 2022.
[http://dx.doi.org/10.1007/s11030-022-10461-1] [PMID: 35781657]
[52]
Mamaghani, M.; Hossein Nia, R. A review on the recent multicomponent synthesis of pyranopyrazoles. Polycycl. Aromat. Compd., 2021, 41(2), 223-291.
[http://dx.doi.org/10.1080/10406638.2019.1584576]
[53]
Graebin, C.S.; Ribeiro, F.V.; Rogério, K.R.; Kümmerle, A.E. Multicomponent reactions for the synthesis of bioactive compounds: A review. Curr. Org. Synth., 2019, 16(6), 855-899.
[http://dx.doi.org/10.2174/1570179416666190718153703] [PMID: 31984910]
[54]
Ismael, R.; Mustafa, Y.; Al-Qazaz, H. Coumarin-based products: Their biodiversity and pharmacology. Iraqi Journal of Pharmacy, 2022, 18(2), 162-179.
[http://dx.doi.org/10.33899/iphr.2022.170405]
[55]
Murray, R.D.H. “The Naturally Occurring Coumarins.” Fortschritte Der Chemie Organischer Naturstoffe. Prog. Chem. Org. Nat. Prod., 2002, 1-619.
[http://dx.doi.org/10.1007/978-3-7091-6172-21]
[56]
Kostova, I. Synthetic and natural coumarins as cytotoxic agents. Curr. Med. Chem. Anticancer Agents, 2005, 5(1), 29-46.
[http://dx.doi.org/10.2174/1568011053352550] [PMID: 15720259]
[57]
Mustafa, Y.F.; Bashir, M.K.; Oglah, M.K.; Khalil, R.R.; Mohammed, E.T. Bioactivity of some natural and semisynthetic coumarin derived compounds. Neuroquantology, 2021, 19(6), 129-138.
[http://dx.doi.org/10.14704/nq.2021.19.6.NQ21078]
[58]
Smyth, T.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. Int. J. Antimicrob. Agents, 2009, 33(5), 421-426.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.022] [PMID: 19155158]
[59]
Venugopala, K.N.; Rashmi, V.; Odhav, B. Review on natural coumarin lead compounds for their pharmacological activity. BioMed Res. Int., 2013, 2013, 1-14.
[http://dx.doi.org/10.1155/2013/963248] [PMID: 23586066]
[60]
Jebir, R.; Mustafa, Y. Natural coumarin-lead compounds: A review of their medicinal potentials. Iraqi Journal of Pharmacy, 2022, 18(2), 139-161.
[http://dx.doi.org/10.33899/iphr.2022.170404]
[61]
Sarker, S.D.; Nahar, L. Progress in the chemistry of naturally occurring coumarins. Prog. Chem. Org. Nat. Prod., 2017, 106, 241-304.
[http://dx.doi.org/10.1007/978-3-319-59542-9_3] [PMID: 28762091]
[62]
Iranshahi, M.; Askari, M.; Sahebkar, A.; Hadjipavlou-Litina, D. Evaluation of antioxidant, antiinflammatory and lipoxygenase inhibitory activities of the prenylated Coumarin Umbelliprenin. DARU J. Pharma. Sci., 2009, 17(2), 99-103.
[63]
Fois, B.; Distinto, S.; Meleddu, R.; Deplano, S.; Maccioni, E.; Floris, C.; Rosa, A.; Nieddu, M.; Caboni, P.; Sissi, C.; Angeli, A.; Supuran, C.T.; Cottiglia, F. Coumarins from Magydaris pastinacea as inhibitors of the tumour-associated carbonic anhydrases IX and XII: isolation, biological studies and in silico evaluation. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 539-548.
[http://dx.doi.org/10.1080/14756366.2020.1713114] [PMID: 31948300]
[64]
Mustafa, Y. F.; Najem, M. A.; Tawffiq, Z. S. Coumarins from creston apple seeds: Isolation, chemical modification, and cytotoxicity study. J. App. Pharma. Sci., 2018, 8(8), 049-056.
[http://dx.doi.org/10.7324/JAPS.2018.8808]
[65]
Tillekeratne, L.M.V.; De Silva, E.D.; Mahindaratne, M.P.D.; Schmitz, F.J.; Gunasekera, S.P.; Alderslade, P. Xanthyletin and Xanthoxyletin from a Gorgonian, Echinogorgia sp. J. Nat. Prod., 1989, 52(6), 1303-1304.
[http://dx.doi.org/10.1021/np50066a017]
[66]
Lee, J.H.; Lee, B.W.; Kim, J.H.; Jeong, T.S.; Kim, M.J.; Lee, W.S.; Park, K.H. LDL-antioxidant pterocarpans from roots of Glycine max (L.). Merr. J. Agric. Food Chem., 2006, 54(6), 2057-2063.
[http://dx.doi.org/10.1021/jf052431c] [PMID: 16536575]
[67]
Livingston, A.L.; Witt, S.C.; Lundin, R.E.; Bickoff, E.M. Medicagol, a new coumestan from Alfalfa. J. Org. Chem., 1965, 30(7), 2353-2355.
[http://dx.doi.org/10.1021/jo01018a056]
[68]
Kumar, V.; Sharma, K.; Ahmed, B.; Al-Abbasi, F.A.; Anwar, F.; Verma, A. Deconvoluting the dual hypoglycemic effect of wedelolactone isolated from Wedelia calendulacea : Investigation via experimental validation and molecular docking. RSC Advances, 2018, 8(32), 18180-18196.
[http://dx.doi.org/10.1039/C7RA12568B] [PMID: 35542112]
[69]
Urban, S.; Capon, R.J. Lamellarin-S: A New Aromatic Metabolite From an Australian Tunicate, Didemnum sp. Aust. J. Chem., 1996, 49(6), 711-713.
[http://dx.doi.org/10.1071/CH9960711]
[70]
Ranjith, H.; Dharmaratne, W.; Sotheeswaran, S.; Balasubramaniam, S.; Waight, E.S. Triterpenoids and coumarins from the leaves of calophyllum cordato-oblongum. Phytochemistry, 1985, 24(7), 1553-1556.
[http://dx.doi.org/10.1016/S0031-9422(00)81064-X]
[71]
Patil, A.D.; Freyer, A.J.; Eggleston, D.S.; Haltiwanger, R.C.; Bean, M.F.; Taylor, P.B.; Caranfa, M.J.; Breen, A.L.; Bartus, H.R.; Bartus, H.R.; Johnson, R.K.; Hertzberg, R.P.; Westley, J.W. The inophyllums, novel inhibitors of HIV-1 reverse transcriptase isolated from the Malaysian tree, Calophyllum inophyllum Linn. J. Med. Chem., 1993, 36(26), 4131-4138.
[http://dx.doi.org/10.1021/jm00078a001]
[72]
Fujimaki, T.; Saiki, S.; Tashiro, E.; Yamada, D.; Kitagawa, M.; Hattori, N.; Imoto, M. Identification of licopyranocoumarin and glycyrurol from herbal medicines as neuroprotective compounds for Parkinson’s disease. PLoS One, 2014, 9(6), e100395.
[http://dx.doi.org/10.1371/journal.pone.0100395] [PMID: 24960051]
[73]
Shin, E.M.; Zhou, H.Y.; Guo, L.Y.; Kim, J.A.; Lee, S.H.; Merfort, I.; Kang, S.S.; Kim, H.S.; Kim, S.; Kim, Y.S. Anti-inflammatory effects of glycyrol isolated from Glycyrrhiza uralensis in LPS-stimulated RAW264.7 macrophages. Int. Immunopharmacol., 2008, 8(11), 1524-1532.
[http://dx.doi.org/10.1016/j.intimp.2008.06.008] [PMID: 18621150]
[74]
Suthiwong, J.; Sriphana, U.; Thongsri, Y.; Promsuwan, P.; Prariyachatigul, C.; Yenjai, C. Coumarinoids from the fruits of Micromelum falcatum. Fitoterapia, 2014, 94, 134-141.
[http://dx.doi.org/10.1016/j.fitote.2014.02.004] [PMID: 24561007]
[75]
Rashid, M-U.; Ali, S.; Alamzeb, M.; Igoli, J.; Clements, C.; Shah, S.Q.; Ferro, V.A.; Gray, A.I.; Khan, M.R. Phytochemical and antitrypanosomal investigation of the fractions and compounds isolated from Artemisia elegantissima. Pharm. Biol., 2014, 52(8), 983-987.
[http://dx.doi.org/10.3109/13880209.2013.874534] [PMID: 24597622]
[76]
Yim, S-H.; Jung, D-W.; Williams, D.R.; Geckeler, K.E.; Kim, K.K.; Lee, I-S.; Kim, H.J. Anti-proliferative effects of β-Cyclodextrin inclusion complexes with coumarinolignans from acer mono. Korean J. Pharmacogn., 2015, 46(2), 133-139.
[77]
Erwin, ; Noor, A.; Soekamto, N.H.; van Altena, I.; Syah, Y.M. Waltherione C and cleomiscosin from Melochia umbellata var. Degrabrata K. (Malvaceae), biosynthetic and chemotaxonomic significance. Biochem. Syst. Ecol., 2014, 55, 358-361.
[http://dx.doi.org/10.1016/j.bse.2014.03.020]
[78]
Mattia, D.D.; Manikonda, K. Morbidity and mortality weekly report surveillance for foodborne disease outbreaks — United States Centers for Disease Control and Prevention MMWR Editorial and Production Staff MMWR Editorial Board. Surveill. Summ. MMWR, 2018, 6262(2), 1-11.
[http://dx.doi.org/10.15585/mmwr.ss6710a1] [PMID: 29389917]
[79]
Lahariya, C.; Thakur, A.; Dudeja, N. Monkeypox Disease Outbreak (2022): Epidemiology, challenges, and the way forward. Indian Pediatr., 2022, 59(8), 636-642.
[http://dx.doi.org/10.1007/s13312-022-2578-2] [PMID: 35762024]
[80]
Ali, M.G.; Ahmad, M.O.; Husain, S.N. Spread of Corona Virus Disease (COVID – 19) from an outbreak to pandemic in the year 2020. Asian Journal of Research in Infectious Diseases, 2020, 3(4), 37-51.
[http://dx.doi.org/10.9734/ajrid/2020/v3i430135]
[81]
Dixon, M.G.; Schafer, I.J. Ebola viral disease outbreak--West Africa, 2014. MMWR Morb. Mortal. Wkly. Rep., 2014, 63(25), 548-551.
[PMID: 24964881]
[82]
Al-Omari, A.; Rabaan, A.A.; Salih, S.; Al-Tawfiq, J.A.; Memish, Z.A. MERS coronavirus outbreak: Implications for emerging viral infections. Diagn. Microbiol. Infect. Dis., 2019, 93(3), 265-285.
[http://dx.doi.org/10.1016/j.diagmicrobio.2018.10.011] [PMID: 30413355]
[83]
Josseran, L.; Paquet, C.; Zehgnoun, A.; Caillere, N.; Le Tertre, A.; Solet, J.L.; Ledrans, M. Chikungunya disease outbreak, Reunion Island. Emerg. Infect. Dis., 2006, 12(12), 1994-1995.
[http://dx.doi.org/10.3201/eid1212.060710] [PMID: 17354339]
[84]
Possas, C.; Lourenço-de-Oliveira, R.; Tauil, P.L.; Pinheiro, F.P.; Pissinatti, A.; Cunha, R.V.; Freire, M.; Martins, R.M.; Homma, A. Yellow fever outbreak in Brazil: The puzzle of rapid viral spread and challenges for immunisation. Mem. Inst. Oswaldo Cruz, 2018, 113(10), e180278.
[http://dx.doi.org/10.1590/0074-02760180278] [PMID: 30427974]
[85]
Omer, M.K.; Álvarez-Ordoñez, A.; Prieto, M.; Skjerve, E.; Asehun, T.; Alvseike, O.A. A systematic review of bacterial foodborne outbreaks related to red meat and meat products. Foodborne Pathog. Dis., 2018, 15(10), 598-611.
[http://dx.doi.org/10.1089/fpd.2017.2393] [PMID: 29957085]
[86]
Sekurova, O.N.; Schneider, O.; Zotchev, S.B. Novel bioactive natural products from bacteria via bioprospecting, genome mining and metabolic engineering. Microb. Biotechnol., 2019, 12(5), 828-844.
[http://dx.doi.org/10.1111/1751-7915.13398] [PMID: 30834674]
[87]
Stien, D. Marine microbial diversity as a source of bioactive natural products. Mar. Drugs, 2020, 18(4), 215.
[http://dx.doi.org/10.3390/md18040215] [PMID: 32316094]
[88]
Pachuau, L.; Roy, P.K.; Zothantluanga, J.H.; Ray, S.; Das, S. Bioactive Natural Products for Pharmaceutical Applications; , 2021, 140
[http://dx.doi.org/10.1007/978-3-030-54027-2]
[89]
Pham, J.V.; Yilma, M.A.; Feliz, A.; Majid, M.T.; Maffetone, N.; Walker, J.R.; Kim, E.; Cho, H.J.; Reynolds, J.M.; Song, M.C.; Park, S.R.; Yoon, Y.J. A review of the microbial production of bioactive natural products and biologics. Front. Microbiol., 2019, 10(JUN), 1404.
[http://dx.doi.org/10.3389/fmicb.2019.01404] [PMID: 31281299]
[90]
Aly, A.H.; Debbab, A.; Kjer, J.; Proksch, P. Fungal endophytes from higher plants: A prolific source of phytochemicals and other bioactive natural products. Fungal Divers., 2010, 41(1), 1-16.
[http://dx.doi.org/10.1007/s13225-010-0034-4]
[91]
Nisa, H.; Kamili, A.N.; Nawchoo, I.A.; Shafi, S.; Shameem, N.; Bandh, S.A. Fungal endophytes as prolific source of phytochemicals and other bioactive natural products: A review. Microb. Pathog., 2015, 82, 50-59.
[http://dx.doi.org/10.1016/j.micpath.2015.04.001] [PMID: 25865953]
[92]
Atanasov, A.G.; Waltenberger, B.; Pferschy-Wenzig, E.M.; Linder, T.; Wawrosch, C.; Uhrin, P.; Temml, V.; Wang, L.; Schwaiger, S.; Heiss, E.H.; Rollinger, J.M.; Schuster, D.; Breuss, J.M.; Bochkov, V.; Mihovilovic, M.D.; Kopp, B.; Bauer, R.; Dirsch, V.M.; Stuppner, H. Discovery and resupply of pharmacologically active plant-derived natural products: A review. Biotechnol. Adv., 2015, 33(8), 1582-1614.
[http://dx.doi.org/10.1016/j.biotechadv.2015.08.001] [PMID: 26281720]
[93]
Dai, J.; Han, R.; Xu, Y.; Li, N.; Wang, J.; Dan, W. Recent progress of antibacterial natural products: Future antibiotics candidates. Bioorg. Chem., 2020, 101, 103922.
[http://dx.doi.org/10.1016/j.bioorg.2020.103922] [PMID: 32559577]
[94]
Kadam, A.; Bellinger, S.; Zhang, W. Atom- and step-economic synthesis of biaryl-substituted furocoumarins, furoquinolones and furopyrimidines by multicomponent reactions and one-pot synthesis. Green Processing and Synthesis, 2013, 2(5), 491-497.
[http://dx.doi.org/10.1515/gps-2013-0064]
[95]
Zhou, Z.; Liu, H.; Li, Y.; Liu, J.; Li, Y.; Liu, J.; Yao, J.; Wang, C. Novel synthesis of substituted furo[3,2-c]chromen-4-ones via four-component reaction from substituted nitrostyrenes, aromatic aldehydes, coumarins, and ammonium acetate. ACS Comb. Sci., 2013, 15(7), 363-369.
[http://dx.doi.org/10.1021/co4000419] [PMID: 23772749]
[96]
Amanpour, T.; Zangger, K.; Belaj, F.; Bazgir, A.; Dallinger, D.; Kappe, C.O. A detailed investigation of the multicomponent reaction of salicylaldehyde, ethyl acetoacetate and isocyanides under microwave heating. Tetrahedron, 2015, 71(39), 7159-7169.
[http://dx.doi.org/10.1016/j.tet.2014.12.002]
[97]
Wadhwa, D.; Arora, V.; Arora, L.; Arora, P.; Parkash, O. Synthesis of naphthalene functionalized Trans -2, 3-Dihydrofuro [3, 2-c] coumarins as antioxidant and anthelmintic agents. J. Heterocycl. Chem., 2015, 50(4), 2-7.
[http://dx.doi.org/10.1002/jhet]
[98]
Tangella, Y.; Manasa, K.L.; Laxma Nayak, V.; Sathish, M.; Sridhar, B.; Alarifi, A.; Nagesh, N.; Kamal, A. An efficient one-pot approach for the regio- and diastereoselective synthesis of trans-dihydrofuran derivatives: Cytotoxicity and DNA-binding studies. Org. Biomol. Chem., 2017, 15(32), 6837-6853.
[http://dx.doi.org/10.1039/C7OB01456B] [PMID: 28782777]
[99]
Chang, X.; Zeng, P.; Chen, Z. Synthesis of Furo[3,2- c]coumarins via lewis acid-mediated multicomponent tandem reactions. Eur. J. Org. Chem., 2019, 2019(38), 6478-6485.
[http://dx.doi.org/10.1002/ejoc.201900987]
[100]
Jana, A.; Ali, D.; Bhaumick, P.; Choudhury, L.H. Sc(OTf) 3 -mediated one-pot synthesis of coumarin-fused furans: A thiol-dependent reaction for the easy access of 2-Phenyl-4H-furo[3,2- c]chromen-4-ones. J. Org. Chem., 2022, 87(12), 7763-7777.
[http://dx.doi.org/10.1021/acs.joc.2c00353] [PMID: 35642787]
[101]
Karthik, G.; Rajasekaran, T.; Sridhar, B.; Subba Reddy, B.V. Highly regio- and diastereoselective three-component reaction of acyclic/cyclic donor–acceptor carbenoids for the synthesis of angularly fused furocoumarins and spirooxindolylfurocoumarins. Tetrahedron, 2014, 70(43), 8148-8154.
[http://dx.doi.org/10.1016/j.tet.2014.07.093]
[102]
M, R.; Kumari, S.; Khurana, J.M. One-pot four component domino strategy for the synthesis of novel spirooxindole pyrrolizine linked 1,2,3-triazoles via stereo- and regioselective [3 + 2] cycloaddition reaction in acidic medium. RSC Advances, 2016, 6(11), 9297-9303.
[http://dx.doi.org/10.1039/C5RA26093K]
[103]
Ghandi, M.; Ghomi, A.T.; Kubicki, M. Synthesis of pyrrole-fused chromanones via one-pot multicomponent reactions. Tetrahedron, 2013, 69(14), 3054-3060.
[http://dx.doi.org/10.1016/j.tet.2013.01.085]
[104]
Mishra, R.; Panday, A.K.; Choudhury, L.H.; Pal, J.; Subramanian, R.; Verma, A. Multicomponent reactions of Arylglyoxal, 4-Hydroxycoumarin, and Cyclic 1,3-C,N-binucleophiles: Binucleophile-directed synthesis of fused five- and six-membered N-heterocycles. Eur. J. Org. Chem., 2017, 2017(19), 2789-2800.
[http://dx.doi.org/10.1002/ejoc.201700115]
[105]
Paul, S.; Bhattacharyya, P.; Das, A.R. One-pot synthesis of dihydropyrano[2,3-c]chromenes via a three component coupling of aromatic aldehydes, malononitrile, and 3-hydroxycoumarin catalyzed by nano-structured ZnO in water: a green protocol. Tetrahedron Lett., 2011, 52(36), 4636-4641.
[http://dx.doi.org/10.1016/j.tetlet.2011.06.101]
[106]
Karami, B.; Eskandari, K.; Khodabakhshi, S. One-pot three-component approach to synthesis of fused heterocyclic compounds: Synthesis of fused pyran-2-ones. ARKIVOC, 2012, 2012(9), 76-84.
[http://dx.doi.org/10.3998/ark.5550190.0013.907]
[107]
Shaterian, H.R.; Aghakhanizadeh, M. Ionic-liquid-catalyzed green synthesis of coumarin derivatives under solvent-free conditions. Chin. J. Catal., 2013, 34(9), 1690-1696.
[http://dx.doi.org/10.1016/S1872-2067(12)60654-8]
[108]
Ghandi, M.; Taghi Nazeri, M.; Kubicki, M. An efficient one-pot, regio- and stereoselective synthesis of novel pentacyclic-fused pyrano[3,2,c]chromenone or quinolinone benzosultone derivatives in water. Tetrahedron, 2013, 69(24), 4979-4989.
[http://dx.doi.org/10.1016/j.tet.2013.04.018]
[109]
Pradhan, K.; Paul, S.; Das, A.R. Magnetically retrievable nano crystalline CuFe2O4 catalyzed multi-component reaction: a facile and efficient synthesis of functionalized dihydropyrano[2,3-c]pyrazole, pyrano[3,2-c]coumarin and 4H-chromene derivatives in aqueous media. Catal. Sci. Technol., 2014, 4(3), 822-831.
[http://dx.doi.org/10.1039/c3cy00901g]
[110]
Khodabakhshi, S.; Marahel, F.; Rashidi, A.; Abbasabadi, M.K. A green synthesis of substituted coumarins using nano graphene oxide as recyclable catalyst. J. Chin. Chem. Soc., 2015, 62(5), 389-392.
[http://dx.doi.org/10.1002/jccs.201400349]
[111]
Saha, A.; Payra, S.; Banerjee, S. On water synthesis of pyran–chromenes via a multicomponent reactions catalyzed by fluorescent t-ZrO 2 nanoparticles. RSC Advances, 2015, 5(123), 101664-101671.
[http://dx.doi.org/10.1039/C5RA19290K]
[112]
Tiwari, J.; Saquib, M.; Singh, S.; Tufail, F.; Singh, M.; Singh, J.; Singh, J. Visible light promoted synthesis of dihydropyrano[2,3-c]chromenes via a multicomponent-tandem strategy under solvent and catalyst free conditions. Green Chem., 2016, 18(11), 3221-3231.
[http://dx.doi.org/10.1039/C5GC02855H]
[113]
Chougala, B.M.; Samundeeswari, S.; Holiyachi, M.; Naik, N.S.; Shastri, L.A.; Dodamani, S.; Jalalpure, S.; Dixit, S.R.; Joshi, S.D.; Sunagar, V.A. Green, unexpected synthesis of bis-coumarin derivatives as potent anti-bacterial and anti-inflammatory agents. Eur. J. Med. Chem., 2018, 143, 1744-1756.
[http://dx.doi.org/10.1016/j.ejmech.2017.10.072] [PMID: 29133055]
[114]
Mayank, ; Kaur Billing, B.; Agnihotri, P.K.; Kaur, N.; Singh, N.; Jang, D.O. Ionic liquid-coated carbon nanotubes as efficient metal-free catalysts for the synthesis of chromene derivatives. ACS Sustain. Chem.& Eng., 2018, 6(3), 3714-3722.
[http://dx.doi.org/10.1021/acssuschemeng.7b04048]
[115]
Bhosle, M.R.; Wahul, D.B.; Bondle, G.M.; Sarkate, A.; Tiwari, S.V. An efficient multicomponent synthesis and in vitro anticancer activity of dihydropyranochromene and chromenopyrimidine-2,5-diones. Synth. Commun., 2018, 48(16), 2046-2060.
[http://dx.doi.org/10.1080/00397911.2018.1480042]
[116]
Nasri, S.; Bayat, M. One pot synthesis of new heterocyclic systems: Polysubstituted pyrano[3,2-c]chromene and benzo[g]chromene derivatives. J. Mol. Struct., 2018, 1164, 77-83.
[http://dx.doi.org/10.1016/j.molstruc.2018.03.055]
[117]
Diwan, F.; Farooqui, M. γ‐Valerolactone as a Promising Bio‐Compatible Media for One‐Pot Synthesis of Spiro[indoline‐3,4′‐pyrano[3,2‐ c]chromene Derivatives. J. Heterocycl. Chem., 2018, 55(12), 2817-2822.
[http://dx.doi.org/10.1002/jhet.3351]
[118]
Paul, S.; Das, A.R. An efficient green protocol for the synthesis of coumarin fused highly decorated indenodihydropyridyl and dihydropyridyl derivatives. Tetrahedron Lett., 2012, 53(17), 2206-2210.
[http://dx.doi.org/10.1016/j.tetlet.2012.02.077]
[119]
Khan, A.T.; Das, D.K.; Islam, K.; Das, P. A simple and expedient synthesis of functionalized pyrido[2,3-c] coumarin derivatives using molecular iodine catalyzed three-component reaction. Tetrahedron Lett., 2012, 53(47), 6418-6422.
[http://dx.doi.org/10.1016/j.tetlet.2012.09.051]
[120]
Ghosh, A.; Khan, A.T. Synthesis of dihydrochromeno[4,3-b]pyrazolo[4,3-e]pyridin-6(7H)-ones involving one-pot three-component tandem Knoevenagel–Michael reaction catalyzed by n-tetrabutylammonium tribromide (TBATB). Tetrahedron Lett., 2014, 55(12), 2006-2009.
[http://dx.doi.org/10.1016/j.tetlet.2014.02.014]
[121]
Bharti, R.; Parvin, T. Molecular diversity from the L-Proline-catalyzed, three-component reactions of 4-Hydroxycoumarin, Aldehyde, and 3-Aminopyrazole or 1,3-Dimethyl-6-aminouracil. Synth. Commun., 2015, 45(12), 1442-1450.
[http://dx.doi.org/10.1080/00397911.2015.1023900]
[122]
Chidurala, P.; Jetti, V.; Pagadala, R.; Meshram, J.S.; Jonnalagadda, S. Eco-efficient synthesis of new pyrido[2, 3-c] coumarin scaffolds under sonochemical method. J. Heterocycl. Chem., 2016, 53(2), 467-472.
[http://dx.doi.org/10.1002/jhet.2319]
[123]
Hua, C.; Zhang, K.; Xin, M.; Ying, T.; Gao, J.; Jia, J.; Li, Y. High quantum yield and pH sensitive fluorescence dyes based on coumarin derivatives: fluorescence characteristics and theoretical study. RSC Advances, 2016, 6(54), 49221-49227.
[http://dx.doi.org/10.1039/C6RA05996A]
[124]
Paul, S.; Lee, Y.R. Eco-friendly construction of highly functionalized chromenopyridinones by an organocatalyzed solid-state melt reaction and their optical properties. Green Chem., 2016, 18(6), 1488-1494.
[http://dx.doi.org/10.1039/C5GC02658J]
[125]
Firoozpour, L.; Nikookar, H.; Moghimi, S.; Mahdavi, M.; Asadipour, A.; Ranjbar, P.R.; Foroumadi, A. An efficient approach to the synthesis of coumarin-fused dihydropyridinones. Heterocycl. Commun., 2017, 23(4), 305-308.
[http://dx.doi.org/10.1515/hc-2017-0013]
[126]
Kumar, A.; Mahiya, K.; Prasad, A.K.; Singh, S.K. Multicomponent synthesis of 4-Aryl-1,4-dihydro-Oxochromeno[3,2-b] Oxoindeno[6,5-e]pyridine. Polycycl. Aromat. Compd., 2020, 0(0), 1-13.
[http://dx.doi.org/10.1080/10406638.2020.1852269]
[127]
Tekuri, C.S.; Singh, P.; Nath, M. Construction of coumarin-fused pyrido[2,3- b]porphyrins through a trichloroacetic acid-accelerated domino approach. Org. Biomol. Chem., 2020, 18(13), 2516-2523.
[http://dx.doi.org/10.1039/D0OB00171F] [PMID: 32195516]
[128]
Saffarian, H.; Karimi, F.; Yarie, M.; Zolfigol, M.A. Fe3O4@SiO2@(CH2)3-urea-quinoline sulfonic acid chloride: A novel catalyst for the synthesis of coumarin containing 1,4 dihydropyridines. J. Mol. Struct., 2021, 1224, 129294.
[http://dx.doi.org/10.1016/j.molstruc.2020.129294]
[129]
Chen, J.; Ouyang, C.H.; Xiao, T.; Jiang, H.; Li, J.S. Metal‐free synthesis of coumarin‐fused pyrimidines from 4‐aminocoumarins via pseudo four‐component reaction. ChemistrySelect, 2019, 4(24), 7327-7330.
[http://dx.doi.org/10.1002/slct.201901803]
[130]
Mohire, P.P.; Chandam, D.R.; Patil, R.B.; Patravale, A.A.; Ghosh, J.S.; Deshmukh, M.B. Low melting mixture glycerol:proline as an innovative designer solvent for the synthesis of novel chromeno fused thiazolopyrimidinone derivatives: An excellent correlation with green chemistry metrics. J. Mol. Liq., 2019, 283, 69-80.
[http://dx.doi.org/10.1016/j.molliq.2019.03.058]
[131]
Sashidhara, K.V.; Palnati, G.R.; Singh, L.R.; Upadhyay, A.; Avula, S.R.; Kumar, A.; Kant, R. Molecular iodine catalysed one-pot synthesis of chromeno[4,3-b]quinolin-6-ones under microwave irradiation. Green Chem., 2015, 17(7), 3766-3770.
[http://dx.doi.org/10.1039/C5GC00756A]
[132]
Bhosle, M.R.; Joshi, S.A.; Bondle, G.M. An efficient contemporary multicomponent synthesis for the facile access to coumarin‐fused new thiazolyl chromeno[4,3‐ b]quinolones in aqueous micellar medium. J. Heterocycl. Chem., 2020, 57(1), 456-468.
[http://dx.doi.org/10.1002/jhet.3802]
[133]
Markey, M.D.; Fu, Y.; Kelly, T.R. Synthesis of santiagonamine. Org. Lett., 2007, 9(17), 3255-3257.
[http://dx.doi.org/10.1021/ol0711974] [PMID: 17658834]
[134]
Chaudhary, D.; Bedi, P.; Santra, S.; Pramanik, T. Synthesis and biological properties of coumarin analogue: A brief review. Lett. Org. Chem., 2022, 19(5), 362-387.
[http://dx.doi.org/10.2174/1570178618666210202152452]
[135]
Fan, H.; Peng, J.; Hamann, M.T.; Hu, J.F. Erratum: Lamellarins and related pyrrole-derived alkaloids from marine organisms. Chem. Rev., 2010, 110(6), 3850.
[http://dx.doi.org/10.1021/cr900322f] [PMID: 18095718]
[136]
Iwao, M.; Takeuchi, T.; Fujikawa, N.; Fukuda, T.; Ishibashi, F. Short and flexible route to 3,4-diarylpyrrole marine alkaloids: Syntheses of permethyl storniamide A, ningalin B, and lamellarin G trimethyl ether. Tetrahedron Lett., 2003, 44(24), 4443-4446.
[http://dx.doi.org/10.1016/S0040-4039(03)01031-1]
[137]
Bailly, C. Lamellarins, from A to Z: a family of anticancer marine pyrrole alkaloids. Curr. Med. Chem. Anticancer Agents, 2004, 4(4), 363-378.
[http://dx.doi.org/10.2174/1568011043352939] [PMID: 15281908]
[138]
Rayar, A.M.; Lagarde, N.; Martin, F.; Blanchard, F.; Liagre, B.; Ferroud, C.; Zagury, J.F.; Montes, M.; Sylla-Iyarreta Veitía, M. New selective cyclooxygenase-2 inhibitors from cyclocoumarol: Synthesis, characterization, biological evaluation and molecular modeling. Eur. J. Med. Chem., 2018, 146, 577-587.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.054] [PMID: 29407982]
[139]
Cortés, I.; Cala, L.J.; Bracca, A.B.J.; Kaufman, T.S. Furo[3,2- c]coumarins carrying carbon substituents at C-2 and/or C-3. Isolation, biological activity, synthesis and reaction mechanisms. RSC Advances, 2020, 10(55), 33344-33377.
[http://dx.doi.org/10.1039/D0RA06930B] [PMID: 35515056]
[140]
Kady, M.; Brimer, L.; Furu, P.; Lemmich, E.; Nielsen, H.; Thiilborg, S.; Thastrup, O.; Christensen, S. The molluscicidal activity of coumarins from Ethulia conyzoides and of dicumarol. Planta Med., 1992, 58(4), 334-337.
[http://dx.doi.org/10.1055/s-2006-961479] [PMID: 1438593]
[141]
Hsieh, W.C.; Lin, C.H.; Yang, Y.J.; Yang, D.Y. Multicomponent synthesis of pyrano[2,3- c]coumarins. RSC Advances, 2018, 8(68), 39162-39169.
[http://dx.doi.org/10.1039/C8RA06666C] [PMID: 35558298]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy