Generic placeholder image

Current Drug Therapy

Editor-in-Chief

ISSN (Print): 1574-8855
ISSN (Online): 2212-3903

Review Article

New Insights into Microglia as Therapeutic Targets in Alzheimer’s Disease

Author(s): Deepa S. Mandlik*, Satish K. Mandlik and Heena B. Choudhary

Volume 19, Issue 2, 2024

Published on: 08 June, 2023

Page: [195 - 225] Pages: 31

DOI: 10.2174/1574885518666230427100702

Price: $65

Abstract

Alzheimer's disease (AD) is the most common neurodegenerative disease, accounting for 60–70% of dementia cases globally. Inflammation of the central nervous system (CNS) caused by microglia is a common characteristic of neurodegenerative illnesses such as Parkinson's disease and AD. Research has recently examined the relationship between neurodegenerative diseases and CNS microglia. Microglial cells comprise 10–15% of all CNS cells and are brain-resident myeloid cells mediating critical processes to support the CNS. Microglia have a variety of receptors that operate as molecular sensors, detecting exogenous and endogenous CNS injuries and triggering an immune response. Microglia serve as brain guardians by boosting phagocytic clearance and providing trophic support to enable tissue repair and maintain cerebral homeostasis, in addition to their traditional immune cell activity. At rest, microglia manage CNS homeostasis by phagocytic action, which removes pathogens and cell debris. Microglia cells that have been "resting" convert into active cells that create inflammatory mediators, protecting neurons and protecting against invading pathogens. Neuronal damage and neurodegenerative disorders are caused by excessive inflammation. Different microglial cells reply at different phases of the disease can lead to new therapy options and reduced inflammatory activity. This review focuses on the potential function of microglia, microglia subtypes, and M1/M2 phenotypic changes associated with neurodegenerative disorders. Microglial membrane receptors, the involvement of microglia in neuroinflammation, microglial targets in AD and the double role of microglia in AD pathogenesis are also discussed in this review.

Graphical Abstract

[1]
Bondi MW, Edmonds EC, Salmon DP. Alzheimer’s disease: Past, present, and future. J Int Neuropsychol Soc 2017; 23(9-10): 818-31.
[http://dx.doi.org/10.1017/S135561771700100X] [PMID: 29198280]
[2]
Mebane-Sims I. Alzheimer’s Association, 2018 Alzheimer’s disease facts and figures. Alzheimers Dement 2018; 14(3): 367-429.
[http://dx.doi.org/10.1016/j.jalz.2018.02.001]
[3]
Jia J, Wei C, Chen S, et al. The cost of Alzheimer’s disease in China and re‐estimation of costs worldwide. Alzheimers Dement 2018; 14(4): 483-91.
[http://dx.doi.org/10.1016/j.jalz.2017.12.006] [PMID: 29433981]
[4]
Abraha I, Rimland JM, Trotta FM, et al. Systematic review of systematic reviews of non-pharmacological interventions to treat behavioural disturbances in older patients with dementia. BMJ Open 2017; 7(3): e012759.
[http://dx.doi.org/10.1136/bmjopen-2016-012759]
[5]
Creese B, Da Silva MV, Johar I, Ballard C. The modern role of antipsychotics for the treatment of agitation and psychosis in Alzheimer’s disease. Expert Rev Neurother 2018; 18(6): 461-7.
[http://dx.doi.org/10.1080/14737175.2018.1476140] [PMID: 29764230]
[6]
Sharma S, Verma S, Kapoor M, Saini A, Nehru B. Alzheimer’s disease like pathology induced six weeks after aggregated amyloid-beta injection in rats: Increased oxidative stress and impaired long-term memory with anxiety-like behavior. Neurol Res 2016; 38(9): 838-50.
[http://dx.doi.org/10.1080/01616412.2016.1209337] [PMID: 27431920]
[7]
Haake A, Nguyen K, Friedman L, Chakkamparambil B, Grossberg GT. An update on the utility and safety of cholinesterase inhibitors for the treatment of Alzheimer’s disease. Expert Opin Drug Saf 2020; 19(2): 147-57.
[http://dx.doi.org/10.1080/14740338.2020.1721456] [PMID: 31976781]
[8]
Kabir MT, Sufian MA, Uddin MS, et al. NMDA receptor antagonists: repositioning of memantine as a multitargeting agent for Alzheimer’s therapy. Curr Pharm Des 2019; 25(33): 3506-18.
[http://dx.doi.org/10.2174/1381612825666191011102444] [PMID: 31604413]
[9]
Rozemuller JM, van der Valk P, Eikelenboom P. Activated microglia and cerebral amyloid deposits in Alzheimer’s disease. Res Immunol 1992; 143(6): 646-9.
[http://dx.doi.org/10.1016/0923-2494(92)80050-U] [PMID: 1455057]
[10]
Majumdar A, Capetillo-Zarate E, Cruz D, Gouras GK, Maxfield FR. Degradation of Alzheimer’s amyloid fibrils by microglia requires delivery of ClC-7 to lysosomes. Mol Biol Cell 2011; 22(10): 1664-76.
[http://dx.doi.org/10.1091/mbc.e10-09-0745] [PMID: 21441306]
[11]
Doi Y, Mizuno T, Maki Y, et al. Microglia activated with the toll-like receptor 9 ligand CpG attenuate oligomeric amyloid β neurotoxicity in in vitro and in vivo models of Alzheimer’s disease. Am J Pathol 2009; 175(5): 2121-32.
[http://dx.doi.org/10.2353/ajpath.2009.090418] [PMID: 19834064]
[12]
Davies DS, Ma J, Jegathees T, Goldsbury C. Microglia show altered morphology and reduced arborization in human brain during aging and Alzheimer’s disease. Brain Pathol 2017; 27(6): 795-808.
[http://dx.doi.org/10.1111/bpa.12456] [PMID: 27862631]
[13]
Bennett FC, Bennett ML, Yaqoob F, et al. A combination of ontogeny and CNS environment establishes microglial identity. Neuron 2018; 98(6): 1170-1183.e8.
[http://dx.doi.org/10.1016/j.neuron.2018.05.014] [PMID: 29861285]
[14]
Butovsky O, Jedrychowski MP, Moore CS, et al. Identification of a unique TGF-β–dependent molecular and functional signature in microglia. Nat Neurosci 2014; 17(1): 131-43.
[http://dx.doi.org/10.1038/nn.3599] [PMID: 24316888]
[15]
Bennett ML, Bennett FC, Liddelow SA, et al. New tools for studying microglia in the mouse and human CNS. Proc Natl Acad Sci USA 2016; 113(12): E1738-46.
[http://dx.doi.org/10.1073/pnas.1525528113] [PMID: 26884166]
[16]
Gosselin D, Skola D, Coufal NG, et al. An environment-dependent transcriptional network specifies human microglia identity. Sci 2017; 356(6344): eaal3222.
[http://dx.doi.org/10.1126/science.aal3222]
[17]
Link VM, Duttke SH, Chun HB, et al. Analysis of genetically diverse macrophages reveals local and domain-wide mechanisms that control transcription factor binding and function. Cell 2018; 173(7): 1796-1809.e17.
[http://dx.doi.org/10.1016/j.cell.2018.04.018] [PMID: 29779944]
[18]
Shukla AK, McIntyre LL, Marsh SE, et al. CD11a expression distinguishes infiltrating myeloid cells from plaque‐associated microglia in Alzheimer’s disease. Glia 2019; 67(5): 844-56.
[http://dx.doi.org/10.1002/glia.23575] [PMID: 30588668]
[19]
Heneka MT, Kummer MP, Latz E. Innate immune activation in neurodegenerative disease. Nat Rev Immunol 2014; 14(7): 463-77.
[http://dx.doi.org/10.1038/nri3705] [PMID: 24962261]
[20]
Yin Z, Raj D, Saiepour N, et al. Immune hyperreactivity of Aβ plaque-associated microglia in Alzheimer’s disease. Neurobiol Aging 2017; 55: 115-22.
[http://dx.doi.org/10.1016/j.neurobiolaging.2017.03.021] [PMID: 28434692]
[21]
Streit WJ, Xue QS, Tischer J, Bechmann I. Microglial pathology. Acta Neuropathol Commun 2014; 2(1): 142.
[http://dx.doi.org/10.1186/s40478-014-0142-6] [PMID: 25257319]
[22]
Plescher M, Seifert G, Hansen JN, Bedner P, Steinhäuser C, Halle A. Plaque-dependent morphological and electrophysiological heterogeneity of microglia in an Alzheimer’s disease mouse model. Glia 2018; 66(7): 1464-80.
[http://dx.doi.org/10.1002/glia.23318] [PMID: 29493017]
[23]
Rodgers KM, Hutchinson MR, Northcutt A, Maier SF, Watkins LR, Barth DS. The cortical innate immune response increases local neuronal excitability leading to seizures. Brain 2009; 132(9): 2478-86.
[http://dx.doi.org/10.1093/brain/awp177] [PMID: 19567702]
[24]
Brawek B, Schwendele B, Riester K, et al. Impairment of in vivo calcium signaling in amyloid plaque-associated microglia. Acta Neuropathol 2014; 127(4): 495-505.
[http://dx.doi.org/10.1007/s00401-013-1242-2] [PMID: 24407428]
[25]
Keren-Shaul H, Spinrad A, Weiner A, et al. A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 2017; 169(7): 1276-1290.e17.
[http://dx.doi.org/10.1016/j.cell.2017.05.018] [PMID: 28602351]
[26]
Pottier C, Ravenscroft TA, Brown PH, et al. TYROBP genetic variants in early-onset Alzheimer’s disease. Neurobiol Aging 2016; 48: 222.e9-222.e15.
[http://dx.doi.org/10.1016/j.neurobiolaging.2016.07.028] [PMID: 27658901]
[27]
Mathys H, Davila-Velderrain J, Peng Z, et al. Single-cell transcriptomic analysis of Alzheimer’s disease. Nature 2019; 570(7761): 332-7.
[http://dx.doi.org/10.1038/s41586-019-1195-2] [PMID: 31042697]
[28]
Paasila PJ, Davies DS, Kril JJ, Goldsbury C, Sutherland GT. The relationship between the morphological subtypes of microglia and Alzheimer’s disease neuropathology. Brain Pathol 2019; 29(6): 726-40.
[http://dx.doi.org/10.1111/bpa.12717] [PMID: 30803086]
[29]
Srinivasan K, Friedman BA, Larson JL, et al. Untangling the brain’s neuroinflammatory and neurodegenerative transcriptional responses. Nat Commun 2016; 7(1): 11295.
[http://dx.doi.org/10.1038/ncomms11295] [PMID: 27097852]
[30]
Srinivasan K, Friedman BA, Etxeberria A, et al. Alzheimer’s patient brain myeloid cells exhibit enhanced aging and unique transcriptional activation. BioRxiv 2019; 610345.
[http://dx.doi.org/10.1101/610345]
[31]
Friedman BA, Srinivasan K, Ayalon G, et al. Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep 2018; 22(3): 832-47.
[http://dx.doi.org/10.1016/j.celrep.2017.12.066] [PMID: 29346778]
[32]
Bisht K, Sharma K, Lacoste B, Tremblay MÈ. Dark microglia: Why are they dark? Commun Integr Biol 2016; 9(6): e1230575.
[http://dx.doi.org/10.1080/19420889.2016.1230575] [PMID: 28042375]
[33]
Bisht K, Sharma KP, Lecours C, et al. Dark microglia: A new phenotype predominantly associated with pathological states. Glia 2016; 64(5): 826-39.
[http://dx.doi.org/10.1002/glia.22966] [PMID: 26847266]
[34]
Savage JC, Picard K, González-Ibáñez F, Tremblay MÈ. A brief history of microglial ultrastructure: distinctive features, phenotypes, and functions discovered over the past 60 years by electron microscopy. Front Immunol 2018; 9: 803.
[http://dx.doi.org/10.3389/fimmu.2018.00803] [PMID: 29922276]
[35]
Sanchez-Mejias E, Navarro V, Jimenez S, et al. Soluble phospho-tau from Alzheimer’s disease hippocampus drives microglial degeneration. Acta Neuropathol 2016; 132(6): 897-916.
[http://dx.doi.org/10.1007/s00401-016-1630-5] [PMID: 27743026]
[36]
Navarro V, Sanchez-Mejias E, Jimenez S, et al. Microglia in Alzheimer’s disease: Activated, dysfunctional or degenerative. Front Aging Neurosci 2018; 10: 140.
[http://dx.doi.org/10.3389/fnagi.2018.00140] [PMID: 29867449]
[37]
Tischer J, Krueger M, Mueller W, et al. Inhomogeneous distribution of Iba-1 characterizes microglial pathology in Alzheimer’s disease. Glia 2016; 64(9): 1562-72.
[http://dx.doi.org/10.1002/glia.23024] [PMID: 27404378]
[38]
Hopperton KE, Mohammad D, Trépanier MO, Giuliano V, Bazinet RP. Markers of microglia in post-mortem brain samples from patients with Alzheimer’s disease: A systematic review. Mol Psychiatry 2018; 23(2): 177-98.
[http://dx.doi.org/10.1038/mp.2017.246] [PMID: 29230021]
[39]
Ransohoff RM. A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 2016; 19(8): 987-91.
[http://dx.doi.org/10.1038/nn.4338] [PMID: 27459405]
[40]
Kim CC, Nakamura MC, Hsieh CL. Brain trauma elicits non-canonical macrophage activation states. J Neuroinflammation 2016; 13(1): 117.
[http://dx.doi.org/10.1186/s12974-016-0581-z] [PMID: 27220367]
[41]
Jay TR, von Saucken VE, Landreth GE. TREM2 in neurodegenerative diseases. Mol Neurodegener 2017; 12(1): 56.
[http://dx.doi.org/10.1186/s13024-017-0197-5] [PMID: 28768545]
[42]
Galatro TF, Holtman IR, Lerario AM, et al. Transcriptomic analysis of purified human cortical microglia reveals age-associated changes. Nat Neurosci 2017; 20(8): 1162-71.
[http://dx.doi.org/10.1038/nn.4597] [PMID: 28671693]
[43]
Mathys H, Adaikkan C, Gao F, et al. Temporal tracking of microglia activation in neurodegeneration at single-cell resolution. Cell Rep 2017; 21(2): 366-80.
[http://dx.doi.org/10.1016/j.celrep.2017.09.039] [PMID: 29020624]
[44]
Olah M, Patrick E, Villani AC, et al. A transcriptomic atlas of aged human microglia. Nat Commun 2018; 9(1): 539.
[http://dx.doi.org/10.1038/s41467-018-02926-5] [PMID: 29416036]
[45]
Tan YL, Yuan Y, Tian L. Microglial regional heterogeneity and its role in the brain. Mol Psychiatry 2020; 25(2): 351-67.
[http://dx.doi.org/10.1038/s41380-019-0609-8] [PMID: 31772305]
[46]
Prokop S, Miller KR, Labra SR, et al. Impact of TREM2 risk variants on brain region-specific immune activation and plaque microenvironment in Alzheimer’s disease patient brain samples. Acta Neuropathol 2019; 138(4): 613-30.
[http://dx.doi.org/10.1007/s00401-019-02048-2] [PMID: 31350575]
[47]
Lee CYD, Daggett A, Gu X, et al. Elevated TREM2 gene dosage reprograms microglia responsivity and ameliorates pathological phenotypes in Alzheimer’s disease models. Neuron 2018; 97(5): 1032-1048.e5.
[http://dx.doi.org/10.1016/j.neuron.2018.02.002] [PMID: 29518357]
[48]
Krasemann S, Madore C, Cialic R, et al. The TREM2-APOE pathway drives the transcriptional phenotype of dysfunctional microglia in neurodegenerative diseases. Immunity 2017; 47(3): 566-581.e9.
[http://dx.doi.org/10.1016/j.immuni.2017.08.008] [PMID: 28930663]
[49]
Hickman SE, Allison EK, El Khoury J. Microglial dysfunction and defective β-amyloid clearance pathways in aging Alzheimer’s disease mice. J Neurosci 2008; 28(33): 8354-60.
[http://dx.doi.org/10.1523/JNEUROSCI.0616-08.2008] [PMID: 18701698]
[50]
Ma L, Allen M, Sakae N, et al. Expression and processing analyses of wild type and p.R47H TREM2 variant in Alzheimer’s disease brains. Mol Neurodegener 2016; 11(1): 72.
[http://dx.doi.org/10.1186/s13024-016-0137-9] [PMID: 27887626]
[51]
Guerreiro R, Wojtas A, Bras J, et al. TREM2 variants in Alzheimer’s disease. N Engl J Med 2013; 368(2): 117-27.
[http://dx.doi.org/10.1056/NEJMoa1211851] [PMID: 23150934]
[52]
Chung WS, Welsh CA, Barres BA, Stevens B. Do glia drive synaptic and cognitive impairment in disease? Nat Neurosci 2015; 18(11): 1539-45.
[http://dx.doi.org/10.1038/nn.4142] [PMID: 26505565]
[53]
Mecca C, Giambanco I, Donato R, Arcuri C. Microglia and aging: The role of the TREM2–DAP12 and CX3CL1-CX3CR1 axes. Int J Mol Sci 2018; 19(1): 318-45.
[http://dx.doi.org/10.3390/ijms19010318] [PMID: 29361745]
[54]
Zhong L, Chen XF, Wang T, et al. Soluble TREM2 induces inflammatory responses and enhances microglial survival. J Exp Med 2017; 214(3): 597-607.
[http://dx.doi.org/10.1084/jem.20160844] [PMID: 28209725]
[55]
Klesney-Tait J, Turnbull IR, Colonna M. The TREM receptor family and signal integration. Nat Immunol 2006; 7(12): 1266-73.
[http://dx.doi.org/10.1038/ni1411] [PMID: 17110943]
[56]
Zhao Y, Wu X, Li X, et al. TREM2 is a receptor for β-amyloid that mediates microglial function. Neuron 2018; 97(5): 1023-1031.e7.
[http://dx.doi.org/10.1016/j.neuron.2018.01.031] [PMID: 29518356]
[57]
Jiang T, Tan L, Zhu XC, et al. Upregulation of TREM2 ameliorates neuropathology and rescues spatial cognitive impairment in a transgenic mouse model of Alzheimer’s disease. Neuropsychopharmacology 2014; 39(13): 2949-62.
[http://dx.doi.org/10.1038/npp.2014.164] [PMID: 25047746]
[58]
Zheng H, Jia L, Liu CC, et al. TREM2 promotes microglial survival by activating Wnt/β-catenin pathway. J Neurosci 2017; 37(7): 1772-84.
[http://dx.doi.org/10.1523/JNEUROSCI.2459-16.2017] [PMID: 28077724]
[59]
Jendresen C, Årskog V, Daws MR, Nilsson LNG. The Alzheimer’s disease risk factors apolipoprotein E and TREM2 are linked in a receptor signaling pathway. J Neuroinflammation 2017; 14(1): 59.
[http://dx.doi.org/10.1186/s12974-017-0835-4] [PMID: 28320424]
[60]
Chan G, White CC, Winn PA, et al. CD33 modulates TREM2: Convergence of Alzheimer loci. Nat Neurosci 2015; 18(11): 1556-8.
[http://dx.doi.org/10.1038/nn.4126] [PMID: 26414614]
[61]
Zhao L. CD33 in Alzheimer’s disease–biology, pathogenesis, and therapeutics: A mini-review. Gerontology 2019; 65(4): 323-31.
[http://dx.doi.org/10.1159/000492596] [PMID: 30541012]
[62]
Crocker PR, McMillan SJ, Richards HE. CD33-related siglecs as potential modulators of inflammatory responses. Ann N Y Acad Sci 2012; 1253(1): 102-11.
[http://dx.doi.org/10.1111/j.1749-6632.2011.06449.x] [PMID: 22352893]
[63]
Jiang T, Yu JT, Hu N, Tan MS, Zhu XC, Tan L. CD33 in Alzheimer’s disease. Mol Neurobiol 2014; 49(1): 529-35.
[http://dx.doi.org/10.1007/s12035-013-8536-1] [PMID: 23982747]
[64]
Griciuc A, Patel S, Federico AN, et al. TREM2 acts downstream of CD33 in modulating microglial pathology in Alzheimer’s disease. Neuron 2019; 103(5): 820-835.e7.
[http://dx.doi.org/10.1016/j.neuron.2019.06.010] [PMID: 31301936]
[65]
Li X, Shen N, Zhang S, et al. CD33 rs3865444 polymorphism contributes to Alzheimer’s disease susceptibility in Chinese, European, and North American populations. Mol Neurobiol 2015; 52(1): 414-21.
[http://dx.doi.org/10.1007/s12035-014-8880-9] [PMID: 25186233]
[66]
Bradshaw EM, Chibnik LB, Keenan BT, et al. CD33 Alzheimer’s disease locus: Altered monocyte function and amyloid biology. Nat Neurosci 2013; 16(7): 848-50.
[http://dx.doi.org/10.1038/nn.3435] [PMID: 23708142]
[67]
Griciuc A, Serrano-Pozo A, Parrado AR, et al. Alzheimer’s disease risk gene CD33 inhibits microglial uptake of amyloid beta. Neuron 2013; 78(4): 631-43.
[http://dx.doi.org/10.1016/j.neuron.2013.04.014] [PMID: 23623698]
[68]
Yu Y, Ye RD. Microglial Aβ receptors in Alzheimer’s disease. Cell Mol Neurobiol 2015; 35(1): 71-83.
[http://dx.doi.org/10.1007/s10571-014-0101-6] [PMID: 25149075]
[69]
Hoosdally SJ, Andress EJ, Wooding C, Martin CA, Linton KJ. The human scavenger Receptor CD36: Glycosylation status and its role in trafficking and function. J Biol Chem 2009; 284(24): 16277-88.
[http://dx.doi.org/10.1074/jbc.M109.007849] [PMID: 19369259]
[70]
Yamanaka M, Ishikawa T, Griep A, Axt D, Kummer MP, Heneka MT. PPARγ/RXRα-induced and CD36-mediated microglial amyloid-β phagocytosis results in cognitive improvement in amyloid precursor protein/presenilin 1 mice. J Neurosci 2012; 32(48): 17321-31.
[http://dx.doi.org/10.1523/JNEUROSCI.1569-12.2012] [PMID: 23197723]
[71]
Stuart LM, Bell SA, Stewart CR, et al. CD36 signals to the actin cytoskeleton and regulates microglial migration via a p130Cas complex. J Biol Chem 2007; 282(37): 27392-401.
[http://dx.doi.org/10.1074/jbc.M702887200] [PMID: 17623670]
[72]
Ahmadian M, Suh JM, Hah N, et al. PPARγ signaling and metabolism: The good, the bad and the future. Nat Med 2013; 19(5): 557-66.
[http://dx.doi.org/10.1038/nm.3159] [PMID: 23652116]
[73]
Fang Y, Wang J, Yao L, et al. The adhesion and migration of microglia to β-amyloid (Aβ) is decreased with aging and inhibited by Nogo/NgR pathway. J Neuroinflammation 2018; 15(1): 210.
[http://dx.doi.org/10.1186/s12974-018-1250-1] [PMID: 30029608]
[74]
Akira S. Toll-like receptor signaling. J Biol Chem 2003; 278(40): 38105-8.
[http://dx.doi.org/10.1074/jbc.R300028200] [PMID: 12893815]
[75]
Bamberger ME, Harris ME, McDonald DR, Husemann J, Landreth GE. A cell surface receptor complex for fibrillar β-amyloid mediates microglial activation. J Neurosci 2003; 23(7): 2665-74.
[http://dx.doi.org/10.1523/JNEUROSCI.23-07-02665.2003] [PMID: 12684452]
[76]
Frenkel D, Wilkinson K, Zhao L, et al. Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun 2013; 4(1): 2030.
[http://dx.doi.org/10.1038/ncomms3030] [PMID: 23799536]
[77]
Areschoug T, Gordon S. Scavenger receptors: Role in innate immunity and microbial pathogenesis. Cell Microbiol 2009; 11(8): 1160-9.
[http://dx.doi.org/10.1111/j.1462-5822.2009.01326.x] [PMID: 19388903]
[78]
Canton J, Neculai D, Grinstein S. Scavenger receptors in homeostasis and immunity. Nat Rev Immunol 2013; 13(9): 621-34.
[http://dx.doi.org/10.1038/nri3515] [PMID: 23928573]
[79]
Frenkel D, Wilkinson K, Zhao L, et al. Scara1 deficiency impairs clearance of soluble amyloid-β by mononuclear phagocytes and accelerates Alzheimer’s-like disease progression. Nat Commun 2013; 4(1): 1-9.
[http://dx.doi.org/10.1016/j.bbi.2017.12.007] [PMID: 29246456]
[80]
Czirr E, Castello NA, Mosher KI, et al. Microglial complement receptor 3 regulates brain Aβ levels through secreted proteolytic activity. J Exp Med 2017; 214(4): 1081-92.
[http://dx.doi.org/10.1084/jem.20162011] [PMID: 28298456]
[81]
Schafer DP, Lehrman EK, Kautzman AG, et al. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 2012; 74(4): 691-705.
[http://dx.doi.org/10.1016/j.neuron.2012.03.026] [PMID: 22632727]
[82]
Silverman SM, Ma W, Wang X, Zhao L, Wong WT. C3- and CR3-dependent microglial clearance protects photoreceptors in retinitis pigmentosa. J Exp Med 2019; 216(8): 1925-43.
[http://dx.doi.org/10.1084/jem.20190009] [PMID: 31209071]
[83]
Merlini M, Rafalski VA, Rios Coronado PE, et al. Fibrinogen induces microglia-mediated spine elimination and cognitive impairment in an Alzheimer’s disease model. Neuron 2019; 101(6): 1099-1108.e6.
[http://dx.doi.org/10.1016/j.neuron.2019.01.014] [PMID: 30737131]
[84]
Shi Q, Chowdhury S, Ma R, et al. Complement C3 deficiency protects against neurodegeneration in aged plaque-rich APP/PS1 mice. Sci Translat Med 2017; 9(392): eaaf6295.
[85]
Hong S, Beja-Glasser VF, Nfonoyim BM, et al. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science 2016; 352(6286): 712-6.
[http://dx.doi.org/10.1126/science.aad8373] [PMID: 27033548]
[86]
Fu H, Liu B, Frost JL, et al. Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Aβ by microglia. Glia 2012; 60(6): 993-1003.
[http://dx.doi.org/10.1002/glia.22331] [PMID: 22438044]
[87]
Hahn-Dantona E, Ramos-Desimone N, Sipley J, Nagase H, French DL, Quigley JP. Activation of proMMP-9 by a plasmin/MMP-3 cascade in a tumor cell model. Regulation by tissue inhibitors of metalloproteinases. Ann N Y Acad Sci 1999; 878: 372-87.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb07696.x] [PMID: 10415742]
[88]
Stelzmann RA, Norman Schnitzlein H, Reed Murtagh F, Murtagh FR. An English translation of Alzheimer’s 1907 paper, “On a peculiar disease of the cerebral cortex? Clin Anat 1995; 8(6): 429-31.
[http://dx.doi.org/10.1002/ca.980080612] [PMID: 8713166]
[89]
Hellwig S, Masuch A, Nestel S, Katzmarski N, Meyer-Luehmann M, Biber K. Forebrain microglia from wild-type but not adult 5xFAD mice prevent amyloid-β plaque formation in organotypic hippocampal slice cultures. Sci Rep 2015; 5(1): 14624.
[http://dx.doi.org/10.1038/srep14624] [PMID: 26416689]
[90]
Pan X, Zhu Y, Lin N, et al. Microglial phagocytosis induced by fibrillar β-amyloid is attenuated by oligomeric β-amyloid: implications for Alzheimer’s disease. Mol Neurodegener 2011; 6(1): 45.
[http://dx.doi.org/10.1186/1750-1326-6-45] [PMID: 21718498]
[91]
Pluvinage JV, Haney MS, Smith BAH, et al. CD22 blockade restores homeostatic microglial phagocytosis in ageing brains. Nature 2019; 568(7751): 187-92.
[http://dx.doi.org/10.1038/s41586-019-1088-4] [PMID: 30944478]
[92]
Grathwohl S, Kälin RE, Bolmont T, et al. Formation and maintenance of Alzheimer’s disease beta-amyloid plaques in the absence of microglia. Nat Neurosci 2010; 16(1): 164-7.
[PMID: 19838177]
[93]
PrabhuDas MR, Baldwin CL, Bollyky PL, et al. A consensus definitive classification of scavenger receptors and their roles in health and disease. J Immunol 2017; 198(10): 3775-89.
[http://dx.doi.org/10.4049/jimmunol.1700373] [PMID: 28483986]
[94]
Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 1979; 76(1): 333-7.
[http://dx.doi.org/10.1073/pnas.76.1.333] [PMID: 218198]
[95]
Chinetti G, Gbaguidi FG, Griglio S, et al. CLA-1/SR-BI is expressed in atherosclerotic lesion macrophages and regulated by activators of peroxisome proliferator-activated receptors. Circulation 2000; 101(20): 2411-7.
[http://dx.doi.org/10.1161/01.CIR.101.20.2411] [PMID: 10821819]
[96]
Park Y, Pham TX, Lee J. Lipopolysaccharide represses the expression of ATP-binding cassette transporter G1 and scavenger receptor class B, type I in murine macrophages. Inflamm Res 2012; 61(5): 465-72.
[http://dx.doi.org/10.1007/s00011-011-0433-3] [PMID: 22240665]
[97]
Paresce DM, Ghosh RN, Maxfield FR. Microglial cells internalize aggregates of the Alzheimer’s disease amyloid β-protein via a scavenger receptor. Neuron 1996; 17(3): 553-65.
[http://dx.doi.org/10.1016/S0896-6273(00)80187-7] [PMID: 8816718]
[98]
El Khoury J, Hickman SE, Thomas CA, Loike JD, Silverstein SC. Microglia, scavenger receptors, and the pathogenesis of Alzheimer’s disease. Neurobiol Aging 1998; 19 (Suppl. 1): S81-4.
[http://dx.doi.org/10.1016/S0197-4580(98)00036-0] [PMID: 9562474]
[99]
Kim SM, Mun BR, Lee SJ, et al. TREM2 promotes Aβ phagocytosis by upregulating C/EBPα-dependent CD36 expression in microglia. Sci Rep 2017; 7(1): 11118.
[http://dx.doi.org/10.1038/s41598-017-11634-x] [PMID: 28127051]
[100]
Doens D, Valiente PA, Mfuh AM, et al. Identification of inhibitors of CD36-amyloid beta binding as potential agents for Alzheimer’s Disease. ACS Chem Neurosci 2017; 8(6): 1232-41.
[http://dx.doi.org/10.1021/acschemneuro.6b00386] [PMID: 28150942]
[101]
Park L, Wang G, Zhou P, et al. Scavenger receptor CD36 is essential for the cerebrovascular oxidative stress and neurovascular dysfunction induced by amyloid-β. Proc Natl Acad Sci USA 2011; 108(12): 5063-8.
[http://dx.doi.org/10.1073/pnas.1015413108] [PMID: 21383152]
[102]
Lue LF, Walker DG, Brachova L, et al. Involvement of microglial receptor for advanced glycation endproducts (RAGE) in Alzheimer’s disease: Identification of a cellular activation mechanism. Exp Neurol 2001; 171(1): 29-45.
[http://dx.doi.org/10.1006/exnr.2001.7732] [PMID: 11520119]
[103]
C RC. Lukose B, Rani P. G82S RAGE polymorphism influences amyloid-RAGE interactions relevant in Alzheimer’s disease pathology. PLoS One 2020; 15(10): e0225487.
[http://dx.doi.org/10.1371/journal.pone.0225487] [PMID: 33119615]
[104]
Deane R, Singh I, Sagare AP, et al. A multimodal RAGE-specific inhibitor reduces amyloid β–mediated brain disorder in a mouse model of Alzheimer disease. J Clin Invest 2012; 122(4): 1377-92.
[http://dx.doi.org/10.1172/JCI58642] [PMID: 22406537]
[105]
Cornejo F, von Bernhardi R. Role of scavenger receptors in glia-mediated neuroinflammatory response associated with Alzheimer’s disease. Mediators Inflamm 2013; 2013: 895651.
[http://dx.doi.org/10.1155/2013/895651] [PMID: 23737655]
[106]
Zhang Y, Chen K, Sloan SA, et al. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J Neurosci 2014; 34(36): 11929-47.
[http://dx.doi.org/10.1523/JNEUROSCI.1860-14.2014] [PMID: 25186741]
[107]
Eugenín J, Vecchiola A, Murgas P, Arroyo P, Cornejo F, von Bernhardi R. Expression pattern of scavenger receptors and amyloid-β phagocytosis of astrocytes and microglia in culture are modified by acidosis: implications for Alzheimer’s disease. J Alzheimers Dis 2016; 53(3): 857-73.
[http://dx.doi.org/10.3233/JAD-160083] [PMID: 27258416]
[108]
Nguyen AT, Wang K, Hu G, et al. APOE and TREM2 regulate amyloid-responsive microglia in Alzheimer’s disease. Acta Neuropathol 2020; 140(4): 477-93.
[http://dx.doi.org/10.1007/s00401-020-02200-3] [PMID: 32840654]
[109]
Pocivavsek A, Burns MP, Rebeck GW. Low-density lipoprotein receptors regulate microglial inflammation through c-Jun N-terminal kinase. Glia 2009; 57(4): 444-53.
[http://dx.doi.org/10.1002/glia.20772] [PMID: 18803301]
[110]
Ulrich JD, Ulland TK, Mahan TE, et al. ApoE facilitates the microglial response to amyloid plaque pathology. J Exp Med 2018; 215(4): 1047-58.
[http://dx.doi.org/10.1084/jem.20171265] [PMID: 29483128]
[111]
Malik M, Parikh I, Vasquez JB, et al. Genetics ignite focus on microglial inflammation in Alzheimer’s disease. Mol Neurodegener 2015; 10(1): 52.
[http://dx.doi.org/10.1186/s13024-015-0048-1] [PMID: 26438529]
[112]
Zhu XC, Yu JT, Jiang T, Wang P, Cao L, Tan L. CR1 in Alzheimer’s disease. Mol Neurobiol 2015; 51(2): 753-65.
[http://dx.doi.org/10.1007/s12035-014-8723-8] [PMID: 24794147]
[113]
Crehan H, Hardy J, Pocock J. Blockage of CR1 prevents activation of rodent microglia. Neurobiol Dis 2013; 54: 139-49.
[http://dx.doi.org/10.1016/j.nbd.2013.02.003] [PMID: 23454195]
[114]
Djounidi A, Djounidi A, Merair N, Drizi I, Merair N, Drizi I. P-118 Gastroenteropancreatic neuroendocrine tumors: Experience of the oncology department of the Oran military hospital. Ann Oncol 2020; 31: S128.
[http://dx.doi.org/10.1016/j.annonc.2020.04.200]
[115]
Ulland TK, Song WM, Huang SCC, et al. TREM2 maintains microglial metabolic fitness in Alzheimer’s disease. Cell 2017; 170(4): 649-663.e13.
[http://dx.doi.org/10.1016/j.cell.2017.07.023] [PMID: 28802038]
[116]
Chang YT, Mori E, Suzuki M, et al. APOE-MS4A genetic interactions are associated with executive dysfunction and network abnormality in clinically mild Alzheimer’s disease. Neuroimage Clin 2019; 21: 101621.
[http://dx.doi.org/10.1016/j.nicl.2018.101621] [PMID: 30528368]
[117]
Aikawa T, Ren Y, Yamazaki Y, et al. ABCA7 haplodeficiency disturbs microglial immune responses in the mouse brain. Proc Natl Acad Sci USA 2019; 116(47): 23790-6.
[http://dx.doi.org/10.1073/pnas.1908529116] [PMID: 31690660]
[118]
Tsai AP, Lin PBC, Dong C, et al. INPP5D expression is associated with risk for Alzheimer’s disease and induced by plaque-associated microglia. Neurobiol Dis 2021; 153: 105303.
[http://dx.doi.org/10.1016/j.nbd.2021.105303] [PMID: 33631273]
[119]
Fay DL, Akhavan S, Goldberg VM. Angew Chem Int Ed 1967; 6(11): 951-2.
[120]
Bolós M, Llorens-Martín M, Jurado-Arjona J, Hernández F, Rábano A, Avila J. Direct evidence of internalization of tau by microglia in vitro and in vivo. J Alzheimers Dis 2016; 50(1): 77-87.
[http://dx.doi.org/10.3233/JAD-150704] [PMID: 26638867]
[121]
Luo W, Liu W, Hu X, Hanna M, Caravaca A, Paul SM. Microglial internalization and degradation of pathological tau is enhanced by an anti-tau monoclonal antibody. Sci Rep 2015; 5(1): 11161.
[http://dx.doi.org/10.1038/srep11161] [PMID: 26057852]
[122]
Perea JR, Bolós M, Avila J. Microglia in Alzheimer’s disease in the context of tau pathology. Biomolecules 2020; 10(10): 1439.
[http://dx.doi.org/10.3390/biom10101439] [PMID: 33066368]
[123]
Clayton K, Delpech JC, Herron S, et al. Plaque associated microglia hyper-secrete extracellular vesicles and accelerate tau propagation in a humanized APP mouse model. Mol Neurodegener 2021; 16(1): 1-16.
[PMID: 33413517]
[124]
Perea JR, Llorens-Martín M, Ávila J, Bolós M. The role of microglia in the spread of tau: relevance for tauopathies. Front Cell Neurosci 2018; 12: 172.
[http://dx.doi.org/10.3389/fncel.2018.00172] [PMID: 30042659]
[125]
Choi J, Ifuku M, Noda M, Guilarte TR. Translocator protein (18 kDa)/peripheral benzodiazepine receptor specific ligands induce microglia functions consistent with an activated state. Glia 2011; 59(2): 219-30.
[http://dx.doi.org/10.1002/glia.21091] [PMID: 21125642]
[126]
Bhaskar K, Konerth M, Kokiko-Cochran ON, Cardona A, Ransohoff RM, Lamb BT. Regulation of tau pathology by the microglial fractalkine receptor. Neuron 2010; 68(1): 19-31.
[http://dx.doi.org/10.1016/j.neuron.2010.08.023] [PMID: 20920788]
[127]
Leyns CEG, Gratuze M, Narasimhan S, et al. TREM2 function impedes tau seeding in neuritic plaques. Nat Neurosci 2019; 22(8): 1217-22.
[http://dx.doi.org/10.1038/s41593-019-0433-0] [PMID: 31235932]
[128]
Streit WJ, Braak H, Xue QS, Bechmann I. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer’s disease. Acta Neuropathol 2009; 118(4): 475-85.
[http://dx.doi.org/10.1007/s00401-009-0556-6] [PMID: 19513731]
[129]
Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Clearance of senescent glial cells prevents tau-dependent pathology and cognitive decline. Nature 2018; 562(7728): 578-82.
[http://dx.doi.org/10.1038/s41586-018-0543-y] [PMID: 30232451]
[130]
Fernandez-Gomez F, Tran H, Dhaenens CM, et al. Myotonic dystrophy: an RNA toxic gain of function tauopathy? Adv Exp Med Biol 2019; 1184: 207-16.
[http://dx.doi.org/10.1007/978-981-32-9358-8_17] [PMID: 32096040]
[131]
Maphis N, Xu G, Kokiko-Cochran ON, et al. Reactive microglia drive tau pathology and contribute to the spreading of pathological tau in the brain. Brain 2015; 138(6): 1738-55.
[http://dx.doi.org/10.1093/brain/awv081] [PMID: 25833819]
[132]
Asai H, Ikezu S, Tsunoda S, et al. Depletion of microglia and inhibition of exosome synthesis halt tau propagation. Nat Neurosci 2015; 18(11): 1584-93.
[http://dx.doi.org/10.1038/nn.4132] [PMID: 26436904]
[133]
Fang EF, Hou Y, Palikaras K, et al. Mitophagy inhibits amyloid-β and tau pathology and reverses cognitive deficits in models of Alzheimer’s disease. Nat Neurosci 2019; 22(3): 401-12.
[http://dx.doi.org/10.1038/s41593-018-0332-9] [PMID: 30742114]
[134]
Ahmed S, Kwatra M, Ranjan Panda S, Murty USN, Naidu VGM. Andrographolide suppresses NLRP3 inflammasome activation in microglia through induction of parkin-mediated mitophagy in in-vitro and in-vivo models of Parkinson disease. Brain Behav Immun 2021; 91: 142-58.
[http://dx.doi.org/10.1016/j.bbi.2020.09.017] [PMID: 32971182]
[135]
Rawat P, Teodorof-Diedrich C, Spector SA. Human immunodeficiency virus Type‐1 single‐stranded RNA activates the NLRP3 inflammasome and impairs autophagic clearance of damaged mitochondria in human microglia. Glia 2019; 67(5): 802-24.
[http://dx.doi.org/10.1002/glia.23568] [PMID: 30582668]
[136]
Marín-Teva JL, Almendros A, Calvente R, Cuadros MA, Navascués J. Proliferation of actively migrating ameboid microglia in the developing quail retina. Anat Embryol 1999; 200(3): 289-300.
[http://dx.doi.org/10.1007/s004290050280] [PMID: 10463344]
[137]
Wierzba-Bobrowicz T, Gwiazda E, Kosno-Kruszewska E, et al. Morphological analysis of active microglia-rod and ramified microglia in human brains affected by some neurological diseases (SSPE, Alzheimer’s disease and Wilson’s disease). Folia Neuropathol 2002; 40(3): 125-31.
[PMID: 12572918]
[138]
Kraft AD, Harry GJ. Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health 2011; 8(7): 2980-3018.
[http://dx.doi.org/10.3390/ijerph8072980] [PMID: 21845170]
[139]
Krause DL, Müller N. Neuroinflammation, microglia and implications for anti-inflammatory treatment in Alzheimer’s disease. Int J Alzheimers Dis 2010; 2010: 732806.
[http://dx.doi.org/10.4061/2010/732806]
[140]
Frank-Cannon TC, Alto LT, McAlpine FE, Tansey MG. Does neuroinflammation fan the flame in neurodegenerative diseases? Mol Neurodegener 2009; 4(1): 47.
[http://dx.doi.org/10.1186/1750-1326-4-47] [PMID: 19917131]
[141]
Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. Mechanisms underlying inflammation in neurodegeneration. Cell 2010; 140(6): 918-34.
[http://dx.doi.org/10.1016/j.cell.2010.02.016] [PMID: 20303880]
[142]
Xu L, He D, Bai Y. Microglia-mediated inflammation and neurodegenerative disease. Mol Neurobiol 2016; 53(10): 6709-15.
[http://dx.doi.org/10.1007/s12035-015-9593-4] [PMID: 26659872]
[143]
Anderson SR, Vetter ML. Developmental roles of microglia: A window into mechanisms of disease. Dev Dyn 2019; 248(1): 98-117.
[PMID: 30444278]
[144]
Tay TL, Mai D, Dautzenberg J, et al. A new fate mapping system reveals context-dependent random or clonal expansion of microglia. Nat Neurosci 2017; 20(6): 793-803.
[http://dx.doi.org/10.1038/nn.4547] [PMID: 28414331]
[145]
Tay TL. Sagar, Dautzenberg J, Grün D, Prinz M. Unique microglia recovery population revealed by single-cell RNAseq following neurodegeneration. Acta Neuropathol Commun 2018; 6(1): 87.
[http://dx.doi.org/10.1186/s40478-018-0584-3] [PMID: 30185219]
[146]
Deczkowska A, Keren-Shaul H, Weiner A, Colonna M, Schwartz M, Amit I. Disease-associated microglia: A universal immune sensor of neurodegeneration. Cell 2018; 173(5): 1073-81.
[http://dx.doi.org/10.1016/j.cell.2018.05.003] [PMID: 29775591]
[147]
Masuda T, Sankowski R, Staszewski O, et al. Spatial and temporal heterogeneity of mouse and human microglia at single-cell resolution. Nature 2019; 566(7744): 388-92.
[http://dx.doi.org/10.1038/s41586-019-0924-x] [PMID: 30760929]
[148]
Hansen DV, Hanson JE, Sheng M. Microglia in Alzheimer’s disease. J Cell Biol 2018; 217(2): 459-72.
[http://dx.doi.org/10.1083/jcb.201709069] [PMID: 29196460]
[149]
Kierdorf K, Erny D, Goldmann T, et al. Microglia emerge from erythromyeloid precursors via Pu.1- and Irf8-dependent pathways. Nat Neurosci 2013; 16(3): 273-80.
[http://dx.doi.org/10.1038/nn.3318] [PMID: 23334579]
[150]
Spielman LJ, Gibson DL, Klegeris A. Incretin hormones regulate microglia oxidative stress, survival and expression of trophic factors. Eur J Cell Biol 2017; 96(3): 240-53.
[http://dx.doi.org/10.1016/j.ejcb.2017.03.004] [PMID: 28336086]
[151]
Morris GP, Clark IA, Zinn R, Vissel B. Microglia: A new frontier for synaptic plasticity, learning and memory, and neurodegenerative disease research. Neurobiol Learn Mem 2013; 105: 40-53.
[http://dx.doi.org/10.1016/j.nlm.2013.07.002] [PMID: 23850597]
[152]
Dean JM, Wang X, Kaindl AM, et al. Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro. Brain Behav Immun 2010; 24(5): 776-83.
[http://dx.doi.org/10.1016/j.bbi.2009.10.018] [PMID: 19903519]
[153]
Jiao C, Gao F, Ou L, et al. Tetrahydroxystilbene glycoside antagonizes β-amyloid-induced inflammatory injury in microglia cells by regulating PU.1 expression. Neuroreport 2018; 29(10): 787-93.
[http://dx.doi.org/10.1097/WNR.0000000000001032] [PMID: 29668503]
[154]
Morganti JM, Riparip LK, Rosi S. Call off the dog (ma): M1/M2 polarization is concurrent following traumatic brain injury. PLoS One 2016; 11(1): e0148001.
[http://dx.doi.org/10.1371/journal.pone.0148001] [PMID: 26808663]
[155]
Mrdjen D, Pavlovic A, Hartmann FJ, et al. High-dimensional single-cell mapping of central nervous system immune cells reveals distinct myeloid subsets in health, aging, and disease. Immunity 2018; 48(2): 380-395.e6.
[http://dx.doi.org/10.1016/j.immuni.2018.01.011] [PMID: 29426702]
[156]
Srinivasan K, Friedman BA, Etxeberria A, et al. Alzheimer’s patient microglia exhibit enhanced aging and unique transcriptional activation. Cell Rep 2020; 31(13): 107843.
[http://dx.doi.org/10.1016/j.celrep.2020.107843] [PMID: 32610143]
[157]
Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 2005; 308(5726): 1314-8.
[http://dx.doi.org/10.1126/science.1110647] [PMID: 15831717]
[158]
Ueno M, Fujita Y, Tanaka T, et al. Layer V cortical neurons require microglial support for survival during postnatal development. Nat Neurosci 2013; 16(5): 543-51.
[http://dx.doi.org/10.1038/nn.3358] [PMID: 23525041]
[159]
Trang T, Beggs S, Salter MW. Brain-derived neurotrophic factor from microglia: A molecular substrate for neuropathic pain. Neuron Glia Biol 2011; 7(1): 99-108.
[http://dx.doi.org/10.1017/S1740925X12000087] [PMID: 22613083]
[160]
Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev Immunol 2014; 32(1): 367-402.
[http://dx.doi.org/10.1146/annurev-immunol-032713-120240] [PMID: 24471431]
[161]
Hristova M, Cuthill D, Zbarsky V, et al. Activation and deactivation of periventricular white matter phagocytes during postnatal mouse development. Glia 2010; 58(1): 11-28.
[http://dx.doi.org/10.1002/glia.20896] [PMID: 19544386]
[162]
Takahashi K, Rochford CDP, Neumann H. Clearance of apoptotic neurons without inflammation by microglial triggering receptor expressed on myeloid cells-2. J Exp Med 2005; 201(4): 647-57.
[http://dx.doi.org/10.1084/jem.20041611] [PMID: 15728241]
[163]
Wake H, Moorhouse AJ, Jinno S, Kohsaka S, Nabekura J. Resting microglia directly monitor the functional state of synapses in vivo and determine the fate of ischemic terminals. J Neurosci 2009; 29(13): 3974-80.
[http://dx.doi.org/10.1523/JNEUROSCI.4363-08.2009] [PMID: 19339593]
[164]
Paolicelli RC, Bolasco G, Pagani F, et al. Synaptic pruning by microglia is necessary for normal brain development. Science 2011; 333(6048): 1456-8.
[http://dx.doi.org/10.1126/science.1202529] [PMID: 21778362]
[165]
Yamada J, Hayashi Y, Jinno S, et al. Reduced synaptic activity precedes synaptic stripping in vagal motoneurons after axotomy. Glia 2008; 56(13): 1448-62.
[http://dx.doi.org/10.1002/glia.20711] [PMID: 18512252]
[166]
Roumier A, Béchade C, Poncer JC, et al. Impaired synaptic function in the microglial KARAP/DAP12-deficient mouse. J Neurosci 2004; 24(50): 11421-8.
[http://dx.doi.org/10.1523/JNEUROSCI.2251-04.2004] [PMID: 15601948]
[167]
Zhong Y, Zhou LJ, Ren WJ, et al. The direction of synaptic plasticity mediated by C-fibers in spinal dorsal horn is decided by Src-family kinases in microglia: The role of tumor necrosis factor-α. Brain Behav Immun 2010; 24(6): 874-80.
[http://dx.doi.org/10.1016/j.bbi.2010.01.007] [PMID: 20116424]
[168]
Krabbe G, Halle A, Matyash V, et al. Functional impairment of microglia coincides with beta-amyloid deposition in mice with Alzheimer-like pathology. PLoS One 2013; 8(4): e60921.
[http://dx.doi.org/10.1371/journal.pone.0060921] [PMID: 23577177]
[169]
Cao J, Hou J, Ping J, Cai D. Advances in developing novel therapeutic strategies for Alzheimer’s disease. Mol Neurodegener 2018; 13(1): 64.
[http://dx.doi.org/10.1186/s13024-018-0299-8] [PMID: 30541602]
[170]
Heneka MT, Carson MJ, Khoury JE, et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol 2015; 14(4): 388-405.
[http://dx.doi.org/10.1016/S1474-4422(15)70016-5] [PMID: 25792098]
[171]
Ajami B, Bennett JL, Krieger C, Tetzlaff W, Rossi FMV. Local self-renewal can sustain CNS microglia maintenance and function throughout adult life. Nat Neurosci 2007; 10(12): 1538-43.
[http://dx.doi.org/10.1038/nn2014] [PMID: 18026097]
[172]
Domingues C, da Cruz E, Silva OAB, Henriques AG, Henriques A. Impact of cytokines and chemokines on Alzheimer’s disease neuropathological hallmarks. Curr Alzheimer Res 2017; 14(8): 870-82.
[PMID: 28317487]
[173]
Hu NW, Corbett GT, Moore S, et al. Extracellular forms of Aβ and tau from iPSC models of Alzheimer’s disease disrupt synaptic plasticity. Cell Rep 2018; 23(7): 1932-8.
[http://dx.doi.org/10.1016/j.celrep.2018.04.040] [PMID: 29768194]
[174]
Trambauer J, Fukumori A, Steiner H. Pathogenic Aβ generation in familial Alzheimer’s disease: novel mechanistic insights and therapeutic implications. Curr Opin Neurobiol 2020; 61: 73-81.
[http://dx.doi.org/10.1016/j.conb.2020.01.011] [PMID: 32105841]
[175]
Zott B, Simon MM, Hong W, et al. A vicious cycle of β amyloid–dependent neuronal hyperactivation. Science 2019; 365(6453): 559-65.
[http://dx.doi.org/10.1126/science.aay0198] [PMID: 31395777]
[176]
Liu L, Liu Y, Li N, et al. Multiple inflammatory profiles of microglia and altered neuroimages in APP/PS1 transgenic AD mice. Brain Res Bull 2020; 156: 86-104.
[http://dx.doi.org/10.1016/j.brainresbull.2020.01.003] [PMID: 31931120]
[177]
Shen C, Ma Y, Zeng Z, et al. RAGE-specific inhibitor FPS-ZM1 attenuates AGEs-induced neuroinflammation and oxidative stress in rat primary microglia. Neurochem Res 2017; 42(10): 2902-11.
[http://dx.doi.org/10.1007/s11064-017-2321-x] [PMID: 28664403]
[178]
Yang CN, Shiao YJ, Shie FS, et al. Mechanism mediating oligomeric Aβ clearance by naïve primary microglia. Neurobiol Dis 2011; 42(3): 221-30.
[http://dx.doi.org/10.1016/j.nbd.2011.01.005] [PMID: 21220023]
[179]
Cheng YW, Chang CC, Chang TS, et al. Aβ stimulates microglial activation through antizyme‐dependent downregulation of ornithine decarboxylase. J Cell Physiol 2019; 234(6): 9733-45.
[http://dx.doi.org/10.1002/jcp.27659] [PMID: 30417362]
[180]
Streit WJ, Khoshbouei H, Bechmann I. Dystrophic microglia in late‐onset Alzheimer’s disease. Glia 2020; 68(4): 845-54.
[http://dx.doi.org/10.1002/glia.23782] [PMID: 31922322]
[181]
Qin B, Cartier L, Dubois-Dauphin M, Li B, Serrander L, Krause KH. A key role for the microglial NADPH oxidase in APP-dependent killing of neurons. Neurobiol Aging 2006; 27(11): 1577-87.
[http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.036] [PMID: 16260066]
[182]
Krieger M, Krieger J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem 1994; 63(1): 601-37.
[http://dx.doi.org/10.1146/annurev.bi.63.070194.003125] [PMID: 7979249]
[183]
Godoy B, Murgas P, Tichauer J, Von Bernhardi R. Scavenger receptor class A ligands induce secretion of IL1β and exert a modulatory effect on the inflammatory activation of astrocytes in culture. J Neuroimmunol 2012; 251(1-2): 6-13.
[http://dx.doi.org/10.1016/j.jneuroim.2012.06.004] [PMID: 22743055]
[184]
Murgas P, Godoy B, von Bernhardi R. Aβ potentiates inflammatory activation of glial cells induced by scavenger receptor ligands and inflammatory mediators in culture. Neurotox Res 2012; 22(1): 69-78.
[http://dx.doi.org/10.1007/s12640-011-9306-3] [PMID: 22237943]
[185]
El Khoury JB, Moore KJ, Means TK, et al. CD36 mediates the innate host response to β-amyloid. J Exp Med 2003; 197(12): 1657-66.
[http://dx.doi.org/10.1084/jem.20021546] [PMID: 12796468]
[186]
Ricciarelli R, d’Abramo C, Zingg JM, et al. CD36 overexpression in human brain correlates with β-amyloid deposition but not with Alzheimer’s disease. Free Radic Biol Med 2004; 36(8): 1018-24.
[http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.007] [PMID: 15059642]
[187]
Stewart CR, Stuart LM, Wilkinson K, et al. CD36 ligands promote sterile inflammation through assembly of a Toll-like receptor 4 and 6 heterodimer. Nat Immunol 2010; 11(2): 155-61.
[http://dx.doi.org/10.1038/ni.1836] [PMID: 20037584]
[188]
Moreira PI, Duarte AI, Santos MS, Rego AC, Oliveira CR. An integrative view of the role of oxidative stress, mitochondria and insulin in Alzheimer’s disease. J Alzheimers Dis 2009; 16(4): 741-61.
[http://dx.doi.org/10.3233/JAD-2009-0972] [PMID: 19387110]
[189]
Origlia N, Bonadonna C, Rosellini A, et al. Microglial receptor for advanced glycation end product-dependent signal pathway drives β-amyloid-induced synaptic depression and long-term depression impairment in entorhinal cortex. J Neurosci 2010; 30(34): 11414-25.
[http://dx.doi.org/10.1523/JNEUROSCI.2127-10.2010] [PMID: 20739563]
[190]
Fang F, Lue LF, Yan S, et al. RAGE‐dependent signaling in microglia contributes to neuroinflammation, Aβ accumulation, and impaired learning/memory in a mouse model of Alzheimer’s disease. FASEB J 2010; 24(4): 1043-55.
[http://dx.doi.org/10.1096/fj.09-139634] [PMID: 19906677]
[191]
Winnicki W, Pichler P, Mechtler K, et al. A novel approach to immunoapheresis of C3a/C3 and proteomic identification of associates. PeerJ 2019; 7: e8218.
[http://dx.doi.org/10.7717/peerj.8218] [PMID: 31871840]
[192]
Hsu BE, Roy J, Mouhanna J, et al. C3a elicits unique migratory responses in immature low-density neutrophils. Oncogene 2020; 39(12): 2612-23.
[http://dx.doi.org/10.1038/s41388-020-1169-8] [PMID: 32020055]
[193]
Woodruff TM, Ager RR, Tenner AJ, Noakes PG, Taylor SM. The role of the complement system and the activation fragment C5a in the central nervous system. Neuromolecular Med 2010; 12(2): 179-92.
[http://dx.doi.org/10.1007/s12017-009-8085-y] [PMID: 19763906]
[194]
Ager RR, Fonseca MI, Chu SH, et al. Microglial C5aR (CD88) expression correlates with amyloid-β deposition in murine models of Alzheimer’s disease. J Neurochem 2010; 113(2): 389-401.
[http://dx.doi.org/10.1111/j.1471-4159.2010.06595.x] [PMID: 20132482]
[195]
Fonseca MI, Ager RR, Chu SH, et al. Treatment with a C5aR antagonist decreases pathology and enhances behavioral performance in murine models of Alzheimer’s disease. J Immunol 2009; 183(2): 1375-83.
[http://dx.doi.org/10.4049/jimmunol.0901005] [PMID: 19561098]
[196]
Hollingworth P, Harold D, Sims R, et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet 2011; 43(5): 429-35.
[http://dx.doi.org/10.1038/ng.803] [PMID: 21460840]
[197]
Jiang YT, Li HY, Cao XP, Tan L. Meta-analysis of the association between CD33 and Alzheimer’s disease. Ann Transl Med 2018; 6(10): 169.
[http://dx.doi.org/10.21037/atm.2018.04.21] [PMID: 29951491]
[198]
Macauley MS, Crocker PR, Paulson JC. Siglec-mediated regulation of immune cell function in disease. Nat Rev Immunol 2014; 14(10): 653-66.
[http://dx.doi.org/10.1038/nri3737] [PMID: 25234143]
[199]
Lajaunias F, Dayer JM, Chizzolini C. Constitutive repressor activity of CD33 on human monocytes requires sialic acid recognition and phosphoinositide 3-kinase-mediated intracellular signaling. Eur J Immunol 2005; 35(1): 243-51.
[http://dx.doi.org/10.1002/eji.200425273] [PMID: 15597323]
[200]
Feske S, Skolnik EY, Prakriya M. Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol 2012; 12(7): 532-47.
[http://dx.doi.org/10.1038/nri3233] [PMID: 22699833]
[201]
Dale E, Staal RGW, Eder C, Möller T. K Ca 3.1—a microglial target ready for drug repurposing? Glia 2016; 64(10): 1733-41.
[http://dx.doi.org/10.1002/glia.22992] [PMID: 27121595]
[202]
Khanna R, Roy L, Zhu X, Schlichter LC. K+ channels and the microglial respiratory burst. Am J Physiol Cell Physiol 2001; 280(4): C796-806.
[http://dx.doi.org/10.1152/ajpcell.2001.280.4.C796] [PMID: 11245596]
[203]
Schilling T, Eder C. A novel physiological mechanism of glycine-induced immunomodulation: Na + -coupled amino acid transporter currents in cultured brain macrophages. J Physiol 2004; 559(1): 35-40.
[http://dx.doi.org/10.1113/jphysiol.2004.070763] [PMID: 15243140]
[204]
Kaushal V, Koeberle PD, Wang Y, Schlichter LC. The Ca2+-activated K+ channel KCNN4/KCa3.1 contributes to microglia activation and nitric oxide-dependent neurodegeneration. J Neurosci 2007; 27(1): 234-44.
[http://dx.doi.org/10.1523/JNEUROSCI.3593-06.2007] [PMID: 17202491]
[205]
Staal RGW, Khayrullina T, Zhang H, et al. Inhibition of the potassium channel K Ca 3.1 by senicapoc reverses tactile allodynia in rats with peripheral nerve injury. Eur J Pharmacol 2017; 795: 1-7.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.031] [PMID: 27876619]
[206]
Chen YJ, Wallace BK, Yuen N, Jenkins DP, Wulff H, O’Donnell ME. Blood-brain barrier KCa3.1 channels: Evidence for a role in brain Na uptake and edema in ischemic stroke. Stroke 2015; 46(1): 237-44.
[http://dx.doi.org/10.1161/STROKEAHA.114.007445] [PMID: 25477223]
[207]
Staal RGW, Weinstein JR, Nattini M, Cajina M, Chandresana G, Möller T. Senicapoc: Repurposing a drug to target microglia KCa3. 1 in stroke. Neurochem Res 2017; 42(9): 2639-45.
[http://dx.doi.org/10.1007/s11064-017-2223-y] [PMID: 28364331]
[208]
Wong DT, Bymaster FP, Engleman EA. Prozac (fluoxetine, lilly 110140), the first selective serotonin uptake inhibitor and an antidepressant drug: Twenty years since its first publication. Life Sci 1995; 57(5): 411-41.
[http://dx.doi.org/10.1016/0024-3205(95)00209-O] [PMID: 7623609]
[209]
Schwarcz R, Stone TW. The kynurenine pathway and the brain: Challenges, controversies and promises. Neuropharmacology 2017; 112(Pt B): 237-47.
[http://dx.doi.org/10.1016/j.neuropharm.2016.08.003] [PMID: 27511838]
[210]
Guidetti P, Hoffman GE, Melendez-Ferro M, Albuquerque EX, Schwarcz R. Astrocytic localization of kynurenine aminotransferase II in the rat brain visualized by immunocytochemistry. Glia 2007; 55(1): 78-92.
[http://dx.doi.org/10.1002/glia.20432] [PMID: 17024659]
[211]
Zádori D, Veres G, Szalárdy L, Klivényi P, Vécsei L. Alzheimer’s disease: recent concepts on the relation of mitochondrial disturbances, excitotoxicity, neuroinflammation, and kynurenines. J Alzheimers Dis 2018; 62(2): 523-47.
[http://dx.doi.org/10.3233/JAD-170929] [PMID: 29480191]
[212]
Wennström M, Nielsen HM, Orhan F, Londos E, Minthon L, Erhardt S. Kynurenic Acid levels in cerebrospinal fluid from patients with Alzheimer’s disease or dementia with lewy bodies. Int J Tryptophan Res 2014; 7: IJTR.S13958.
[http://dx.doi.org/10.4137/IJTR.S13958] [PMID: 24855376]
[213]
Gulaj E, Pawlak K, Bien B, Pawlak D. Kynurenine and its metabolites in Alzheimer’s disease patients. Adv Med Sci 2010; 55(2): 204-11.
[http://dx.doi.org/10.2478/v10039-010-0023-6] [PMID: 20639188]
[214]
Wu W, Nicolazzo JA, Wen L, et al. Expression of tryptophan 2,3-dioxygenase and production of kynurenine pathway metabolites in triple transgenic mice and human Alzheimer’s disease brain. PLoS One 2013; 8(4): e59749.
[http://dx.doi.org/10.1371/journal.pone.0059749] [PMID: 23630570]
[215]
Bonda DJ, Mailankot M, Stone JG, et al. Indoleamine 2,3-dioxygenase and 3-hydroxykynurenine modifications are found in the neuropathology of Alzheimer’s disease. Redox Rep 2010; 15(4): 161-8.
[http://dx.doi.org/10.1179/174329210X12650506623645] [PMID: 20663292]
[216]
Tavassoly O, Sade D, Bera S, Shaham-Niv S, Vocadlo DJ, Gazit E. Quinolinic acid amyloid-like fibrillar assemblies seed α-synuclein aggregation. J Mol Biol 2018; 430(20): 3847-62.
[http://dx.doi.org/10.1016/j.jmb.2018.08.002] [PMID: 30098337]
[217]
Strasser B, Becker K, Fuchs D, Gostner JM. Kynurenine pathway metabolism and immune activation: Peripheral measurements in psychiatric and co-morbid conditions. Neuropharmacology 2017; 112(Pt B): 286-96.
[http://dx.doi.org/10.1016/j.neuropharm.2016.02.030] [PMID: 26924709]
[218]
Bhattacharya A, Biber K. The microglial ATP‐gated ion channel P2X7 as a CNS drug target. Glia 2016; 64(10): 1772-87.
[http://dx.doi.org/10.1002/glia.23001] [PMID: 27219534]
[219]
Bartlett R, Stokes L, Sluyter R. The P2X7 receptor channel: Recent developments and the use of P2X7 antagonists in models of disease. Pharmacol Rev 2014; 66(3): 638-75.
[http://dx.doi.org/10.1124/pr.113.008003] [PMID: 24928329]
[220]
Bhattacharya A, Jones DNC. Emerging role of the P2X7-NLRP3-IL1β pathway in mood disorders. Psychoneuroendocrinology 2018; 98: 95-100.
[http://dx.doi.org/10.1016/j.psyneuen.2018.08.015] [PMID: 30121550]
[221]
Thawkar BS, Kaur G. Inhibitors of NF-κB and P2X7/NLRP3/Caspase 1 pathway in microglia: Novel therapeutic opportunities in neuroinflammation induced early-stage Alzheimer’s disease. J Neuroimmunol 2019; 326: 62-74.
[http://dx.doi.org/10.1016/j.jneuroim.2018.11.010] [PMID: 30502599]
[222]
López-González I, Schlüter A, Aso E, et al. Neuroinflammatory signals in Alzheimer disease and APP/PS1 transgenic mice: correlations with plaques, tangles, and oligomeric species. J Neuropathol Exp Neurol 2015; 74(4): 319-44.
[http://dx.doi.org/10.1097/NEN.0000000000000176] [PMID: 25756590]
[223]
Martin E, Amar M, Dalle C, et al. New role of P2X7 receptor in an Alzheimer’s disease mouse model. Mol Psychiatry 2019; 24(1): 108-25.
[http://dx.doi.org/10.1038/s41380-018-0108-3] [PMID: 29934546]
[224]
Bhattacharya A. Recent advances in CNS P2X7 physiology and pharmacology: Focus on neuropsychiatric disorders. Front Pharmacol 2018; 9: 30.
[http://dx.doi.org/10.3389/fphar.2018.00030] [PMID: 29449810]
[225]
Jin H, Han J, Resing D, et al. Synthesis and in vitro characterization of a P2X7 radioligand [123I]TZ6019 and its response to neuroinflammation in a mouse model of Alzheimer disease. Eur J Pharmacol 2018; 820: 8-17.
[http://dx.doi.org/10.1016/j.ejphar.2017.12.006] [PMID: 29225193]
[226]
Lee HG, Won SM, Gwag BJ, Lee YB. Microglial P2X 7 receptor expression is accompanied by neuronal damage in the cerebral cortex of the APP swe/PS1dE9 mouse model of Alzheimer’s disease. Exp Mol Med 2011; 43(1): 7-14.
[http://dx.doi.org/10.3858/emm.2011.43.1.001] [PMID: 21088470]
[227]
Diaz-Hernandez JI, Gomez-Villafuertes R, León-Otegui M, et al. In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer’s disease through GSK3β and secretases. Neurobiol Aging 2012; 33(8): 1816-28.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.09.040] [PMID: 22048123]
[228]
Chen X, Hu J, Jiang L, et al. Brilliant Blue G improves cognition in an animal model of Alzheimer’s disease and inhibits amyloid-β-induced loss of filopodia and dendrite spines in hippocampal neurons. Neuroscience 2014; 279: 94-101.
[http://dx.doi.org/10.1016/j.neuroscience.2014.08.036] [PMID: 25193238]
[229]
Heneka MT, McManus RM, Latz E. Inflammasome signalling in brain function and neurodegenerative disease. Nat Rev Neurosci 2018; 19(10): 610-21.
[http://dx.doi.org/10.1038/s41583-018-0055-7] [PMID: 30206330]
[230]
Dempsey C, Rubio Araiz A, Bryson KJ, et al. Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav Immun 2017; 61: 306-16.
[http://dx.doi.org/10.1016/j.bbi.2016.12.014] [PMID: 28003153]
[231]
Venegas C, Kumar S, Franklin BS, et al. Microglia-derived ASC specks cross-seed amyloid-β in Alzheimer’s disease. Nature 2017; 552(7685): 355-61.
[http://dx.doi.org/10.1038/nature25158] [PMID: 29293211]
[232]
Okazaki T, Chikuma S, Iwai Y, Fagarasan S, Honjo T. A rheostat for immune responses: the unique properties of PD-1 and their advantages for clinical application. Nat Immunol 2013; 14(12): 1212-8.
[http://dx.doi.org/10.1038/ni.2762] [PMID: 24240160]
[233]
Baruch K, Deczkowska A, Rosenzweig N, et al. PD-1 immune checkpoint blockade reduces pathology and improves memory in mouse models of Alzheimer’s disease. Nat Med 2016; 22(2): 135-7.
[http://dx.doi.org/10.1038/nm.4022] [PMID: 26779813]
[234]
Shaabani S, Huizinga HP, Butera R, et al. A patent review on PD-1/PD-L1 antagonists: Small molecules, peptides, and macrocycles (2015-2018). Expert Opin Ther Pat 2018; 28(9): 665-78.
[235]
Ransohoff RM, Brown MA. Innate immunity in the central nervous system. J Clin Invest 2012; 122(4): 1164-71.
[http://dx.doi.org/10.1172/JCI58644] [PMID: 22466658]
[236]
Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG, Keane RW. Pattern recognition receptors and central nervous system repair. Exp Neurol 2014; 258: 5-16.
[http://dx.doi.org/10.1016/j.expneurol.2014.01.001] [PMID: 25017883]
[237]
Chavan SS, Pavlov VA, Tracey KJ. Mechanisms and therapeutic relevance of neuro-immune communication. Immunity 2017; 46(6): 927-42.
[http://dx.doi.org/10.1016/j.immuni.2017.06.008] [PMID: 28636960]
[238]
Zhang W, Wang LZ, Yu JT, Chi ZF, Tan L. Increased expressions of TLR2 and TLR4 on peripheral blood mononuclear cells from patients with Alzheimer’s disease. J Neurol Sci 2012; 315(1-2): 67-71.
[http://dx.doi.org/10.1016/j.jns.2011.11.032] [PMID: 22166855]
[239]
Rangasamy SB, Jana M, Roy A, et al. Selective disruption of TLR2-MyD88 interaction inhibits inflammation and attenuates Alzheimer’s pathology. J Clin Invest 2018; 128(10): 4297-312.
[http://dx.doi.org/10.1172/JCI96209] [PMID: 29990310]
[240]
Letiembre M, Liu Y, Walter S, et al. Screening of innate immune receptors in neurodegenerative diseases: A similar pattern. Neurobiol Aging 2009; 30(5): 759-68.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.08.018] [PMID: 17905482]
[241]
Liu S, Liu Y, Hao W, et al. TLR2 is a primary receptor for Alzheimer’s amyloid β peptide to trigger neuroinflammatory activation. J Immunol 2012; 188(3): 1098-107.
[http://dx.doi.org/10.4049/jimmunol.1101121] [PMID: 22198949]
[242]
McDonald CL, Hennessy E, Rubio-Araiz A, et al. Inhibiting TLR2 activation attenuates amyloid accumulation and glial activation in a mouse model of Alzheimer’s disease. Brain Behav Immun 2016; 58: 191-200.
[http://dx.doi.org/10.1016/j.bbi.2016.07.143] [PMID: 27422717]
[243]
Rubio-Araiz A, Finucane OM, Keogh S, Lynch MA. Anti-TLR2 antibody triggers oxidative phosphorylation in microglia and increases phagocytosis of β-amyloid. J Neuroinflammation 2018; 15(1): 247.
[http://dx.doi.org/10.1186/s12974-018-1281-7] [PMID: 30170611]
[244]
Richard KL, Filali M, Préfontaine P, Rivest S. Toll-like receptor 2 acts as a natural innate immune receptor to clear amyloid β 1-42 and delay the cognitive decline in a mouse model of Alzheimer’s disease. J Neurosci 2008; 28(22): 5784-93.
[http://dx.doi.org/10.1523/JNEUROSCI.1146-08.2008] [PMID: 18509040]
[245]
Tahara K, Kim HD, Jin JJ, Maxwell JA, Li L, Fukuchi K. Role of toll-like receptor signalling in A uptake and clearance. Brain 2006; 129(11): 3006-19.
[http://dx.doi.org/10.1093/brain/awl249] [PMID: 16984903]
[246]
Janssens S, Beyaert R. Role of Toll-like receptors in pathogen recognition. Clin Microbiol Rev 2003; 16(4): 637-46.
[http://dx.doi.org/10.1128/CMR.16.4.637-646.2003] [PMID: 14557290]
[247]
Herber DL, Mercer M, Roth LM, et al. Microglial activation is required for Abeta clearance after intracranial injection of lipopolysaccharide in APP transgenic mice. J Neuroimmune Pharmacol 2007; 2(2): 222-31.
[http://dx.doi.org/10.1007/s11481-007-9069-z] [PMID: 18040847]
[248]
Qin Y, Liu Y, Hao W, et al. Stimulation of TLR4 attenuates Alzheimer’s disease–related symptoms and pathology in tau-transgenic mice. J Immunol 2016; 197(8): 3281-92.
[http://dx.doi.org/10.4049/jimmunol.1600873] [PMID: 27605009]
[249]
Lee YJ, Choi DY, Choi IS, et al. Inhibitory effect of 4-O-methylhonokiol on lipopolysaccharide-induced neuroinflammation, amyloidogenesis and memory impairment via inhibition of nuclear factor-kappaB in vitro and in vivo models. J Neuroinflammation 2012; 9(1): 35.
[http://dx.doi.org/10.1186/1742-2094-9-35] [PMID: 22339795]
[250]
Macagno A, Molteni M, Rinaldi A, et al. A cyanobacterial LPS antagonist prevents endotoxin shock and blocks sustained TLR4 stimulation required for cytokine expression. J Exp Med 2006; 203(6): 1481-92.
[http://dx.doi.org/10.1084/jem.20060136] [PMID: 16717116]
[251]
Balducci C, Frasca A, Zotti M, et al. Toll-like receptor 4-dependent glial cell activation mediates the impairment in memory establishment induced by β-amyloid oligomers in an acute mouse model of Alzheimer’s disease. Brain Behav Immun 2017; 60: 188-97.
[http://dx.doi.org/10.1016/j.bbi.2016.10.012] [PMID: 27751869]
[252]
Pimenova AA, Raj T, Goate AM. Untangling genetic risk for Alzheimer’s disease. Biol Psychiatry 2018; 83(4): 300-10.
[http://dx.doi.org/10.1016/j.biopsych.2017.05.014] [PMID: 28666525]
[253]
Jonsson T, Stefansson H, Steinberg S, et al. Variant of TREM2 associated with the risk of Alzheimer’s disease. N Engl J Med 2013; 368(2): 107-16.
[http://dx.doi.org/10.1056/NEJMoa1211103] [PMID: 23150908]
[254]
Sims R, van der Lee SJ, Naj AC, et al. Rare coding variants in PLCG2, ABI3, and TREM2 implicate microglial-mediated innate immunity in Alzheimer’s disease. Nat Genet 2017; 49(9): 1373-84.
[http://dx.doi.org/10.1038/ng.3916] [PMID: 28714976]
[255]
Ulrich JD, Ulland TK, Colonna M, Holtzman DM. Elucidating the role of TREM2 in Alzheimer’s disease. Neuron 2017; 94(2): 237-48.
[http://dx.doi.org/10.1016/j.neuron.2017.02.042] [PMID: 28426958]
[256]
N’Diaye EN, Branda CS, Branda SS, et al. TREM-2 (triggering receptor expressed on myeloid cells 2) is a phagocytic receptor for bacteria. J Cell Biol 2009; 184(2): 215-23.
[http://dx.doi.org/10.1083/jcb.200808080] [PMID: 19171755]
[257]
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: Beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013; 7: 6.
[http://dx.doi.org/10.3389/fncel.2013.00006] [PMID: 23386811]
[258]
Yuan P, Condello C, Keene CD, et al. TREM2 haplodeficiency in mice and humans impairs the microglia barrier function leading to decreased amyloid compaction and severe axonal dystrophy. Neuron 2016; 90(4): 724-39.
[http://dx.doi.org/10.1016/j.neuron.2016.05.003] [PMID: 27196974]
[259]
Zhong L, Wang Z, Wang D, et al. Amyloid-beta modulates microglial responses by binding to the triggering receptor expressed on myeloid cells 2 (TREM2). Mol Neurodegener 2018; 13(1): 15.
[http://dx.doi.org/10.1186/s13024-018-0247-7] [PMID: 29587871]
[260]
Kober DL, Brett TJ. TREM2-ligand interactions in health and disease. J Mol Biol 2017; 429(11): 1607-29.
[http://dx.doi.org/10.1016/j.jmb.2017.04.004] [PMID: 28432014]
[261]
Shi Y, Holtzman DM. Interplay between innate immunity and Alzheimer disease: APOE and TREM2 in the spotlight. Nat Rev Immunol 2018; 18(12): 759-72.
[http://dx.doi.org/10.1038/s41577-018-0051-1] [PMID: 30140051]
[262]
Sudom A, Talreja S, Danao J, et al. Molecular basis for the loss-of-function effects of the Alzheimer’s disease–associated R47H variant of the immune receptor TREM2. J Biol Chem 2018; 293(32): 12634-46.
[http://dx.doi.org/10.1074/jbc.RA118.002352] [PMID: 29794134]
[263]
Kober DL, Alexander-Brett JM, Karch CM, et al. Neurodegenerative disease mutations in TREM2 reveal a functional surface and distinct loss-of-function mechanisms. eLife 2016; 5: e20391.
[http://dx.doi.org/10.7554/eLife.20391] [PMID: 27995897]
[264]
Song WM, Colonna M. The microglial response to neurodegenerative disease. Adv Immunol 2018; 139: 1-50.
[http://dx.doi.org/10.1016/bs.ai.2018.04.002] [PMID: 30249333]
[265]
Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 2017; 94(4): 759-773.e8.
[http://dx.doi.org/10.1016/j.neuron.2017.04.043] [PMID: 28521131]
[266]
Cheng Q, Danao J, Talreja S, et al. TREM2-activating antibodies abrogate the negative pleiotropic effects of the Alzheimer’s disease variant Trem2R47H on murine myeloid cell function. J Biol Chem 2018; 293(32): 12620-33.
[http://dx.doi.org/10.1074/jbc.RA118.001848] [PMID: 29599291]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy