Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Mini-Review Article

Echinococcus granulosus as a Promising Therapeutic Agent against Triplenegative Breast Cancer

Author(s): Soheil Sadr and Hassan Borji*

Volume 19, Issue 4, 2023

Published on: 19 May, 2023

Page: [292 - 297] Pages: 6

DOI: 10.2174/1573394719666230427094247

Price: $65

Abstract

Breast cancer is a major cause of cancer deaths in women, with approximately 1.2 million new cases per year. Current treatment options for breast cancer include surgery, radiation, hormone therapy, and chemotherapy. However, the non-selective cytotoxicity of chemotherapeutic agents often leads to severe side effects, while drug resistance can worsen patient outcomes. Therefore, the development of more effective and less toxic anticancer drugs is a critical need. This study aimed to review the literature on Echinococcus granulosus antigens with anticancer potential against triple-negative breast cancer. Recent studies have suggested that certain parasite antigens may have potential anticancer effects. Specifically, research has shown that echinococcosis, a disease caused by the parasitic cestode Echinococcus granulosus, may have a protective effect against cancer. These findings offer new insights into the potential use of E. granulosus antigens in the development of novel cancer therapies and tumor cell vaccines. The findings of recent studies suggested that E. granulosus antigens may have the potential to be used in effective and less toxic cancer treatments. However, further research is needed to fully understand the mechanisms behind the anticancer effects of these antigens and develop new cancer therapies and vaccines.

Graphical Abstract

[1]
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Yin L, Duan JJ, Bian XW, Yu S. Triple-negative breast cancer molecular subtyping and treatment progress. Breast Cancer Res 2020; 22(1): 61.
[http://dx.doi.org/10.1186/s13058-020-01296-5] [PMID: 32517735]
[3]
Garrido-Castro AC, Lin NU, Polyak K. Insights into molecular classifications of triple-negative breast cancer: Improving patient selection for treatment. Cancer Discov 2019; 9(2): 176-98.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1177] [PMID: 30679171]
[4]
Jain V, Kumar H, Anod HV, et al. A review of nanotechnology-based approaches for breast cancer and triple-negative breast cancer. J Control Release 2020; 326: 628-47.
[http://dx.doi.org/10.1016/j.jconrel.2020.07.003] [PMID: 32653502]
[5]
Nedeljković M, Damjanović A. Mechanisms of chemotherapy resistance in triple-negative breast cancer—how we can rise to the challenge. Cells 2019; 8(9): 957.
[http://dx.doi.org/10.3390/cells8090957] [PMID: 31443516]
[6]
Vikas P, Borcherding N, Zhang W. The clinical promise of immunotherapy in triple-negative breast cancer. Cancer Manag Res 2018; 10: 6823-33.
[http://dx.doi.org/10.2147/CMAR.S185176] [PMID: 30573992]
[7]
Wang X, Qi Y, Kong X, et al. Immunological therapy: A novel thriving area for triple-negative breast cancer treatment. Cancer Lett 2019; 442: 409-28.
[http://dx.doi.org/10.1016/j.canlet.2018.10.042] [PMID: 30419345]
[8]
Keenan TE, Tolaney SM. Role of immunotherapy in triple-negative breast cancer. J Natl Compr Canc Netw 2020; 18(4): 479-89.
[http://dx.doi.org/10.6004/jnccn.2020.7554] [PMID: 32259782]
[9]
Ranasinghe SL, McManus DP. Echinococcus granulosus: Cure for cancer revisited. Front Med 2018; 5: 60.
[http://dx.doi.org/10.3389/fmed.2018.00060] [PMID: 29594121]
[10]
Turhan N, Esendagli G, Ozkayar O, Tunali G, Sokmensuer C, Abbasoglu O. Co-existence of Echinococcus granulosus infection and cancer metastasis in the liver correlates with reduced Th1 immune responses. Parasite Immunol 2015; 37(1): 16-22.
[http://dx.doi.org/10.1111/pim.12152] [PMID: 25319434]
[11]
Yousofi Darani H, Soozangar N, Khorami S, Taji F, Yousofi M, Shirzad H. Hydatid cyst protoscolices induce cell death in WEHI-164 fibrosarcoma cells and inhibit the proliferation of baby hamster kidney fibroblasts in vitro. J Parasitol Res 2012; 2012: 304183.
[http://dx.doi.org/10.1155/2012/304183] [PMID: 22496957]
[12]
van Tong H, Brindley PJ, Meyer CG, Velavan TP. Parasite Infection, Carcinogenesis and Human Malignancy. EBioMedicine 2017; 15: 12-23.
[http://dx.doi.org/10.1016/j.ebiom.2016.11.034] [PMID: 27956028]
[13]
Mohammadi M, Spotin A, Mahami-Oskouei M, et al. MicroRNA-365 promotes apoptosis in human melanoma cell A375 treated with hydatid cyst fluid of Echinococcus granulosus sensu stricto. Microb Pathog 2021; 153: 104804.
[http://dx.doi.org/10.1016/j.micpath.2021.104804] [PMID: 33609644]
[14]
Deepak KGK, Vempati R, Nagaraju GP, et al. Tumor microenvironment: Challenges and opportunities in targeting metastasis of triple negative breast cancer. Pharmacol Res 2020; 153: 104683.
[http://dx.doi.org/10.1016/j.phrs.2020.104683] [PMID: 32050092]
[15]
Berriel E, Freire T, Chiale C, et al. Human hydatid cyst fluid-induced therapeutic anti-cancer immune responses via NK1.1+ cell activation in mice. Cancer Immunol Immunother 2021; 70(12): 3617-27.
[http://dx.doi.org/10.1007/s00262-021-02948-x] [PMID: 33944981]
[16]
Kim G, Pastoriza JM, Condeelis JS, et al. The contribution of race to breast tumor microenvironment composition and disease progression. Front Oncol 2020; 10: 1022.
[http://dx.doi.org/10.3389/fonc.2020.01022] [PMID: 32714862]
[17]
Parvizpour S, Razmara J, Pourseif MM, Omidi Y. in silico design of a triple-negative breast cancer vaccine by targeting cancer testis antigens. Bioimpacts 2018; 9(1): 45-56.
[http://dx.doi.org/10.15171/bi.2019.06] [PMID: 30788259]
[18]
Ahmadpour E, Godrati-Azar Z, Spotin A, et al. Nanostructured lipid carriers of ivermectin as a novel drug delivery system in hydatidosis. Parasit Vectors 2019; 12(1): 469.
[http://dx.doi.org/10.1186/s13071-019-3719-x] [PMID: 31601244]
[19]
Brunetti E, Tamarozzi F, Macpherson C, et al. Ultrasound and cystic echinococcosis. Ultrasound Int Open 2018; 4(3): E70-8.
[http://dx.doi.org/10.1055/a-0650-3807] [PMID: 30364890]
[20]
Carmena D, Cardona GA. Echinococcosis in wild carnivorous species: Epidemiology, genotypic diversity, and implications for veterinary public health. Vet Parasitol 2014; 202(3-4): 69-94.
[http://dx.doi.org/10.1016/j.vetpar.2014.03.009] [PMID: 24698659]
[21]
Santos GB, Monteiro KM, da Silva ED, Battistella ME, Ferreira HB, Zaha A. Excretory/secretory products in the Echinococcus granulosus metacestode: Is the intermediate host complacent with infection caused by the larval form of the parasite? Int J Parasitol 2016; 46(13-14): 843-56.
[http://dx.doi.org/10.1016/j.ijpara.2016.07.009] [PMID: 27771257]
[22]
Wang Y, Lv S, Wang Q, et al. Mechanisms underlying immune tolerance caused by recombinant Echinococcus granulosus antigens Eg mMDH and Eg10 in dendritic cells. PLoS One 2018; 13(9): e0204868.
[http://dx.doi.org/10.1371/journal.pone.0204868] [PMID: 30261049]
[23]
Pourseif MM, Yousefpour M, Aminianfar M, Moghaddam G, Nematollahi A. A multi-method and structure-based in silico vaccine designing against Echinococcus granulosus through investigating enolase protein. Bioimpacts 2019; 9(3): 131-44.
[http://dx.doi.org/10.15171/bi.2019.18] [PMID: 31508329]
[24]
Anvari D, Rezaei F, Ashouri A, et al. Current situation and future prospects of Echinococcus granulosus vaccine candidates: A systematic review. Transbound Emerg Dis 2021; 68(3): 1080-96.
[http://dx.doi.org/10.1111/tbed.13772] [PMID: 32762075]
[25]
Gottstein B, Soboslay P, Ortona E, Wang J, Siracusano A, Vuitton DA. Immunology of alveolar and cystic echinococcosis (AE and CE). Adv Parasitol 2017; 96: 1-54.
[http://dx.doi.org/10.1016/bs.apar.2016.09.005] [PMID: 28212788]
[26]
Thompson RCA, Jenkins DJ. Echinococcus as a model system: Biology and epidemiology. Int J Parasitol 2014; 44(12): 865-77.
[http://dx.doi.org/10.1016/j.ijpara.2014.07.005] [PMID: 25123067]
[27]
Amri M, Touil-Boukoffa C. A protective effect of the laminated layer on Echinococcus granulosus survival dependent on upregulation of host arginase. Acta Trop 2015; 149: 186-94.
[http://dx.doi.org/10.1016/j.actatropica.2015.05.027] [PMID: 26048557]
[28]
Agudelo Higuita NI, Brunetti E, McCloskey C. Cystic Echinococcosis. J Clin Microbiol 2016; 54(3): 518-23.
[http://dx.doi.org/10.1128/JCM.02420-15] [PMID: 26677245]
[29]
Díaz A, Casaravilla C, Allen JE, Sim RB, Ferreira AM. Understanding the laminated layer of larval Echinococcus II: Immunology. Trends Parasitol 2011; 27(6): 264-73.
[http://dx.doi.org/10.1016/j.pt.2011.01.008] [PMID: 21376669]
[30]
Torabi N, Dobakhti F, Faghihzadeh S, Haniloo A. in vitro and in vivo effects of chitosan-praziquantel and chitosan-albendazole nanoparticles on Echinococcus granulosus Metacestodes. Parasitol Res 2018; 117(7): 2015-23.
[http://dx.doi.org/10.1007/s00436-018-5849-z] [PMID: 29616349]
[31]
Ahn CS, Han X, Bae YA, et al. Alteration of immunoproteome profile of Echinococcus granulosus hydatid fluid with progression of cystic echinococcosis. Parasit Vectors 2015; 8(1): 10.
[http://dx.doi.org/10.1186/s13071-014-0610-7] [PMID: 25566682]
[32]
Zhou X, Wang W, Cui F, et al. Extracellular vesicles derived from Echinococcus granulosus hydatid cyst fluid from patients: Isolation, characterization and evaluation of immunomodulatory functions on T cells. Int J Parasitol 2019; 49(13-14): 1029-37.
[http://dx.doi.org/10.1016/j.ijpara.2019.08.003] [PMID: 31734339]
[33]
Spotin A, Majdi MMA, Sankian M, Varasteh A. The study of apoptotic bifunctional effects in relationship between host and parasite in cystic echinococcosis: A new approach to suppression and survival of hydatid cyst. Parasitol Res 2012; 110(5): 1979-84.
[http://dx.doi.org/10.1007/s00436-011-2726-4] [PMID: 22167369]
[34]
Guan W, Zhang X, Wang X, Lu S, Yin J, Zhang J. Employing parasite against cancer: A lesson from the canine tapeworm Echinococcus granulocus. Front Pharmacol 2019; 10: 1137.
[http://dx.doi.org/10.3389/fphar.2019.01137] [PMID: 31607934]
[35]
Ranasinghe SL, Boyle GM, Fischer K, Potriquet J, Mulvenna JP, McManus DP. Kunitz type protease inhibitor EgKI-1 from the canine tapeworm Echinococcus granulosus as a promising therapeutic against breast cancer. PLoS One 2018; 13(8): e0200433.
[http://dx.doi.org/10.1371/journal.pone.0200433] [PMID: 30169534]
[36]
Ju T, Otto VI, Cummings RD. The Tn antigen-structural simplicity and biological complexity. Angew Chem Int Ed 2011; 50(8): 1770-91.
[http://dx.doi.org/10.1002/anie.201002313] [PMID: 21259410]
[37]
Tamarozzi F, Mariconti M, Neumayr A, Brunetti E. The intermediate host immune response in cystic echinococcosis. Parasite Immunol 2016; 38(3): 170-81.
[http://dx.doi.org/10.1111/pim.12301] [PMID: 26683283]
[38]
Sharafi SM, Rafiei R, Rafiei R, et al. A nonglycosylated 27 kDa molecule as common antigen between human breast cancer and Echinococcus granulosus hydatid cyst wall. Adv Breast Cancer Res 2016; 5(2): 90-5.
[http://dx.doi.org/10.4236/abcr.2016.52010]
[39]
Osinaga E. Expression of cancer-associated simple mucin-type O-glycosylated antigens in parasites. IUBMB Life 2007; 59(4): 269-73.
[http://dx.doi.org/10.1080/15216540601188553] [PMID: 17505964]
[40]
Rumyantsev SN. Evolutionary adaptations of human cancer for parasitic life. Open J Immune 2013; 3(2): 54-61.
[http://dx.doi.org/10.4236/oji.2013.32009]
[41]
Pinho SS, Reis CA. Glycosylation in cancer: Mechanisms and clinical implications. Nat Rev Cancer 2015; 15(9): 540-55.
[http://dx.doi.org/10.1038/nrc3982] [PMID: 26289314]
[42]
Alvarez Errico D, Medeiros A, Míguez M, et al. O-glycosylation in Echinococcus granulosus: Identification and characterization of the carcinoma-associated Tn antigen. Exp Parasitol 2001; 98(2): 100-9.
[http://dx.doi.org/10.1006/expr.2001.4620] [PMID: 11465993]
[43]
Daneshpour S, Bahadoran M, Hejazi SH, Eskandarian AA, Mahmoudzadeh M, Darani HY. Common antigens between hydatid cyst and cancers. Adv Biomed Res 2016; 5: 9.
[PMID: 26962511]
[44]
Pfister M, Gottstein B, Cerny T, Cerny A. Immunodiagnosis of echinococcosis in cancer patients. Clin Microbiol Infect 1999; 5(11): 693-7.
[http://dx.doi.org/10.1111/j.1469-0691.1999.tb00515.x]
[45]
Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A, Cancer JC, Angeles L. Primary, Adaptive, and Acquired Resistance to Cancer Immunotherapy. Cell 2017; 168(4): 707-23.
[http://dx.doi.org/10.1016/j.cell.2017.01.017] [PMID: 28187290]
[46]
Noya V, Bay S, Festari MF, et al. Mucin-like peptides from Echinococcus granulosus induce antitumor activity. Int J Oncol 2013; 43(3): 775-84.
[http://dx.doi.org/10.3892/ijo.2013.2000] [PMID: 23817837]
[47]
Darani H, Sharafi S, Mokarian F, Yousefi M, Sharafi S, Jafari R. Therapeutic effect of hydatid cyst liquid on melanoma tumor growth in mouse model. Br J Med Med Res 2016; 18(2): 1-7.
[http://dx.doi.org/10.9734/BJMMR/2016/27220]
[48]
Ranasinghe SL, Fischer K, Zhang W, Gobert GN, McManus DP. Cloning and characterization of two potent Kunitz type protease inhibitors from Echinococcus granulosus. PLoS Negl Trop Dis 2015; 9(12): e0004268.
[http://dx.doi.org/10.1371/journal.pntd.0004268] [PMID: 26645974]
[49]
Coffelt SB, Wellenstein MD, de Visser KE. Neutrophils in cancer: Neutral no more. Nat Rev Cancer 2016; 16(7): 431-46.
[http://dx.doi.org/10.1038/nrc.2016.52] [PMID: 27282249]
[50]
Tüting T, Visser KE. How neutrophils promote metastasis. Science 2016; 352(6282): 145-6.
[http://dx.doi.org/10.1126/science.aaf7300] [PMID: 27124439]
[51]
Zhang X, Zhang W, Yuan X, Fu M, Qian H, Xu W. Neutrophils in cancer development and progression: Roles, mechanisms, and implications (Review). Int J Oncol 2016; 49(3): 857-67.
[http://dx.doi.org/10.3892/ijo.2016.3616] [PMID: 27573431]
[52]
de Magalhães MTQ, Mambelli FS, Santos BPO, Morais SB, Oliveira SC. Serine protease inhibitors containing a Kunitz domain: Their role in modulation of host inflammatory responses and parasite survival. Microbes Infect 2018; 20(9-10): 606-9.
[http://dx.doi.org/10.1016/j.micinf.2018.01.003] [PMID: 29355617]
[53]
Moghaddam SM, Picot S, Ahmadpour E. Interactions between hydatid cyst and regulated cell death may provide new therapeutic opportunities. Parasite 2019; 26: 70.
[http://dx.doi.org/10.1051/parasite/2019070] [PMID: 31782727]
[54]
Kahl J, Brattig N, Liebau E. The untapped pharmacopeic potential of helminths. Trends Parasitol 2018; 34(10): 828-42.
[http://dx.doi.org/10.1016/j.pt.2018.05.011] [PMID: 29954660]
[55]
Asghari A, Nourmohammadi H, Majidiani H, et al. Promising effects of parasite-derived compounds on tumor regression: A systematic review of in vitro and in vivo studies. Environ Sci Pollut Res Int 2022; 29(22): 32383-96.
[http://dx.doi.org/10.1007/s11356-021-17090-5] [PMID: 35146610]
[56]
Thompson RCA. Biology and systematics of Echinococcus. Adv Parasitol 2017; 95: 65-109.
[http://dx.doi.org/10.1016/bs.apar.2016.07.001] [PMID: 28131366]
[57]
Aziz A, Zhang W, Li J, Loukas A, McManus DP, Mulvenna J. Proteomic characterisation of Echinococcus granulosus hydatid cyst fluid from sheep, cattle and humans. J Proteomics 2011; 74(9): 1560-72.
[http://dx.doi.org/10.1016/j.jprot.2011.02.021] [PMID: 21362505]
[58]
Gessese AT. Review on epidemiology and public health significance of hydatidosis. Vet Med Int 2020; 2020: 8859116.
[http://dx.doi.org/10.1155/2020/8859116 ] [PMID: 33354312]
[59]
Folle AM, Kitano ES, Lima A, et al. Characterisation of antigen B protein species present in the hydatid cyst fluid of Echinococcus canadensis G7 genotype. PLoS Negl Trop Dis 2017; 11(1): e0005250.
[http://dx.doi.org/10.1371/journal.pntd.0005250] [PMID: 28045899]
[60]
Cabrera G, Cabrejos ME, Morassutti AL, et al. DNA damage, RAD9 and fertility/infertility ofEchinococcus granulosus hydatid cysts. J Cell Physiol 2008; 216(2): 498-506.
[http://dx.doi.org/10.1002/jcp.21418] [PMID: 18348165]
[61]
Fernandes R, Alves H, Botelho MC. The cancer hygiene hypothesis: From theory to therapeutic helminths. Curr Cancer Ther Rev 2019; 15(3): 248-50.
[http://dx.doi.org/10.2174/1573394714666181003143717]
[62]
Macintyre AR, Dixon JB, Green JR. Mitosis and differentiation in T-cells under cytotoxic action of Echinococcus granulosus hydatid fluid. Vet Parasitol 2001; 96(4): 277-89.
[http://dx.doi.org/10.1016/S0304-4017(01)00384-3] [PMID: 11267754]
[63]
Aref N, Shirzad H, Yousefi M, Darani H. Effect of different hydatid cyst molecules on hela and vero cell lines growth in vitro. J Immunodefic Disord 2013; 2: 1.
[http://dx.doi.org/10.4172/2324-853X.1000105]
[64]
Chookami MB, Sharafi SM, Sefiddashti RR, et al. Effect of two hydatid cyst antigens on the growth of melanoma cancer in C57/black mice. J Parasit Dis 2016; 40(4): 1170-3.
[http://dx.doi.org/10.1007/s12639-015-0643-7] [PMID: 27876908]
[65]
Yousofi Darani H, Daneshpour S, Kefayat AH, Mofid MR, Rostami Rad S. Effect of hydatid cyst fluid antigens on induction of apoptosis on breast cancer cells. Adv Biomed Res 2019; 8(1): 27.
[http://dx.doi.org/10.4103/abr.abr_220_18] [PMID: 31123670]
[66]
Berriel E, Russo S, Monin L, et al. Antitumor activity of human hydatid cyst fluid in a murine model of colon cancer. Sci Wrld J 2013; 2013: 230176.
[http://dx.doi.org/10.1155/2013/230176 ] [PMID: 24023528]
[67]
Karadayi S, Arslan S, Sumer Z, Turan M, Sumer H, Karadayi K. Does hydatid disease have protective effects against lung cancer? Mol Biol Rep 2013; 40(8): 4701-4.
[http://dx.doi.org/10.1007/s11033-013-2565-8] [PMID: 23645038]
[68]
Bakhtiar NM, Spotin A, Mahami-Oskouei M, Ahmadpour E, Rostami A. Recent advances on innate immune pathways related to host–parasite cross-talk in cystic and alveolar echinococcosis. Parasit Vectors 2020; 13(1): 232.
[http://dx.doi.org/10.1186/s13071-020-04103-4] [PMID: 32375891]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy