Generic placeholder image

Current Organocatalysis

Editor-in-Chief

ISSN (Print): 2213-3372
ISSN (Online): 2213-3380

Review Article

A Decenary Update on Metal Oxide Nanoparticles as a Heterogeneous Greener Catalyst for the Synthesis of Bioactive Heterocycles

Author(s): Kantharaju Kamanna* and Krishnappa B Badiger

Volume 10, Issue 3, 2023

Published on: 05 June, 2023

Page: [209 - 229] Pages: 21

DOI: 10.2174/2213337210666230426161057

Price: $65

Abstract

In recent years, heterocycle derivatives have emerged as promising molecules, and have exhibited remarkable pharmacological applications. The statistical data analysis of the presently available drug molecules in the market has revealed that more than 70% of the drug candidates are derived from the heterocycles. Various synthetic protocols have been established employing a wide range of catalysts and reaction conditions; among them, one of the catalytic areas includes nanomaterials of metals and metal oxides. Nanocatalysts play an important role in the organic transformation under green chemistry protocol, due to their recycling nature and provision of the required catalytic amount. In this review, we have provided a comprehensive summary of the recent progress made in the catalytic heterogeneous metal oxide NPs application, exclusively for the synthesis of heterocyclic compounds reported in the period from 2012 to 2021. Also, this review provides an inherent framework for the reader to select a suitable catalytic system of interest to synthesize desired oxygen, nitrogen, and sulphur heteroatoms containing heterocyclic scaffold with potential pharmacological activities.

Graphical Abstract

[1]
Fink, T.; Reymond, J.L. Virtual exploration of the chemical universe up to 11 atoms of C, N, O, F: assembly of 26.4 million structures (110.9 million stereoisomers) and analysis for new ring systems, stereochemistry, physicochemical properties, compound classes, and drug discovery. J. Chem. Inf. Model., 2007, 47(2), 342-353.
[2]
Armesto, D.; Horspool, W.M.; Martin, N.; Ramos, A.; Seoane, C. Synthesis of cyclobutenes by the novel photochemical ring contraction of 4-substituted 2-amino-3,5-dicyano-6-phenyl-4H-pyrans. J. Org. Chem., 1989, 54(13), 3069-3072.
[http://dx.doi.org/10.1021/jo00274a021]
[3]
Dabholkar, V.; Badhe, K.; Kurade, S. One-pot four component synthesis of 1H-pyrazolo[1,2-b]phthalazine-5,10-dione derivatives using calcined Mg-Fe hydrotalcite catalyst. IJAR, 2017, 6, 8416-8420.
[4]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[5]
Burke, M.D.; Schreiber, S.L. A planning strategy for diversity-oriented synthesis. Angew. Chem. Int. Ed., 2004, 43(1), 46-58.
[http://dx.doi.org/10.1002/anie.200300626] [PMID: 14694470]
[6]
Spring, D.R. Diversity-oriented synthesis; a challenge for synthetic chemistsElectronic supplementary information (ESI) available: Excel file of all the FDA new molecular entities between the years 1998 and July 2003, and new drug approvals between the years 1990 and 2002. Org. Biomol. Chem., 2003, 1(22), 3867-3870.
[http://dx.doi.org/10.1039/b310752n] [PMID: 14664374]
[7]
Strausberg, R.L.; Schreiber, S.L. From knowing to controlling: A path from genomics to drugs using small molecule probes. Science, 2003, 300(5617), 294-295.
[http://dx.doi.org/10.1126/science.1083395] [PMID: 12690189]
[8]
Horton, D.A.; Bourne, G.T.; Smythe, M.L. The combinatorial synthesis of bicyclic privileged structures or privileged substructures. Chem. Rev., 2003, 103(3), 893-930.
[http://dx.doi.org/10.1021/cr020033s] [PMID: 12630855]
[9]
Parra, M.; Stahl, S.; Hellmann, H. Vitamin B6 and its role in cell metabolism and physiology. Cells, 2018, 7(7), 84.
[http://dx.doi.org/10.3390/cells7070084] [PMID: 30037155]
[10]
Hamouda, R.A.; Abd El Latif, A.; Elkaw, E.M.; Alotaibi, A.S.; Alenzi, A.M.; Hamza, H.A. Hamza. Assessment of antioxidant and anticancer activities of microgreen alga chlorella vulgaris and its blend with different vitamins. Molecules, 2022, 27(5), 1602.
[http://dx.doi.org/10.3390/molecules27051602] [PMID: 35268702]
[11]
Hu, B.; Zhou, W.; Tang, Y.; Huang, C.; Liu, Z. A facile synthesis of deuteroporphyrins derivatives under ultrasound irradiation. Ultrason. Sonochem., 2010, 17(2), 288-291.
[http://dx.doi.org/10.1016/j.ultsonch.2009.09.008]
[12]
Bhaskaruni, S.V.H.S.; Maddila, S.; Gangu, K.K.; Jonnalagadda, S.B. A review on multi-component green synthesis of N-containing heterocycles using mixed oxides as heterogeneous catalysts. Arab. J. Chem., 2020, 13(1), 1142-1178.
[http://dx.doi.org/10.1016/j.arabjc.2017.09.016]
[13]
Kaur, R.; Bariwal, J.; Voskressensky, L.G.; Van der Eycken, E.V. Gold and silver nanoparticle-catalyzed synthesis of heterocyclic compounds. Chem. Heterocycl. Compd., 2018, 54(3), 241-248.
[http://dx.doi.org/10.1007/s10593-018-2259-1]
[14]
Ebadi, A.G.; Hisoriev, H. Physicochemical characterization of sediments from Tajan river basin in the northern Iran. Toxicol. Environ. Chem., 2018, 100(5-7), 540-549.
[http://dx.doi.org/10.1080/02772248.2018.1460929]
[15]
Ebadi, A.G.; Hisoriev, H. The prevalence of heavy metals in Cladophora glomerata L. from farahabad region of caspian sea-Iran. Toxicol. Environ. Chem., 2017, 99(5-6), 883-891.
[http://dx.doi.org/10.1080/02772248.2017.1323894]
[16]
Ebadi, A.; Hisoriev, H. Ecological assessment of heavy metals in sediments of the farahabad region (Iran). Pol. J. Environ. Stud., 2018, 27(3), 1033-1039.
[http://dx.doi.org/10.15244/pjoes/76792]
[17]
Rivera-Diaz, P.A.; Patricia, O.C.; Ricardo, D.D. The crucial role of estrogen/androgen hormones and their receptors in male infertility risk. Cent. Asian J. Med. Pharm. Sci. Inn., 2021, 1, 35-43.
[18]
Faramarzi, A.; Golestan, J.M.; Ashourzadeh, S.; Jalilian, N. Metastatic and pathophysiological characteristics of breast cancer with emphasis on hereditary factors. Cent. Asian J. Med. Pharm. Sci. Inn., 2021, 3, 104-113.
[19]
Khafaei, M.; Miri, A.; Kiani, E.; Danesh, E.; Naderi, M. Early diagnostic biomarkers of Lung cancer; a review study. Cent. Asian J. Med. Pharm. Sci. Inn., 2021, 1, 114-130.
[20]
Moradi, S.; Khakzad, K.M.; Shokri, V. Prostate cancer as a multifactorial disorder: an overview of the different sides of disease. Cent. Asian J. Med. Pharm. Sci. Inn., 2021, 1, 143-150.
[21]
Lehuédé, J.; Fauconneau, B.; Barrier, L.; Ourakow, M.; Piriou, A.; Vierfond, J.M. Synthesis and antioxidant activity of new tetraarylpyrroles. Eur. J. Med. Chem., 1999, 34(11), 991-996.
[http://dx.doi.org/10.1016/S0223-5234(99)00111-7] [PMID: 10889322]
[22]
Novák, P.; Müller, K.; Santhanam, K.S.V.; Haas, O. Electrochemically active polymers for rechargeable batteries. Chem. Rev., 1997, 97(1), 207-282.
[http://dx.doi.org/10.1021/cr941181o] [PMID: 11848869]
[23]
Rodriguez, J.A.; Fernandez-Garcia, M. Synthesis, properties and applications of oxides nanomaterials; John Wiley & Sons, Inc.: Hoboken, USA, 2007.
[http://dx.doi.org/10.1002/0470108975]
[24]
Dighore, N.R.; Anandgaonker, P.L.; Gaikwad, S.T.; Rajbhoj, A.S. Solvent free green synthesis of 5-arylidine barbituric acid derivatives catalyzed by copper oxide nanoparticles. Res. J. Chem. Sci., 2014, 7, 93-98.
[25]
Colon, I.G.; Belver, C.C. Fern_and ez-García, M. Nanostructured oxides in photo- catalysis, in synthesis, properties and applications of oxides nanomaterials; John Wiley & Sons, Inc.: Hoboken, USA, 2007, pp. 491-562.
[26]
Fern andez-García, M.; Martínez-Arias, A.; Hanson, J.C.; Rodriguez, J.A. Nanostructured oxides in chemistry: Characterization and properties. Chem. Rev., 2004, 104, 4063-4104.
[27]
Mashkouri, S.; Reza Naimi-Jamal, M. Mechanochemical solvent-free and catalyst-free one-pot synthesis of pyrano[2,3-d]pyrimidine-2,4(1H,3H)-diones with quantitative yields. Molecules, 2009, 14(1), 474-479.
[http://dx.doi.org/10.3390/molecules14010474] [PMID: 19158656]
[28]
Durand, J.; Teuma, E.; Gomez, M. An overview of palladium nanocatalysts: Surface andmolecular reactivity. EurJIC., 2008, 2008(23), 3577-3586.
[29]
Lee, B.; Kang, P.; Lee, K.H.; Cho, J.; Nam, W.; Lee, W.K.; Hur, N.H. Solid-state and solvent-free synthesis of azines, pyrazoles, and pyridazinones using solid hydrazine. Tetrahedron Lett., 2013, 54(11), 1384-1388.
[http://dx.doi.org/10.1016/j.tetlet.2012.12.106]
[30]
Kanagarajan, H.; Gunabalan, M.; Amir, K.; Narayanan, A.; Rajesh, S.; Selvaraj, M.R. Function of nanocatalyst in chemistry of organic compounds revolution: An overview; J. Nanomat, 2013.
[31]
Thomas, J.M.; Thomas, W.J. Principles and practice of heterogeneous catalysis; John Wiley & Sons: New York, 2014.
[32]
Li, L.; Hu, J.; Yang, W.; Alivisatos, A.P. Band gap variation of size- and shape-controlled colloidal cdse quantum rods. Nano Lett., 2001, 1(7), 349-351.
[http://dx.doi.org/10.1021/nl015559r]
[33]
Balashov, E.M.; Dalidchik, F.I.; Shub, B.R. Structure and electronic properties of imperfect oxides and nanooxides. Russ. J. Phys. Chem. B. Focus Phys., 2008, 2(6), 840-855.
[http://dx.doi.org/10.1134/S199079310806002X]
[34]
Chiang, Y.M.; Lavik, E.B.; Kosacki, I.; Tuller, H.L.; Ying, J.H. Nonstoichiometry and electrical conductivity of nanocrystalline CeO2x. J. Electroceram., 1997, 1(3), 205-209.
[http://dx.doi.org/10.1023/A:1009958625841]
[35]
a) Haruta, M. Catalysis of gold nanoparticles deposited on metal oxides. CATTech, 2002, 6(3), 102-115.
[http://dx.doi.org/10.1023/A:1020181423055];
b) Yamanappagouda, A.; Kantharaju, K.; Tilak, G. Biodegradable polyvinyl alcohol/carboxymethyl cellulose composite incorporated with l-alanine functionalized MgO nanoplates: physico-chemical and food packaging features. J. Inorg. Organomet. Polym., 2022, 1-16.
[36]
Li, J.; Tang, G.; Wang, Y.; Wang, Y.; Li, Z.; Li, H. Poly(amic acid) salt-stabilized silver nanoparticles as efficient and recyclable quasi-homogeneous catalysts for the aqueous hydration of nitriles to amides. New J. Chem., 2016, 40(1), 358-364.
[http://dx.doi.org/10.1039/C5NJ02497H]
[37]
Mielby, J.; Kegnaes, S.; Fristrup, P. Gold Nanoparticle-catalyzed formation of nitrogen-containing compounds-from mechanistic understanding to synthetic exploitation. ChemCatChem, 2012, 4(8), 1037-1047.
[http://dx.doi.org/10.1002/cctc.201200314]
[38]
Sun, S.; Xu, L.; Zou, Q.; Wang, G.; Gorodkin, J. BP4RNAseq: a babysitter package for retrospective and newly generated RNA-seq data analyses using both alignment-based and alignment-free quantification method. Bioinformatics, 2021, 37(9), 1319-1321.
[http://dx.doi.org/10.1093/bioinformatics/btaa832] [PMID: 32976573]
[39]
Zhou, J.; Shen, X.; Qiu, Y.; Li, E.; Rao, D.; Shi, X. Improving the efficiency of microseismic source locating using a heuristic algorithm-based virtual field optimization method. Geomech. Geophy. Geo-Energy Geo-Resour., 2021, 7(3), 89.
[http://dx.doi.org/10.1007/s40948-021-00285-y]
[40]
Masoudi Nejad, R.; Liu, Z.; Ma, W.; Berto, F. Fatigue reliability assessment of a pearlitic Grade 900A rail steel subjected to multiple cracks. Eng. Fail. Anal., 2021, 128, 105625.
[http://dx.doi.org/10.1016/j.engfailanal.2021.105625]
[41]
Renbing, Q.; Shujun, W.; Fengjuan, X. Structural changes and in vitro enzymatic diges tibility of starch-lipid complexes altered by high hydrostatic pressure. Food Res. Dev., 2021, 4, 25-30.
[42]
Jinfeng, F.; Yanmei, L.; Yan, H.; Moghadasi, Z. Synthesis of heterocycles catalyzed by metallic nanoparticles (NPs). Synth. Commun., 2021, 51(22), 3345-3365.
[http://dx.doi.org/10.1080/00397911.2021.1980888]
[43]
Hassanpour, A.; Heravi, M.R.P.; Rahmani, Z.; Ebadi, A.; Ahmadi, S. Characterization of novel pyridine‐derived N ‐heterocyclic silylenes via density functional theory perspective. J. Chin. Chem. Soc. (Taipei), 2021, 68(8), 1405-1412.
[http://dx.doi.org/10.1002/jccs.202100051]
[44]
Hassanpour, A.; Ahmadi, S.; Nezhad, P.D.K.; Ebadi, A.; Sarvestani, M.R.J.; Ebrahimiasl, S. Sensing properties of Al- and Si-doped HBC nanostructures toward Gamma-butyrolactone drug: A density functional theory study. Comput. Theor. Chem., 2021, 1197, 113163.
[http://dx.doi.org/10.1016/j.comptc.2021.113163]
[45]
Yolchiyeva, F.; Hacjiyeva, S.; Huseyinli, A.; Hasanova, A. Ecological problems of water resources in Azerbaijan and their impact on human health. Cent. Asian J. Environ. Sci. Technol. Inn., 2020, 1, 71-76.
[46]
Nwankwo, C.; Gobo, A.E.; Israel-Cookey, C.; Abere, S.A. Effects of hazardous waste discharge from the activities of oil and gas companies in Nigeria, Cent. Asian J. Environ. Sci.Technol. Inn., 2020, 1, 119-129.
[47]
Zeid Ali, E.; Hosseini, M.; Fathi, A. Cent. Ethnopharmacological survey of medicinal plants in semi-arid rangeland in western Iran. Asian J. Plant Sci. Innovation, 2021, 1, 91-101.
[48]
Ebadi, A.G.; Hisoriev, H. Gasification of algal biomass (Cladophora glomerata L.) with CO2/H2O/O2 in a circulating fluidized bed. Environ. Technol., 2019, 40(6), 749-755.
[http://dx.doi.org/10.1080/09593330.2017.1406538] [PMID: 29141510]
[49]
Abdolmohammadi, S. ZnO nanoparticles-catalyzed cyclocondensation reaction of arylmethylidenepyruvic acids with 6-aminouracils. Comb. Chem. High Throughput Screen., 2013, 16(1), 32-36.
[http://dx.doi.org/10.2174/1386207311316010005] [PMID: 22931310]
[50]
Said, L.; Nicolas, B.; Daniel, D.; Houshang, A. Sebastien. R. Role of Mn+ cations in the redox and oxygen transfer properties of BaM x Al12-x Ꝺ19d (M = Mn, Fe, Co) nanomaterials for high temperature methane oxidation. Catal. Sci. Technol., 2013, 3, 2259.
[http://dx.doi.org/10.1039/c3cy00192j]
[51]
Wang, C.; Yin, L.; Zhang, L.; Xiang, D.; Gao, R. Metal oxide gas sensors: sensitivity and influencing factors. Sensors (Basel), 2010, 10(3), 2088-2106.
[http://dx.doi.org/10.3390/s100302088] [PMID: 22294916]
[52]
Yamanappagouda, A.; Kantharaju, K Physico-chemical, in-vitro cytotoxicity and antimicrobial evaluation of L-valine functionalised CuO NPs on polyvinyl alcohol and blended carboxymethyl cellulose films. Ind. Chem. Eng., 2022.
[53]
Isomura, Y.; Narushima, T.; Kawasaki, H.; Yonezawa, T.; Obora, Y. Surfactant-free single-nano-sized colloidal Cu nanoparticles for use as an active catalyst in Ullmann-coupling reaction. Chem. Commun. (Camb.), 2012, 48(31), 3784-3786.
[http://dx.doi.org/10.1039/c2cc30975k] [PMID: 22430058]
[54]
Bochenkov, V.E.; Sergeev, G.B. Adsorption, catalysis, and reactions on the surfaces of metal nano-oxides. Catal. Ind., 2010, 2(1), 1-10.
[55]
Sarvari, M.H.; Sharghi, H. Reactions on a solid surface. A simple, economical and efficient Friedel-Crafts acylation reaction over zinc oxide (ZnO) as a new catalyst. J. Org. Chem., 2004, 69(20), 6953-6956.
[http://dx.doi.org/10.1021/jo0494477] [PMID: 15387635]
[56]
Mohanraj, V.J. Chen.Y. Nanoparticles: a review. Trop. J. Pharm. Res., 2006, 1, 561-573.
[57]
Nasr-Esfahani, M.; Hoseini, S.J.; Mohammadi, F. Fe3O4 nanoparticles as an efficient and magnetically recoverable catalyst for the synthesis of 3,4-dihydropyrimidin-2(1H)-ones under solvent-free conditions. Chin. J. Catal., 2011, 32(9-10), 1484-1489.
[http://dx.doi.org/10.1016/S1872-2067(10)60263-X]
[58]
Naeimi, H.; Nazifi, Z.S. A highly efficient nano-Fe3O4 encapsulated-silica particles bearing sulfonic acid groups as a solid acid catalyst for synthesis of 1,8-dioxo-octahydroxanthene derivatives. J. Nanopart. Res., 2013, 15(11), 2026.
[http://dx.doi.org/10.1007/s11051-013-2026-2] [PMID: 24307859]
[59]
Koukabi, N.; Kolvari, E.; Khazaei, A.; Zolfigol, M.A.; Shirmardi-Shaghasemi, B.; Khavasi, H.R. Hantzsch reaction on free nano-Fe2O3 catalyst: excellent reactivity combined with facile catalyst recovery and recyclability. Chem. Commun. (Camb.), 2011, 47(32), 9230-9232.
[http://dx.doi.org/10.1039/c1cc12693h] [PMID: 21766097]
[60]
Alinezhad, H.; Salehian, F.; Biparva, P. Synthesis of benzimidazole derivatives using heterogeneous ZnO nanoparticles. Synth. Commun., 2012, 42(1), 102-108.
[http://dx.doi.org/10.1080/00397911.2010.522294]
[61]
Cano, R.; Yus, M.; Ramón, D.J. Catalyzed addition of acid chlorides to alkynes by unmodified nano-powder magnetite: synthesis of chlorovinyl ketones, furans, and related cyclopentenone derivatives. Tetrahedron, 2013, 69(34), 7056-7065.
[http://dx.doi.org/10.1016/j.tet.2013.06.041]
[62]
Alishiri, T.; Oskooei, H.A.; Heravi, M.M. Fe3O4 nanoparticles as an efficient and magnetically recoverable catalyst for the synthesis of αβ-unsaturated heterocyclic and cyclic ketones under solvent-free conditions. Synth. Commun., 2013, 43(24), 3357-3362.
[http://dx.doi.org/10.1080/00397911.2013.786089]
[63]
Zamani, L.; Mirjalili, B.B.F.; Zomorodian, K.; Namazian, M.; Khabnadideh, S.; Mirzaei, E.F.F. Synthesis of benzimidazoles in the presence of nano-TiCl4.SiO2 as antifungal agents and tautomerism theoretical study of some products. Farmacia, 2014, 62(3), 467.
[64]
Azam, K.; Roya, M.K.; Hamideh, K.B. Magnetic co-doped NiFe2O4 nanocomposite:a heterogeneous and recyclable catalyst for the one-pot synthesis of benzimidazoles, benzoxazoles and benzothiazoles under solvent-free conditions. J. Chin. Chem. Soc. (Taipei), 2017, 4, 1316-1325.
[65]
Kommula, D.; Madugula, S.R.M. Synthesis of benzimidazoles/benzothiazoles by using recyclable, magnetically separable nano-Fe2O3 in aqueous medium. J. Indian Chem. Soc., 2017, 14(8), 1665-1671.
[http://dx.doi.org/10.1007/s13738-017-1107-z]
[66]
Hao, L.; Zhao, Y.; Yu, B.; Zhang, H.; Xu, H.; Liu, Z. Au catalyzed synthesis of benzimidazoles from 2-nitroanilines and CO2/H2. Green Chem., 2014, 16(6), 3039-3044.
[http://dx.doi.org/10.1039/c4gc00153b]
[67]
Hajipour, A.R.; Khorsandi, Z.; Mortazavi, M.; Farrokhpour, H. Green, efficient and large-scale synthesis of benzimidazoles, benzoxazoles and benzothiazoles derivatives using ligand-free cobalt-nanoparticles: as potential anti-estrogen breast cancer agents, and study of their interactions with estrogen receptor by molecular docking. RSC Advances, 2015, 5(130), 107822-107828.
[http://dx.doi.org/10.1039/C5RA22207A]
[68]
Sun, Z.; Bottari, G.; Barta, K. Supercritical methanol as solvent and carbon source in the catalytic conversion of 1,2-diaminobenzenes and 2-nitroanilines to benzimidazoles. Green Chem., 2015, 17(12), 5172-5181.
[http://dx.doi.org/10.1039/C5GC01040C]
[69]
Yu, D.; You, Q.; Zhang, X.; Tao, G.; Zhang, W. CuO nanoparticle-catalyzed diaminations for synthesis of benzimidazole derivatives. Appl. Organomet. Chem., 2016, 30(8), 695-698.
[http://dx.doi.org/10.1002/aoc.3492]
[70]
Swapan, M.; Ankita, C.; Subrata, B.; Sudipto, D.; Dilip, K.M. Silica-ferric chloride (SiO2-FeCl3) catalyzed selective synthesis of 2-substituted benzimidazole through Csp2-Csp3 bond cleavage of β-ketoester/amide. Tetrahedron Lett., 2016, 57, 4595-4598.
[http://dx.doi.org/10.1016/j.tetlet.2016.08.099]
[71]
Zhang, X.; He, X.; Zhao, S. Preparation of a novel Fe3O4@SiO2 @propyl@DBU magnetic core–shell nanocatalyst for Knoevenagel reaction in aqueous medium. Green Chem. Lett. Rev., 2021, 14(1), 85-98.
[http://dx.doi.org/10.1080/17518253.2020.1862312]
[72]
Shaabani, A.; Hezarkhani, Z. Ferrite nanoparticles supported on natural wool in one-pot tandem oxidative reactions: strategy to synthesize benzimidazole, quinazolinone and quinoxaline derivatives. Appl. Organomet. Chem., 2017, 31(1), e3542.
[http://dx.doi.org/10.1002/aoc.3542]
[73]
Ahmad, S.; Reza, M. Fe3O4 magnetic nanoparticles (Fe3O4 MNPs): A magnetically reusable catalyst for synthesis of Benzimidazole compounds. J. Med. Chem. Sci., 2019, 2, 55-58.
[74]
Dong, Y.; Xue, F.; Wei, Y. Magnetic nanoparticles supported N-heterocyclic palladium complex: Synthesis and catalytic evaluations in Suzuki cross-coupling reaction. J. Phys. Chem. Solids, 2021, 153, 110007.
[http://dx.doi.org/10.1016/j.jpcs.2021.110007]
[75]
Shafiee, M.R.M.; Moloudi, R.; Ghashang, M. ZnO nanopowder: an efficient catalyst for the preparation of 2,4,6-triaryl pyridines under solvent-free condition. APCBEE Procedia, 2021, 221-225.
[76]
Bhattacharyya, P.; Pradhan, K.; Paul, S.; Das, A.R. Nano crystalline ZnO catalyzed one pot multicomponent reaction for an easy access of fully decorated 4H-pyran scaffolds and its rearrangement to 2-pyridone nucleus in aqueous media. Tetrahedron Lett., 2012, 53(35), 4687-4691.
[http://dx.doi.org/10.1016/j.tetlet.2012.06.086]
[77]
Sadjadi, S.; Eskandari, M. Ultrasonic assisted synthesis of imidazo[1,2-a]azine catalyzed by ZnO nanorods. Ultrason. Sonochem., 2013, 20(2), 640-643.
[http://dx.doi.org/10.1016/j.ultsonch.2012.09.006] [PMID: 23089165]
[78]
Tekale, S.U.; Kauthale, S.S.; Pagore, V.P.; Jadhav, V.B.; Pawar, R.P. ZnO nanoparticle-catalyzed efficient one-pot three-component synthesis of 3,4,5-trisubstituted furan-2(5H)-ones. J. Iran. Chem. Soc., 2013, 10, 1271-1277.
[79]
Somayeh, S.; Maryam, A.; Zinatossadat, H.; Siavash, A.A.; Akbar, E. Synthesis of chromene derivatives via three-component reaction of 4-hydroxycumarin catalyzed by magnetic Fe3O4 nanoparticles in water. J. Heterocyclic. Chem., 2017, 55(1), 209-213.
[80]
Azgomi, N.; Mokhtary, M. Nano-Fe3O4@SiO2 supported ionic liquid as an efficient catalyst for the synthesis of 1,3-thiazolidin-4-ones under solvent-free conditions. J. Mol. Catal. Chem., 2015, 398, 58-64.
[http://dx.doi.org/10.1016/j.molcata.2014.11.018]
[81]
Nikoofar, K.; Haghighi, M.; Lashanizadegan, M.; Ahmadvand, Z. ZnO nanorods: Efficient and reusable catalysts for the synthesis of substituted imidazoles in water. J. Taibah Univ. Sci., 2015, 9(4), 570-578.
[http://dx.doi.org/10.1016/j.jtusci.2014.12.007]
[82]
Abaszadeh, M.; Seifi, M.; Asadipour, A. Ultrasound promotes one-pot synthesis of 1,4-dihydropyridine and imidazo[1,2-a]quinoline derivatives, catalyzed by ZnO nanoparticles. Res. Chem. Intermed., 2015, 41(8), 5229-5238.
[http://dx.doi.org/10.1007/s11164-014-1624-7]
[83]
Ghasemzadeh, M.A.; Safaei-Ghomi, J. Synthesis and characterization of ZnO nanoparticles: Application to one-pot synthesis of benzo[b][1,5]diazepines. Cogent Chem., 2015, 1(1), 1095060.
[http://dx.doi.org/10.1080/23312009.2015.1095060]
[84]
Swami, S.; Devi, N.; Agarwala, A.; Singh, V.; Shrivastava, R. ZnO nanoparticles as reusable heterogeneous catalyst for efficient one pot three component synthesis of imidazo-fused polyheterocycles. Tetrahedron Lett., 2016, 57(12), 1346-1350.
[http://dx.doi.org/10.1016/j.tetlet.2016.02.045]
[85]
Mou, J.; Gao, G.; Chen, C.; Liu, J.; Gao, J.; Liu, Y.; Pei, D. Highly efficient one-pot three-component Betti reaction in water using reverse zinc oxide micelles as a recoverable and reusable catalyst. RSC Advances, 2017, 7(23), 13868-13875.
[http://dx.doi.org/10.1039/C6RA28599F]
[86]
Nasir, Z.; Ali, A.; Shakir, M.; Wahab, R.; Shamsuzzaman, S.; Lutfullah, L. Silica-supported NiO nanocomposites prepared via a sol–gel technique and their excellent catalytic performance for one-pot multicomponent synthesis of benzodiazepine derivatives under microwave irradiation. New J. Chem., 2017, 41(13), 5893-5903.
[http://dx.doi.org/10.1039/C6NJ04013F]
[87]
Reen, G.K.; Ahuja, M.; Kumar, A.; Patidar, R.; Sharma, P. ZnO nanoparticle-catalyzed multicomponent reaction for the synthesis of 1,4-diaryl dihydropyridines. Org. Prep. Proced. Int., 2017, 49(3), 273-286.
[http://dx.doi.org/10.1080/00304948.2017.1320927]
[88]
Zavar, S. A novel three component synthesis of 2-amino-4H-chromenes derivatives using nano ZnO catalyst. Arab. J. Chem., 2017, 10, S67-S70.
[http://dx.doi.org/10.1016/j.arabjc.2012.07.011]
[89]
Abdolmohammadi, S.; Mirza, B.; Vessally, E. Immobilized TiO2 nanoparticles on carbon nanotubes: an efficient heterogeneous catalyst for the synthesis of chromeno[ b]pyridine derivatives under ultrasonic irradiation. RSC Advances, 2019, 9(71), 41868-41876.
[http://dx.doi.org/10.1039/C9RA09031B] [PMID: 35557875]
[90]
Venkatapathy, K.; Magesh, C.J.; Lavanya, G.; Perumal, P.T.; Sathishkumar, R. A nanocrystalline CdS thin film as a heterogeneous, recyclable catalyst for effective synthesis of dihydropyrimidinones and a new class of carbazolyl dihydropyrimidinones via an improved Biginelli protocol. New J. Chem., 2019, 43(27), 10989-11002.
[http://dx.doi.org/10.1039/C9NJ02139F]
[91]
Girija, D.K.; Bhojya Naik, H.S.; Kumar, B.V.; Sudhamani, C.N.; Kalmane, H. Fe3O4 nanoparticle supported Ni(II) complexes: A magnetically recoverable catalyst for Biginelli reaction. Arab. J. Chem., 2019, 12(3), 420-428.
[92]
Mirjalili, B.F.; Bamoniri, A.H.; Zamani, L. One-pot synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles promoted by nano-. Sci. Iran., 2012, 19(3), 565-568.
[http://dx.doi.org/10.1016/j.scient.2011.12.013]
[93]
Ziarani, G.; Lashgari, N.; Badiei, A. Sulfonic acid-functionalized mesoporous silica (SBA-Pr-SO3H) as solid acid catalyst in organic reactions. J. Mol. Catalysis., 2015, 397(17), 166-191.
[94]
Keivanloo, A.; Bakherad, M.; Imanifar, E.; Mirzaee, M. Boehmite nanoparticles, an efficient green catalyst for the multi-component synthesis of highly substituted imidazoles. Appl. Catal. A Gen., 2013, 467, 291-300.
[http://dx.doi.org/10.1016/j.apcata.2013.07.027]
[95]
Montazeri, N.; Pourshamsian, K.; Rezaei, H.; Fouladi, M.; Rahbar, S. Nano Fe3O4: A novel and magnetically recyclable catalyst for the synthesis of 1, 2, 4, 5-tetrasubstituted imidazoles in solvent-free conditions. Asian J. Chem., 2013, 25(6), 3463-3466.
[http://dx.doi.org/10.14233/ajchem.2013.13963]
[96]
Ray, S.; Das, P.; Bhaumik, A.; Dutta, A.; Mukhopadhyay, C. Covalently anchored organic carboxylic acid on porous silica nano particle: A novel organometallic catalyst (PSNP-CA) for the chromatography-free highly product selective synthesis of tetrasubstituted imidazoles. Appl. Catal. A Gen., 2013, 458, 183-195.
[http://dx.doi.org/10.1016/j.apcata.2013.03.024]
[97]
Tajbakhsh, M.; Alaee, E.; Alinezhad, H.; Khanian, M.; Jahani, F.; Khaksar, S.; Rezaee, P.; Tajbakhsh, M. Titanium dioxide nanoparticles catalyzed synthesis of hantzsch esters and polyhydroquinoline derivatives. Chin. J. Catal., 2012, 33(9-10), 1517-1522.
[http://dx.doi.org/10.1016/S1872-2067(11)60435-X]
[98]
Gawande, M.B.; Velhinho, A.; Nogueira, I.D.; Ghumman, C.A.A.; Teodoro, O.M.N.D.; Branco, P.S. A facile synthesis of cysteine–ferrite magnetic nanoparticles for application in multicomponent reactions-A sustainable protocol. RSC Advances, 2012, 2(15), 6144-6149.
[http://dx.doi.org/10.1039/c2ra20955a]
[99]
Wu, L.Q. Nano n -propylsulfonated γ-Al2O3: a new, efficient and reusable catalyst for synthesis of spiro[indoline-3,4-pyrazolo[3,4- e][1,4]thiazepine]diones in aqueous media. Appl. Organomet. Chem., 2013, 27(3), 148-154.
[http://dx.doi.org/10.1002/aoc.2942]
[100]
Li, B.L.; Zhang, M.; Hu, H.C.; Du, X.; Zhang, Z.H. Nano-CoFe2O4 supported molybdenum as an efficient and magnetically recoverable catalyst for a one-pot, four-component synthesis of functionalized pyrroles. New J. Chem., 2014, 38(6), 2435-2442.
[http://dx.doi.org/10.1039/c3nj01368e]
[101]
Shaterian, H.R.; Azizi, K. Mild, four-component synthesis of 6-amino-4-aryl-3-methyl-1,4-dihydropyrano[2,3-c] pyrazole-5-carbonitriles catalyzed by titanium dioxide nano-sized particles. Res. on Chem. Inter., 2014, 40(2), 661-667.
[http://dx.doi.org/10.1007/s11164-012-0969-z]
[102]
Das, P.; Dutta, A.; Bhaumik, A.; Mukhopadhyay, C. Heterogeneous ditopic ZnFe2O4 catalyzed synthesis of 4H-pyrans: further conversion to 1,4-DHPs and report of functional group interconversion from amide to ester. Green Chem., 2014, 16(3), 1426-1435.
[http://dx.doi.org/10.1039/C3GC42095G]
[103]
Ahmed, M. A-D.; Shimaa, M. A-F. Development and functionalization of magnetic nanoparticles as powerful and green catalysts for organic synthesis. Beni-Suef Uni. J. Basic and App. Sci., 2018, 7(1), 55-67.
[http://dx.doi.org/10.1016/j.bjbas.2017.05.008]
[104]
Wang, Y.; Ge, W.; Fang, Y.; Ren, X.; Cao, S.; Liu, G.; Li, M.; Xu, J.; Wan, Y.; Han, X.; Wu, H. Porous CeO2 nanorod-catalyzed synthesis of poly-substituted imino-pyrrolidine-thiones. Res. Chem. Intermed., 2017, 43(2), 631-640.
[http://dx.doi.org/10.1007/s11164-016-2642-4]
[105]
Banazadeh, M.; Amirnejat, S.; Javanshir, S. Synthesis, characterization, and catalytic properties of magnetic Fe3O4@FU: A heterogeneous nanostructured mesoporous bio-based catalyst for the synthesis of imidazole derivatives. Front Chem., 2020, 8, 596029.
[http://dx.doi.org/10.3389/fchem.2020.596029] [PMID: 33335887]
[106]
Azizi, S.; Soleymani, J.; Hasanzadeh, M. Iron oxide magnetic nanoparticles supported on amino propyl‐functionalized KCC‐1 as robust recyclable catalyst for one pot and green synthesis of tetrahydrodipyrazolopyridines and cytotoxicity evaluation. Appl. Organomet. Chem., 2020, 34(3), e5440.
[http://dx.doi.org/10.1002/aoc.5440]
[107]
Asadbegi, S.; Bodaghifard, M.A.; Mobinikhaledi, A.; Poly, N. Poly N,N-dimethylaniline-formaldehyde supported on silica-coated magnetic nanoparticles: a novel and retrievable catalyst for green synthesis of 2-amino-3-cyanopyridines. Res. Chem. Intermed., 2020, 46(3), 1629-1643.
[http://dx.doi.org/10.1007/s11164-017-3200-4]
[108]
Hosseinzadeh, Z. Ramazani, A.; Ahankar, H.; Ślepokura, K.; Lis, T. Synthesis of 2-amino-4,6-diarylnicotinonitrile in the presence of CoFe2O4@SiO2-SO3H as a reusable solid acid nanocatalyst under microwave irradiation in solvent-free conditions. Silicon, 2019, 11(4), 2169-2176.
[http://dx.doi.org/10.1007/s12633-018-0034-7]
[109]
Aghahosseini, H.; Ranjbar, M.R.; Ramazani, A. Simple and efficient synthesis of guanidine-based magnetic nanocatalyst for the one-pot, four-component synthesis of polyhydroquinolines in water. ChemistrySelect, 2020, 5(28), 8415-8420.
[http://dx.doi.org/10.1002/slct.202001903]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy