Generic placeholder image

Current Cancer Therapy Reviews

Editor-in-Chief

ISSN (Print): 1573-3947
ISSN (Online): 1875-6301

Review Article

ROS Modulate Cell Death Mechanism in Cervical Cancer Cells Treated with the Combination of Polyphenolic Compounds and Anticancer Drug Cisplatin: A Review

Author(s): Hasmah Abdullah*, Syahirah Sazeli, Norlida Mamat, Hermizi Hapidin and Sarina Sulong

Volume 19, Issue 4, 2023

Published on: 31 May, 2023

Page: [334 - 348] Pages: 15

DOI: 10.2174/1573394719666230426151557

Price: $65

Abstract

Background: Most cervical cancer fatalities have been reported due to drug resistance, invasion, and metastasis. Combination therapy is a prominent technique for overcoming the toxicity of cancer chemotherapy to normal cells, which is mediated across numerous targeted pathways and requires a lower dose of each individual agent. Polyphenolic substances have the potential to improve chemotherapy efficacy while also reducing negative effects.

Aims: This study aimed to review the research findings on the role of reactive oxygen species (ROS) in cervical cancer cell HeLa treated with combination therapy.

Results: Hydroxyl radicals damage DNA, causing a cascade of structural changes in purine and pyrimidine bases that could lead to mutagenicity. ROS, such as hydroxyl radical (OH-), superoxide anions (O2-), hydrogen peroxide (H2O2), and peroxyl radicals (ROO-), are frequent products of aerobic metabolism that can be beneficial or detrimental to the biological system. To combat the harmful effects of ROS, cells have an antioxidative defense system that comprises superoxide dismutases, catalase, glutathione, and other defensive mechanisms. Excessive ROS accumulation causes DNA damage, which triggers the apoptotic machinery, resulting in cell death.

Conclusion: Chemotherapeutic medications with phenolic compounds or polyphenol-rich extracts exhibit anticancer synergy. Combination treatment with polyphenols and anticancer drugs is one of the promising approaches in the treatment of cervical cancer.

Graphical Abstract

[1]
Diaz-Padilla I, Monk BJ, Mackay HJ, Oaknin A. Treatment of metastatic cervical cancer: Future directions involving targeted agents. Crit Rev Oncol Hematol 2013; 85(3): 303-14.
[http://dx.doi.org/10.1016/j.critrevonc.2012.07.006] [PMID: 22883215]
[2]
Adhami VM, Malik A, Zaman N, et al. Combined inhibitory effects of green tea polyphenols and selective cyclooxygenase-2 inhibitors on the growth of human prostate cancer cells both in vitro and in vivo. Clin Cancer Res 2007; 13(5): 1611-9.
[http://dx.doi.org/10.1158/1078-0432.CCR-06-2269] [PMID: 17332308]
[3]
Mokhtari RB, Kumar S, Islam SS, et al. Combination of carbonic anhydrase inhibitor, acetazolamide, and sulforaphane, reduces the viability and growth of bronchial carcinoid cell lines. BMC Cancer 2013; 13(1): 378-96.
[http://dx.doi.org/10.1186/1471-2407-13-378] [PMID: 23927827]
[4]
Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 Countries. CA Cancer J Clin 2021; 71(3): 209-49.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
Arbyn M, Weiderpass E, Bruni L, et al. Estimates of incidence and mortality of cervical cancer in 2018: A worldwide analysis. Lancet Glob Health 2020; 8(2): e191-203.
[http://dx.doi.org/10.1016/S2214-109X(19)30482-6] [PMID: 31812369]
[6]
Zaridah S. A review of cervical cancer research in Malaysia. Med J Malaysia 2014; 69 (Suppl. A): 33-41.
[PMID: 25417949]
[7]
Kang YJ, O’Connell DL, Tan J, et al. Optimal uptake rates for initial treatments for cervical cancer in concordance with guidelines in Australia and Canada: Results from two large cancer facilities. Cancer Epidemiol 2015; 39(4): 600-11.
[http://dx.doi.org/10.1016/j.canep.2015.04.009] [PMID: 26004990]
[8]
Ojesina AI, Lichtenstein L, Freeman SS, et al. Landscape of genomic alterations in cervical carcinomas. Nature 2014; 506(7488): 371-5.
[http://dx.doi.org/10.1038/nature12881] [PMID: 24390348]
[9]
Tewari KS, Sill MW, Long HJ III, et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med 2014; 370(8): 734-43.
[http://dx.doi.org/10.1056/NEJMoa1309748] [PMID: 24552320]
[10]
Bukowski K, Kciuk M, Kontek R. Mechanisms of multidrug resistance in cancer chemotherapy. Int J Mol Sci 2020; 21(9): 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[11]
Olas B, Wachowicz B, Majsterek I, Blasiak J, Stochmal A, Oleszek W. Antioxidant properties of trans-3,3′5,5′-tetrahydroxy-4′-methoxystilbene against modification of variety of biomolecules in human blood cells treated with platinum compounds. Nutrition 2006; 22(11-12): 1202-9.
[http://dx.doi.org/10.1016/j.nut.2006.06.010] [PMID: 17095406]
[12]
Bennett LL, Rojas S, Seefeldt T. Role of antioxidant in the prevention of cancer. J Exp Clin Med 2012; 4(4): 215-22.
[http://dx.doi.org/10.1016/j.jecm.2012.06.001]
[13]
Heydarzadeh S, Kia SK, Zarkesh M, Pakizehkar S, Hosseinzadeh S, Hedayati M. The cross-talk between polyphenols and the target enzymes related to oxidative stress-induced thyroid cancer. Oxid Med Cell Longev 2022; 2022(5): 1-20.
[http://dx.doi.org/10.1155/2022/2724324] [PMID: 35571253]
[14]
Aggarwal BB, Sundaram C, Prasad S, Kannappan R. Tocotrienols, the vitamin E of the 21st century: Its potential against cancer and other chronic diseases. Biochem Pharmacol 2010; 80(11): 1613-31.
[http://dx.doi.org/10.1016/j.bcp.2010.07.043] [PMID: 20696139]
[15]
Bagchi D, Preuss HG. Phytopharmaceuticals in cancer chemoprevention. New York: CRC Series in Modern Nutrition Science 2005.
[16]
Halliwell B. Free radicals and antioxidants: a personal view. Nutr Rev 1994; 52(8): 253-65.
[http://dx.doi.org/10.1111/j.1753-4887.1994.tb01453.x] [PMID: 7970288]
[17]
Assi M. The differential role of reactive oxygen species in early and late stages of cancer. Am J Physiol Regul Integr Comp Physiol 2017; 313(6): R646-53.
[http://dx.doi.org/10.1152/ajpregu.00247.2017] [PMID: 28835450]
[18]
Sahoo BM, Banik BK, Borah P, Jain A. Reactive Oxygen Species (ROS): Key components in cancer therapies. Anticancer Agents Med Chem 2022; 22(2): 215-22.
[http://dx.doi.org/10.2174/1871520621666210608095512] [PMID: 34102991]
[19]
Münger K, Baldwin A, Edwards KM, et al. Mechanisms of human papillomavirus-induced oncogenesis. J Virol 2004; 78(21): 11451-60.
[http://dx.doi.org/10.1128/JVI.78.21.11451-11460.2004] [PMID: 15479788]
[20]
Moktar A, Singh R, Vadhanam MV, et al. Cigarette smoke condensate-induced oxidative DNA damage and its removal in human cervical cancer cells. Int J Oncol 2011; 39(4): 941-7.
[PMID: 21720711]
[21]
Numazaki K, Ikehata M, Chiba S. Chlamydia trachomatis and cervical squamous cell carcinoma. JAMA 2001; 285(13): 1705-6.
[PMID: 11277822]
[22]
Williams VM, Filippova M, Soto U, Duerksen-Hughes PJ. HPV-DNA integration and carcinogenesis: putative roles for inflammation and oxidative stress. Future Virol 2011; 6(1): 45-57.
[http://dx.doi.org/10.2217/fvl.10.73] [PMID: 21318095]
[23]
Moody CA, Laimins LA. Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer 2010; 10(8): 550-60.
[http://dx.doi.org/10.1038/nrc2886] [PMID: 20592731]
[24]
Vilenchik MM, Knudson AG. Endogenous DNA double-strand breaks: Production, fidelity of repair, and induction of cancer. Proc Natl Acad Sci USA 2003; 100(22): 12871-6.
[http://dx.doi.org/10.1073/pnas.2135498100] [PMID: 14566050]
[25]
Kryston TB, Georgiev AB, Pissis P, Georgakilas AG. Role of oxidative stress and DNA damage in human carcinogenesis. Mutat Res 2011; 711(1-2): 193-201.
[http://dx.doi.org/10.1016/j.mrfmmm.2010.12.016] [PMID: 21216256]
[26]
Liou GY, Storz P. Reactive oxygen species in cancer. Free Radic Res 2010; 44(5): 479-96.
[http://dx.doi.org/10.3109/10715761003667554] [PMID: 20370557]
[27]
Zahra K, Patel S, Dey T, Pandey U, Mishra SP. A study of oxidative stress in cervical cancer- an institutional study. Biochem Biophys Rep 2021; 25: 100881.
[http://dx.doi.org/10.1016/j.bbrep.2020.100881] [PMID: 33437881]
[28]
Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 1998; 60(1): 619-42.
[http://dx.doi.org/10.1146/annurev.physiol.60.1.619] [PMID: 9558479]
[29]
Lowe SW, Lin AW. Apoptosis in cancer. Carcinogenesis 2000; 21(3): 485-95.
[http://dx.doi.org/10.1093/carcin/21.3.485] [PMID: 10688869]
[30]
Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact 2006; 160(1): 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[31]
Afzal S, Jensen SA, Sørensen JB, Henriksen T, Weimann A, Poulsen HE. Oxidative damage to guanine nucleosides following combination chemotherapy with 5-fluorouracil and oxaliplatin. Cancer Chemother Pharmacol 2012; 69(2): 301-7.
[http://dx.doi.org/10.1007/s00280-011-1700-2] [PMID: 21710244]
[32]
Kong Q, Beel JA, Lillehei KO. A threshold concept for cancer therapy. Med Hypotheses 2000; 55(1): 29-35.
[http://dx.doi.org/10.1054/mehy.1999.0982] [PMID: 11021322]
[33]
Kinnula VL, Crapo JD. Superoxide dismutases in malignant cells and human tumors. Free Radic Biol Med 2004; 36(6): 718-44.
[http://dx.doi.org/10.1016/j.freeradbiomed.2003.12.010] [PMID: 14990352]
[34]
Martindale JL, Holbrook NJ. Cellular response to oxidative stress: Signaling for suicide and survival. J Cell Physiol 2002; 192(1): 1-15.
[http://dx.doi.org/10.1002/jcp.10119] [PMID: 12115731]
[35]
a) Chang YJ, Huang YP, Li ZL, Chen CH. GRP78 knockdown enhances apoptosis via the down-regulation of oxidative stress and Akt pathway after epirubicin treatment in colon cancer DLD-1 cells. PLoS One 2012; 7(4): e35123.
[http://dx.doi.org/10.1371/journal.pone.0035123] [PMID: 22529978];
b) Toker A, Yoeli-Lerner M. Akt signaling and cancer: surviving but not moving on. Cancer Res 2006; 66(8): 3963-6.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0743] [PMID: 16618711]
[36]
Chen J. The cell-cycle arrest and apoptotic functions of p53 in tumor initiation and progression. Cold Spring Harb Perspect Med 2016; 6(3): a026104.
[http://dx.doi.org/10.1101/cshperspect.a026104] [PMID: 26931810]
[37]
Pallepati P, Averill-Bates D. Mild thermotolerance induced at 40°C increases antioxidants and protects HeLa cells against mitochondrial apoptosis induced by hydrogen peroxide: Role of p53. Arch Biochem Biophys 2010; 495(2): 97-111.
[http://dx.doi.org/10.1016/j.abb.2009.12.014] [PMID: 20018168]
[38]
Circu ML, Aw TY. Glutathione and modulation of cell apoptosis. Biochim Biophys Acta Mol Cell Res 2012; 1823(10): 1767-77.
[http://dx.doi.org/10.1016/j.bbamcr.2012.06.019] [PMID: 22732297]
[39]
Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 2010; 48(6): 749-62.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.12.022] [PMID: 20045723]
[40]
Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, et al. Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective. Int J Nanomedicine 2017; 12(12): 2689-702.
[http://dx.doi.org/10.2147/IJN.S131973] [PMID: 28435252]
[41]
Niedzwiecki A, Roomi M, Kalinovsky T, Rath M. Anticancer efficacy of polyphenols and their combinations. Nutrients 2016; 8(9): 552.
[http://dx.doi.org/10.3390/nu8090552] [PMID: 27618095]
[42]
D’Angelo S, Martino E, Ilisso CP, Bagarolo ML, Porcelli M, Cacciapuoti G. Pro-oxidant and pro-apoptotic activity of polyphenol extract from Annurca apple and its underlying mechanisms in human breast cancer cells. Int J Oncol 2017; 51(3): 939-48.
[http://dx.doi.org/10.3892/ijo.2017.4088] [PMID: 28766690]
[43]
Kim B, Kim HS, Jung EJ, et al. Curcumin induces ER stress-mediated apoptosis through selective generation of reactive oxygen species in cervical cancer cells. Mol Carcinog 2016; 55(5): 918-28.
[http://dx.doi.org/10.1002/mc.22332] [PMID: 25980682]
[44]
Heim KE, Tagliaferro AR, Bobilya DJ. Flavonoid antioxidants: chemistry, metabolism and structure-activity relationships. J Nutr Biochem 2002; 13(10): 572-84.
[http://dx.doi.org/10.1016/S0955-2863(02)00208-5] [PMID: 12550068]
[45]
Mishra A, Sharma AK, Kumar S, Saxena AK, Pandey AK. Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. BioMed Res Int 2013.
[46]
Kumar S, Sharma UK, Sharma AK, Pandey AK. Protective efficacy of Solanum xanthocarpum root extracts against free radical damage: phytochemical analysis and antioxidant effect. Cell Mol Biol 2012; 58(1): 174-81.
[PMID: 23273209]
[47]
Mishra A, Kumar S, Pandey AK. Scientific validation of the medicinal efficacy of Tinospora cordifolia. ScientificWorldJournal 2013; 2013: 1-8.
[http://dx.doi.org/10.1155/2013/292934] [PMID: 24453828]
[48]
Oteiza PI, Erlejman AG, Verstraeten SV, Keen CL, Fraga CG. Flavonoid-membrane interactions: a protective role of flavonoids at the membrane surface? Clin Dev Immunol 2005; 12(1): 19-25.
[http://dx.doi.org/10.1080/10446670410001722168] [PMID: 15712595]
[49]
Nijveldt RJ, van Nood E, van Hoorn DEC, Boelens PG, van Norren K, van Leeuwen PAM. Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 2001; 74(4): 418-25.
[http://dx.doi.org/10.1093/ajcn/74.4.418] [PMID: 11566638]
[50]
Cheon BS, Kim YH, Son KS, Chang HW, Kang SS, Kim HP. Effects of prenylated flavonoids and biflavonoids on lipopolysaccharide-induced nitric oxide production from the mouse macrophage cell line RAW 264.7. Planta Med 2000; 66(7): 596-600.
[http://dx.doi.org/10.1055/s-2000-8621] [PMID: 11105561]
[51]
Sarkar A, Bhaduri A. Black tea is a powerful chemopreventor of reactive oxygen and nitrogen species: comparison with its individual catechin constituents and green tea. Biochem Biophys Res Commun 2001; 284(1): 173-8.
[http://dx.doi.org/10.1006/bbrc.2001.4944] [PMID: 11374887]
[52]
Hong J, Smith TJ, Ho CT, August DA, Yang CS. Effects of purified green and black tea polyphenols on cyclooxygenase- and lipoxygenase-dependent metabolism of arachidonic acid in human colon mucosa and colon tumor tissues11 Abbreviations: COX, cyclooxygenase; LOX, lipoxygenase; EGCG, (-)-epigallocatechin-3-gallate; EGC, (-)-epigallocatechin; ECG, (-)-epicatechin-3-gallate; EC, (-)-epicatechin; TF, theaflavin; TF3-G, theaflavin 3-gallate; TF3′-G, theaflavin 3′-gallate; TFdiG, theaflavin 3,3′-digallate; PGE2, prostaglandin E2; HETE, hydroxyeicosatetraenoic acid; HHT, 12-hydroxyheptadecatrienoic acid; and TBX, thromboxane. Biochem Pharmacol 2001; 62(9): 1175-83.
[http://dx.doi.org/10.1016/S0006-2952(01)00767-5] [PMID: 11705450]
[53]
Nagao A, Seki M, Kobayashi H. Inhibition of xanthine oxidase by flavonoids. Biosci Biotechnol Biochem 1999; 63(10): 1787-90.
[http://dx.doi.org/10.1271/bbb.63.1787] [PMID: 10671036]
[54]
Zhou Y, Zheng J, Li Y, et al. Natural polyphenols for prevention and treatment of cancer. Nutrients 2016; 8(8): 515-50.
[http://dx.doi.org/10.3390/nu8080515] [PMID: 27556486]
[55]
Kiruthiga C, Devi KP, Nabavi SM, Bishayee A. Autophagy: A Potential Therapeutic Target of Polyphenols in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12(3): 562-93.
[http://dx.doi.org/10.3390/cancers12030562] [PMID: 32121322]
[56]
Weng JK, Philippe RN, Noel JP. The rise of chemodiversity in plants. Science 2012; 336(6089): 1667-70.
[http://dx.doi.org/10.1126/science.1217411] [PMID: 22745420]
[57]
Shimizu C, Wakita Y, Inoue T, et al. Effects of lifelong intake of lemon polyphenols on aging and intestinal microbiome in the senescence-accelerated mouse prone 1 (SAMP1). Sci Rep 2019; 9(1): 3671-82.
[http://dx.doi.org/10.1038/s41598-019-40253-x] [PMID: 30842523]
[58]
Nie J, Zhang L, Zhao G, Du X. Quercetin reduces atherosclerotic lesions by altering the gut microbiota and reducing atherogenic lipid metabolites. J Appl Microbiol 2019; 127(6): 1824-34.
[http://dx.doi.org/10.1111/jam.14441] [PMID: 31509634]
[59]
Bahrami A, Jafari S, Rafiei P, et al. Dietary intake of polyphenols and risk of colorectal cancer and adenoma-A case-control study from Iran. Complement Ther Med 2019; 45: 269-74.
[http://dx.doi.org/10.1016/j.ctim.2019.04.011] [PMID: 31331573]
[60]
Lee YJ, Beak SY, Choi I, Sung JS. Quercetin and its metabolites protect hepatocytes against ethanol-induced oxidative stress by activation of Nrf2 and AP-1. Food Sci Biotechnol 2018; 27(3): 809-17.
[http://dx.doi.org/10.1007/s10068-017-0287-8] [PMID: 30263806]
[61]
Saha S, Buttari B, Panieri E, Profumo E, Saso L. An Overview of Nrf2 signaling pathway and its role in inflammation. Molecules 2020; 25(22): 5474-505.
[http://dx.doi.org/10.3390/molecules25225474] [PMID: 33238435]
[62]
Bouayed J, Hoffmann L, Bohn T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake. Food Chem 2011; 128(1): 14-21.
[http://dx.doi.org/10.1016/j.foodchem.2011.02.052] [PMID: 25214323]
[63]
Deprez S, Mila I, Huneau JF, Tome D, Scalbert A. Transport of proanthocyanidin dimer, trimer, and polymer across monolayers of human intestinal epithelial Caco-2 cells. Antioxid Redox Signal 2001; 3(6): 957-67.
[http://dx.doi.org/10.1089/152308601317203503] [PMID: 11813991]
[64]
Karimi A, Majlesi M, Rafieian-Kopaei M. Herbal versus synthetic drugs; beliefs and facts. J Nephropharmacol 2015; 4(1): 27-30.
[PMID: 28197471]
[65]
Kuroda Y, Hara Y. Antimutagenic and anticarcinogenic activity of tea polyphenols. Mutat Res Rev Mutat Res 1999; 436(1): 69-97.
[http://dx.doi.org/10.1016/S1383-5742(98)00019-2] [PMID: 9878691]
[66]
Kilic U, Sahin K, Tuzcu M, et al. Enhancement of Cisplatin sensitivity in human cervical cancer: epigallocatechin-3-gallate. Front Nutr 2015; 1(28): 28.
[http://dx.doi.org/10.3389/fnut.2014.00028] [PMID: 25988128]
[67]
Wang J, Yu H. Effects of combination therapy with cisplatin and grape seed proanthocyanidins on human cervical cancer cells C33a. Int J Sci 2016; 2(3): 101-6.
[http://dx.doi.org/10.18483/ijSci.973]
[68]
Martínez-Rodríguez OP, González-Torres A, Álvarez-Salas LM, et al. Effect of naringenin and its combination with cisplatin in cell death, proliferation and invasion of cervical cancer spheroids. RSC Advances 2021; 11(1): 129-41.
[http://dx.doi.org/10.1039/D0RA07309A] [PMID: 35423031]
[69]
Fernando J, Jones R. The principles of cancer treatment by chemotherapy. Surgery 2015; 33(3): 131-5.
[http://dx.doi.org/10.1016/j.mpsur.2015.01.005]
[70]
National Cancer Institute United State Gemcitabine-cisplatin. 2012. Available from : www.cancer.gov/about-cancer/treatment/drugs/GEMCITABINE-CISPLATIN
[71]
Pectasides D, Xiros N, Papaxoinis G, et al. Carboplatin and paclitaxel in advanced or metastatic endometrial cancer. Gynecol Oncol 2008; 109(2): 250-4.
[http://dx.doi.org/10.1016/j.ygyno.2008.01.028] [PMID: 18299146]
[72]
Cancer Research United Kingdom About Cervical Cancer. 2015. Available from : www.cancerresearchuk.org/prod_consump/groups/cr_common/@cah/@gen/documents/generalcontent/about-cervical-cancer.pdf
[73]
Ministry of Health Malaysia Cervical Cancer vaccines. 2011. Available from : www.moh.gov.my/attachments/8106.pdf
[74]
Kaufmann SH, Gores GJ. Apoptosis in cancer: Cause and cure. BioEssays 2000; 22(11): 1007-17.
[http://dx.doi.org/10.1002/1521-1878(200011)22:11<1007:AID-BIES7>3.0.CO;2-4] [PMID: 11056477]
[75]
Fisher DE, Fisher DE. Apoptosis in tumorigenesis and cancer therapy. Front Biosci 1997; 2(4): A197.
[http://dx.doi.org/10.2741/A197] [PMID: 9230063]
[76]
Sledge GW Jr, Miller KD. Exploiting the hallmarks of cancer. Eur J Cancer 2003; 39(12): 1668-75.
[http://dx.doi.org/10.1016/S0959-8049(03)00273-9] [PMID: 12888360]
[77]
Wong RSY. Apoptosis in cancer: From pathogenesis to treatment. J Exp Clin Cancer Res 2011; 30(1): 87.
[http://dx.doi.org/10.1186/1756-9966-30-87] [PMID: 21943236]
[78]
Koraneekit A, Limpaiboon T, Sangka A, Boonsiri P, Daduang S, Daduang J. Synergistic effects of cisplatin-caffeic acid induces apoptosis in human cervical cancer cells via the mitochondrial pathways. Oncol Lett 2018; 15(5): 7397-402.
[http://dx.doi.org/10.3892/ol.2018.8256] [PMID: 29731891]
[79]
Frazier AL, Stoneham S, Rodriguez-Galindo C, et al. Comparison of carboplatin versus cisplatin in the treatment of paediatric extracranial malignant germ cell tumours: A report of the malignant germ cell international consortium. Eur J Cancer 2018; 98: 30-7.
[http://dx.doi.org/10.1016/j.ejca.2018.03.004] [PMID: 29859339]
[80]
Bhattacharya S, Muhammad N, Steele R, Kornbluth J, Ray RB. Bitter melon enhances natural killer-mediated toxicity against head and neck cancer cells. Cancer Prev Res (Phila) 2017; 10(6): 337-44.
[http://dx.doi.org/10.1158/1940-6207.CAPR-17-0046] [PMID: 28465362]
[81]
Muhammad N, Steele R, Isbell TS, Philips N, Ray RB. Bitter melon extract inhibits breast cancer growth in preclinical model by inducing autophagic cell death. Oncotarget 2017; 8(39): 66226-36.
[http://dx.doi.org/10.18632/oncotarget.19887] [PMID: 29029506]
[82]
Mokhtari RB, Homayouni TS, Baluch N, et al. Combination therapy in combating cancer. Oncotarget 2017; 8(23): 38022-43.
[http://dx.doi.org/10.18632/oncotarget.16723] [PMID: 28410237]
[83]
Alshatwi AA, Periasamy VS, Athinarayanan J, Elango R. Synergistic anticancer activity of dietary tea polyphenols and bleomycin hydrochloride in human cervical cancer cell: Caspase-dependent and independent apoptotic pathways. Chem Biol Interact 2016; 247: 1-10.
[http://dx.doi.org/10.1016/j.cbi.2016.01.012] [PMID: 26800624]
[84]
Aborehab NM, Osama N. Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int 2019; 19(1): 154.
[http://dx.doi.org/10.1186/s12935-019-0868-0] [PMID: 31171918]
[85]
Mamat N, Abdullah H, Hapidin H, Mokhtar NF. Gallic acid and methyl gallate enhance antiproliferative effect of cisplatin on cervical cancer (HeLa) cells. Sains Malays 2020; 49(5): 1107-14.
[http://dx.doi.org/10.17576/jsm-2020-4905-15]
[86]
Mamat N, Abdullah H, Hapidin H, Mokhtar F. Combination effect of cisplatin and gallic acid on apoptosis and antioxidant enzymes level in cervical cancer (HeLa) cells. J Appl Pharm Sci 2021; 11(03): 92-9.
[87]
Hemaiswarya S, Doble M. Combination of phenylpropanoids with 5-fluorouracil as anti-cancer agents against human cervical cancer (HeLa) cell line. Phytomedicine 2013; 20(2): 151-8.
[http://dx.doi.org/10.1016/j.phymed.2012.10.009] [PMID: 23207250]
[88]
Zhao XY, Yang S, Chen YR, Li PC, Dou MM, Zhang J. Resveratrol and arsenic trioxide act synergistically to kill tumor cells in vitro and in vivo. PLoS One 2014; 9(6): e98925.
[http://dx.doi.org/10.1371/journal.pone.0098925] [PMID: 24901647]
[89]
Zhang L, Yang X, Li X, et al. Butein sensitizes HeLa cells to cisplatin through the AKT and ERK/p38 MAPK pathways by targeting FoxO3a. Int J Mol Med 2015; 36(4): 957-66.
[http://dx.doi.org/10.3892/ijmm.2015.2324] [PMID: 26310353]
[90]
Allegra M, D’Anneo A, Frazzitta A, et al. The phytochemical indicaxanthin synergistically enhances cisplatin-induced apoptosis in HeLa cells via oxidative stress-dependent p53/p21waf1 axis. Biomolecules 2020; 10(7): 994.
[http://dx.doi.org/10.3390/biom10070994] [PMID: 32630700]
[91]
Shanafelt TD, Call TG, Zent CS, et al. Phase I trial of daily oral Polyphenon E in patients with asymptomatic Rai stage 0 to II chronic lymphocytic leukemia. J Clin Oncol 2009; 27(23): 3808-14.
[http://dx.doi.org/10.1200/JCO.2008.21.1284] [PMID: 19470922]
[92]
Tsai WS, Nimgaonkar A, Segurado O, et al. Prospective clinical study of circulating tumor cells for colorectal cancer screening. J Clin Oncol 2018; 36(4) (Suppl.): 556.
[http://dx.doi.org/10.1200/JCO.2018.36.4_suppl.556]
[93]
Takimoto CH, Glover K, Huang X, et al. Phase I pharmacokinetic and pharmacodynamic analysis of unconjugated soy isoflavones administered to individuals with cancer. Cancer Epidemiol Biomarkers Prev 2003; 12(11 Pt 1): 1213-21.
[PMID: 14652284]
[94]
Goodpasture CE, Arrighi FE. Effects of food seasonings on the cell cycle and chromosome morphology of mammalian cells in vitro with special reference to turmeric. Food Cosmet Toxicol 1976; 14(1): 9-14.
[http://dx.doi.org/10.1016/S0015-6264(76)80356-2] [PMID: 943364]
[95]
Sharma RA, Euden SA, Platton SL, et al. Phase I clinical trial of oral curcumin: biomarkers of systemic activity and compliance. Clin Cancer Res 2004; 10(20): 6847-54.
[http://dx.doi.org/10.1158/1078-0432.CCR-04-0744] [PMID: 15501961]
[96]
Chowdhury P. Novel Paclitaxel Nanoparticles for EnhancedTherapeutic Effects in Breast Cancer. PhD Thesis, The University of Tennessee Health Science Center. 2020.
[97]
Patel KR, Brown VA, Jones DJL, et al. Clinical pharmacology of resveratrol and its metabolites in colorectal cancer patients. Cancer Res 2010; 70(19): 7392-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-2027] [PMID: 20841478]
[98]
Singh CK, Liu X, Ahmad N. Resveratrol, in its natural combination in whole grape, for health promotion and disease management. Ann N Y Acad Sci 2015; 1348(1): 150-60.
[http://dx.doi.org/10.1111/nyas.12798] [PMID: 26099945]
[99]
Ferry DR, Smith A, Malkhandi J, et al. Phase I clinical trial of the flavonoid quercetin: pharmacokinetics and evidence for in vivo tyrosine kinase inhibition. Clin Cancer Res 1996; 2(4): 659-68.
[PMID: 9816216]
[100]
Li X, Choi JS. Effects of quercetin on the pharmacokinetics of Etoposide after oral or intravenous administration of etoposide in rats. Anticancer Res 2009; 29(4): 1411-5.
[PMID: 19414395]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy