Abstract
Introduction: A simple method for the preparation of 5-(trifluoroacetyl)imidazoles was elaborated.
Methods: The reaction of trifluoromethyl(α-bromoalkenyl)ketones with benzimidamides was employed to afford the target heterocycles in good yields.
Results: The assembly of imidazole core proceeds via aza-Michael adduct formation followed by intramolecular nucleophilic substitution and spontaneous aromatization as an oxidation sequence.
Conclusion: The yields of target imidazoles can be improved by the use of soft oxidizing agents.
Graphical Abstract
[http://dx.doi.org/10.1021/cr9402081] [PMID: 11848765];
b) Vitaku, E.; Smith, D.T.; Njardarson, J.T. Analysis of the structural diversity, substitution patterns, and frequency of nitrogen heterocycles among U.S. FDA approved pharmaceuticals. J. Med. Chem., 2014, 57(24), 10257-10274.
[http://dx.doi.org/10.1021/jm501100b] [PMID: 25255204];
c) Rulev, A.Yu. Assembly of nitrogen-containing heterocycles initiated by the aza-Michael reaction. Russ. Chem. Bull. Int. Ed, 2016, 65, 1687-1699.
[http://dx.doi.org/10.1007/s11172-016-1497-6];
d) Song, F.; Xu, G.; Gaul, M.D.; Zhao, B.; Lu, T.; Zhang, R.; DesJarlais, R.L.; DiLoreto, K.; Huebert, N.; Shook, B.; Rentzeperis, D.; Santulli, R.; Eckardt, A.; Demarest, K. Design, synthesis and structure activity relationships of indazole and indole derivatives as potent glucagon receptor antagonists. Bioorg. Med. Chem. Lett., 2019, 29(15), 1974-1980.
[http://dx.doi.org/10.1016/j.bmcl.2019.05.036] [PMID: 31138472];
e) Huang, J.; Liang, Y.Y.; Ouyang, X.H.; Xiao, Y.T.; Qin, J.H.; Song, R.J.; Li, J.H. Three-component photoredox 1,2-alkylamination of styrenes with alkanes and nitrogen nucleophiles via C(sp3)–H bond cleavage. Org. Chem. Front., 2021, 8(24), 7009-7014.
[http://dx.doi.org/10.1039/D1QO01263K]
[http://dx.doi.org/10.2174/092986709787002826] [PMID: 16457636];
b) Jin, Z. Muscarine, imidazole, oxazole and thiazole alkaloids. Nat. Prod. Rep., 2009, 26(3), 382-445.
[http://dx.doi.org/10.1039/b718045b] [PMID: 19240947];
c) Forte, B.; Malgesini, B.; Piutti, C.; Quartieri, F.; Scolaro, A.; Papeo, G. A submarine journey: The pyrrole-imidazole alkaloids. Mar. Drugs, 2009, 7(4), 705-753.
[http://dx.doi.org/10.3390/md7040705] [PMID: 20098608];
d) Koswatta, P.B.; Lovely, C.J. Structure and synthesis of 2-aminoimidazole alkaloids from Leucetta and Clathrina sponges. Nat. Prod. Rep., 2011, 28(3), 511-528.
[http://dx.doi.org/10.1039/C0NP00001A] [PMID: 20981389]
[http://dx.doi.org/10.1002/asia.201301061] [PMID: 24151047];
b) Asensio, J.A.; Gómez-Romero, P. Recent developments on proton conducting poly(2,5-benzimidazole) (ABPBI) membranes for high temperature polymer electrolyte membrane fuel cells. Fuel Cells, 2005, 5(3), 336-343.
[http://dx.doi.org/10.1002/fuce.200400081];
c) Kwon, J.E.; Park, S.; Park, S.Y. Realizing molecular pixel system for full-color fluorescence reproduction: RGB-emitting molecular mixture free from energy transfer crosstalk. J. Am. Chem. Soc., 2013, 135(30), 11239-11246.
[http://dx.doi.org/10.1021/ja404256s] [PMID: 23876082];
d) Yamamoto, T.; Uemura, T.; Tanimoto, A.; Sasaki, S. Synthesis and chemical properties of π-conjugated poly(imidazole-2,5-diyl)s. Macromolecules, 2003, 36(4), 1047-1053.
[http://dx.doi.org/10.1021/ma0211232];
e) Lin, W.; Long, L.; Yuan, L.; Cao, Z.; Chen, B.; Tan, W. A ratiometric fluorescent probe for cysteine and homocysteine displaying a large emission shift. Org. Lett., 2008, 10(24), 5577-5580.
[http://dx.doi.org/10.1021/ol802436j] [PMID: 19053722]
[http://dx.doi.org/10.1007/s00044-015-1495-5];
b) Zheng, X.; Ma, Z.; Zhang, D. Synthesis of imidazole-based medicinal molecules utilizing the van Leusen imidazole synthesis. Pharmaceuticals, 2020, 13(3), 37.
[http://dx.doi.org/10.3390/ph13030037] [PMID: 32138202];
c) Zhang, L.; Peng, X.M.; Damu, G.L.V.; Geng, R.X.; Zhou, C.H. Comprehensive review in current developments of imidazole-based medicinal chemistry. Med. Res. Rev., 2014, 34(2), 340-437.
[http://dx.doi.org/10.1002/med.21290] [PMID: 23740514]
[http://dx.doi.org/10.1038/372739a0] [PMID: 7997261];
b) Adams, J.L.; Boehm, J.C.; Gallagher, T.F.; Kassis, S.; Webb, E.F.; Hall, R.; Sorenson, M.; Garigipati, R.; Griswold, D.E.; Lee, J.C. Pyrimidinylimidazole inhibitors of p38: Cyclic N-1 imidazole substituents enhance p38 kinase inhibition and oral activity. Bioorg. Med. Chem. Lett., 2001, 11(21), 2867-2870.
[http://dx.doi.org/10.1016/S0960-894X(01)00570-4] [PMID: 11597418];
c) Koch, P.; Bäuerlein, C.; Jank, H.; Laufer, S. Targeting the ribose and phosphate binding site of p38 mitogen-activated protein (MAP) kinase: Synthesis and biological testing of 2-alkylsulfanyl-, 4(5)-aryl-, 5(4)-heteroaryl-substituted imidazoles. J. Med. Chem., 2008, 51(18), 5630-5640.
[http://dx.doi.org/10.1021/jm800373t] [PMID: 18763757];
d) Che, H.; Tuyen, T.N.; Kim, H.P.; Park, H. 1,5-Diarylimidazoles with strong inhibitory activity against COX-2 catalyzed PGE2 production from LPS-induced RAW 264.7 cells. Bioorg. Med. Chem. Lett., 2010, 20(14), 4035-4037.
[http://dx.doi.org/10.1016/j.bmcl.2010.05.092] [PMID: 20554444]
[http://dx.doi.org/10.1016/j.bmcl.2007.01.074] [PMID: 17289387];
b) Sharma, D.; Narasimhan, B.; Kumar, P.; Judge, V.; Narang, R.; De Clercq, E.; Balzarini, J. Synthesis, antimicrobial and antiviral evaluation of substituted imidazole derivatives. Eur. J. Med. Chem., 2009, 44(6), 2347-2353.
[http://dx.doi.org/10.1016/j.ejmech.2008.08.010] [PMID: 18851889];
c) Zhan, P.; Liu, X.; Zhu, J.; Fang, Z.; Li, Z.; Pannecouque, C.; Clercq, E.D. Synthesis and biological evaluation of imidazole thioacetanilides as novel non-nucleoside HIV-1 reverse transcriptase inhibitors. Bioorg. Med. Chem., 2009, 17(16), 5775-5781.
[http://dx.doi.org/10.1016/j.bmc.2009.07.028] [PMID: 19643613]
[http://dx.doi.org/10.1016/S0960-894X(99)00112-2] [PMID: 10230632];
b) Heerding, D.A.; Chan, G.; DeWolf, W.E., Jr; Fosberry, A.P.; Janson, C.A.; Jaworski, D.D.; McManus, E.; Miller, W.H.; Moore, T.D.; Payne, D.J.; Qiu, X.; Rittenhouse, S.F.; Slater-Radosti, C.; Smith, W.; Takata, D.T.; Vaidya, K.S.; Yuan, C.C.K.; Huffman, W.F. 1,4-Disubstituted imidazoles are potential antibacterial agents functioning as inhibitors of enoyl acyl carrier protein reductase (FabI). Bioorg. Med. Chem. Lett., 2001, 11(16), 2061-2065.
[http://dx.doi.org/10.1016/S0960-894X(01)00404-8] [PMID: 11514139];
c) Yurttaş L.; Duran, M.; Demirayak, Ş Gençer, H.K.; Tunalı Y. Synthesis and initial biological evaluation of substituted 1-phenylamino-2-thio-4,5-dimethyl-1H-imidazole derivatives. Bioorg. Med. Chem. Lett., 2013, 23(24), 6764-6768.
[http://dx.doi.org/10.1016/j.bmcl.2013.10.024] [PMID: 24176398];
d) Bhandari, K.; Srinivas, N.; Shiva Keshava, G.B.; Shukla, P.K. Tetrahydronaphthyl azole oxime ethers: The conformationally rigid analogues of oxiconazole as antibacterials. Eur. J. Med. Chem., 2009, 44(1), 437-447.
[http://dx.doi.org/10.1016/j.ejmech.2008.01.006] [PMID: 18313805];
e) Vijesh, A.M.; Isloor, A.M.; Telkar, S.; Peethambar, S.K.; Rai, S.; Isloor, N. Synthesis, characterization and antimicrobial studies of some new pyrazole incorporated imidazole derivatives. Eur. J. Med. Chem., 2011, 46(8), 3531-3536.
[http://dx.doi.org/10.1016/j.ejmech.2011.05.005] [PMID: 21620535]
[http://dx.doi.org/10.1016/0006-2952(87)90670-8] [PMID: 3500726];
b) Emami, S.; Foroumadi, A.; Falahati, M.; Lotfali, E.; Rajabalian, S.; Ebrahimi, S.A.; Farahyar, S.; Shafiee, A. 2-Hydroxyphenacyl azoles and related azolium derivatives as antifungal agents. Bioorg. Med. Chem. Lett., 2008, 18(1), 141-146.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.111] [PMID: 18032039];
c) Wolff, D.J.; Datto, G.A.; Samatovicz, R.A. The dual mode of inhibition of calmodulin-dependent nitric-oxide synthase by antifungal imidazole agents. J. Biol. Chem., 1993, 268(13), 9430-9436.
[http://dx.doi.org/10.1016/S0021-9258(18)98369-9] [PMID: 7683652];
d) Sennequier, N.; Wolan, D.; Stuehr, D.J. Antifungal imidazoles block assembly of inducible NO synthase into an active dimer. J. Biol. Chem., 1999, 274(2), 930-938.
[http://dx.doi.org/10.1074/jbc.274.2.930] [PMID: 9873034];
e) Koga, H.; Nanjoh, Y.; Makimura, K.; Tsuboi, R. In vitro antifungal activities of luliconazole, a new topical imidazole. Med. Mycol., 2009, 47(6), 640-647.
[http://dx.doi.org/10.1080/13693780802541518] [PMID: 19115136]
[http://dx.doi.org/10.1021/acsomega.8b00996] [PMID: 31459105];
b) Congiu, C.; Cocco, M.T.; Onnis, V. Design, synthesis, and in vitro antitumor activity of new 1,4-diarylimidazole-2-ones and their 2-thione analogues. Bioorg. Med. Chem. Lett., 2008, 18(3), 989-993.
[http://dx.doi.org/10.1016/j.bmcl.2007.12.023] [PMID: 18164978];
c) Al-Raqa, S.Y.; ElSharief, A.M.S.; Khalil, S.M.E.; Al-Amri, A.M. Synthesis of some novel imidazolidine derivatives and their metal complexes with biological and antitumor activity. Heteroatom Chem., 2006, 17(7), 634-647.
[http://dx.doi.org/10.1002/hc.20244];
d) Perchellet, E.M.; Perchellet, J.P.; Baures, P.W. Imidazole-4,5-dicarboxamide derivatives with antiproliferative activity against HL-60 cells. J. Med. Chem., 2005, 48(19), 5955-5965.
[http://dx.doi.org/10.1021/jm050160r] [PMID: 16161999]
[http://dx.doi.org/10.1039/C4CC02346C] [PMID: 24763985]
[http://dx.doi.org/10.1039/C5GC02557E];
b) Ngo, H.L.; LeCompte, K.; Hargens, L.; McEwen, A.B. Thermal properties of imidazolium ionic liquids. Thermochim. Acta, 2000, 357-358, 97-102.
[http://dx.doi.org/10.1016/S0040-6031(00)00373-7];
c) Wasserscheid, P.; Keim, W. Ionic liquids – new “solutions” for transition metal catalysis. Angew. Chem. Int. Ed., 2000, 39(21), 3772-3789.
[http://dx.doi.org/10.1002/1521-3773(20001103)39:21<3772:AID-ANIE3772>3.0.CO;2-5] [PMID: 11091453];
d) Plaquevent, J.C.; Levillain, J.; Guillen, F.; Malhiac, C.; Gaumont, A.C. Ionic liquids: New targets and media for α-amino acid and peptide chemistry. Chem. Rev., 2008, 108(12), 5035-5060.
[http://dx.doi.org/10.1021/cr068218c] [PMID: 19053329];
e) Welton, T. Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chem. Rev., 1999, 99(8), 2071-2084.
[http://dx.doi.org/10.1021/cr980032t] [PMID: 11849019]
[http://dx.doi.org/10.1039/C8CY00381E];
b) Gholinejad, M.; Bonyasi, R.; Najera, C.; Saadati, F.; Bahrami, M.; Dasvarz, N. Gold nanoparticles supported on imidazole-modified bentonite: Environmentally benign heterogeneous catalyst for the three-component synthesis of propargylamines in water. ChemPlusChem, 2018, 83(5), 431-438.
[http://dx.doi.org/10.1002/cplu.201800162] [PMID: 31957366];
c) Herrmann, W.A. N-heterocyclic carbenes: A new concept in organometallic catalysis. Angew. Chem. Int. Ed., 2002, 41(8), 1290-1309.
[http://dx.doi.org/10.1002/1521-3773(20020415)41:8<1290::AIDANIE1290>3.0.CO;2-Y] [PMID: 19750753];
d) Zhang, Z.; Xie, F.; Jia, J.; Zhang, W. Chiral bicycle imidazole nucleophilic catalysts: Rational design, facile synthesis, and successful application in asymmetric Steglich rearrangement. J. Am. Chem. Soc., 2010, 132(45), 15939-15941.
[http://dx.doi.org/10.1021/ja109069k] [PMID: 20977235];
e) Díez-González, S.; Marion, N.; Nolan, S.P. N-heterocyclic carbenes in late transition metal catalysis. Chem. Rev., 2009, 109(8), 3612-3676.
[http://dx.doi.org/10.1021/cr900074m] [PMID: 19588961]
[http://dx.doi.org/10.1021/jo00427a012]
[http://dx.doi.org/10.1002/cber.19590920214]
[http://dx.doi.org/10.1039/p19930000675]
[http://dx.doi.org/10.1016/j.molcata.2006.10.056];
b) Sarshar, S.; Siev, D.; Mjalli, A.M.M. Imidazole libraries on solid support. Tetrahedron Lett., 1996, 37(6), 835-838.
[http://dx.doi.org/10.1016/0040-4039(95)02334-8]
[http://dx.doi.org/10.1007/s11030-015-9602-6] [PMID: 26016721];
b) Bell, C.E.; Shaw, A.Y.; De Moliner, F.; Hulme, C. MCRs reshaped into a switchable microwave-assisted protocol toward 5-aminoimidazoles and dihydrotriazines. Tetrahedron, 2014, 70(1), 54-59.
[http://dx.doi.org/10.1016/j.tet.2013.11.035] [PMID: 24535889]
[http://dx.doi.org/10.1016/j.tetlet.2017.01.052]
[http://dx.doi.org/10.1021/acs.orglett.9b00624] [PMID: 30860852]
[http://dx.doi.org/10.1039/C5QO00285K];
b) Wu, P.; Qu, J.; Li, Y.; Guo, X.; Tang, D.; Meng, X.; Yan, R.; Chen, B. Iron(III)/Iodine-Catalyzed C(sp2)–H activation of αβ-unsaturated aldehydes/ketones with amidines: Synthesis of 1,2,4,5-tetra-substituted imidazoles. Adv. Synth. Catal., 2015, 357(18), 3868-3874.
[http://dx.doi.org/10.1002/adsc.201500701];
c) Zhu, Y.; Li, C.; Zhang, J.; She, M.; Sun, W.; Wan, K.; Wang, Y.; Yin, B.; Liu, P.; Li, J. A facile FeCl3/I2-catalyzed aerobic oxidative coupling reaction: Synthesis of tetrasubstituted imidazoles from amidines and chalcones. Org. Lett., 2015, 17(15), 3872-3875.
[http://dx.doi.org/10.1021/acs.orglett.5b01854] [PMID: 26196356];
d) Wu, P.; Zhang, X.; Chen, B. Direct synthesis of 2,4,5-trisubstituted imidazoles and di/tri-substituted pyrimidines via cycloadditions of αβ-unsaturated ketones/aldehydes and N′-hydroxyl imidamides. Tetrahedron Lett., 2019, 60(16), 1103-1107.
[http://dx.doi.org/10.1016/j.tetlet.2019.03.025];
e) Camp, J.E.; Shabalin, D.A.; Dunsford, J.J.; Ngwerume, S.; Saunders, A.R.; Gill, D.M. Synthesis of 2,4-disubstituted imidazoles via nucleophilic catalysis. Synlett, 2020, 31(8), 797-800.
[http://dx.doi.org/10.1055/s-0039-1690832]
[http://dx.doi.org/10.1016/j.tet.2019.04.008];
b) Hu, B.; Wang, Z.; Ai, N.; Zheng, J.; Liu, X.H.; Shan, S.; Wang, Z. Catalyst-free preparation of 1,2,4,5-tetrasubstituted imidazoles from a novel unexpected domino reaction of 2-azido acrylates and nitrones. Org. Lett., 2011, 13(24), 6362-6365.
[http://dx.doi.org/10.1021/ol202650z] [PMID: 22070138];
c) Tang, D.; Wu, P.; Liu, X.; Chen, Y.X.; Guo, S.B.; Chen, W.L.; Li, J.G.; Chen, B.H. Synthesis of multisubstituted imidazoles via copper-catalyzed [3 + 2] cycloadditions. J. Org. Chem., 2013, 78(6), 2746-2750.
[http://dx.doi.org/10.1021/jo302555z] [PMID: 23409756]
[http://dx.doi.org/10.1002/ejoc.201801351]
[http://dx.doi.org/10.1021/ol502667h] [PMID: 25286171];
b) Morita, T.; Fuse, S.; Nakamura, H. Photochemical conversion of isoxazoles to 5-hydroxyimidazolines. Org. Lett., 2020, 22(9), 3460-3463.
[http://dx.doi.org/10.1021/acs.orglett.0c00910] [PMID: 32286839]
[http://dx.doi.org/10.1016/j.tet.2007.02.075]
[http://dx.doi.org/10.1007/s11030-015-9590-6] [PMID: 25863807]
[http://dx.doi.org/10.1248/cpb.48.410] [PMID: 10726867];
b) Hamper, B.C.; Jerome, K.D.; Yalamanchili, G.; Walker, D.M.; Chott, R.C.; Mischke, D.A. Synthesis of highly substituted 5-(trifluoromethyl)ketoimidazoles using a mixed-solid/solution phase motif. Biotechnol. Bioeng., 2000, 71(1), 28-37.
[http://dx.doi.org/10.1002/(SICI)1097-0290(200024)71:1<28:AID-BIT5>3.0.CO;2-F] [PMID: 10629533];
c) Kacharova, L.M.; Gerus, I.I.; Kacharov, A.D. Reaction of α-halogen substituted β-ethoxyvinyl trifluoromethyl ketones with 2-aminopyridine: New route to trifluoroacetyl-containing heterocycles. J. Fluor. Chem., 2002, 117(2), 193-197.
[http://dx.doi.org/10.1016/S0022-1139(02)00190-2];
d) Palumbo Piccionello, A.; Pace, A.; Buscemi, S.; Vivona, N.; Pani, M. Synthesis of trifluoromethylated 2-benzoyl- and 2-aminoimidazoles from ring rearrangement of 1,2,4-oxadiazole derivatives. Tetrahedron, 2008, 64(18), 4004-4010.
[http://dx.doi.org/10.1016/j.tet.2008.02.047]
[http://dx.doi.org/10.1021/ol401041f] [PMID: 23718550];
b) Muzalevskiy, V.M.; Ustynyuk, Y.A.; Gloriozov, I.P.; Chertkov, V.A.; Rulev, A.Y.; Kondrashov, E.V.; Ushakov, I.A.; Romanov, A.R.; Nenajdenko, V.G. Experimental and theoretical study of an intramolecular CF3-group shift in the reactions of α-bromoenones with 1,2-diamines. Chemistry, 2015, 21(47), 16982-16989.
[http://dx.doi.org/10.1002/chem.201502706] [PMID: 26440451];
c) Rulev, A.Y.; Romanov, A.R.; Kondrashov, E.V.; Ushakov, I.A.; Vashchenko, A.V.; Muzalevskiy, V.M.; Nenajdenko, V.G. Domino assembly of trifluoromethylated N,O-heterocycles by the reaction of fluorinated α-bromoenones with amino alcohols. J. Org. Chem., 2016, 81(20), 10029-10034.
[http://dx.doi.org/10.1021/acs.joc.6b01927] [PMID: 27656759];
d) Rulev, A.Y.; Romanov, A.R.; Kondrashov, E.V.; Ushakov, I.A.; Muzalevskiy, V.M.; Nenajdenko, V.G. Assembly of trifluoromethylated morpholines through cascade reactions of bromoenones with secondary amino alcohols. Eur. J. Org. Chem., 2018, 2018(30), 4202-4210.
[http://dx.doi.org/10.1002/ejoc.201800659]
[http://dx.doi.org/10.1055/s-0040-1707969]
[http://dx.doi.org/10.1002/ejoc.200700606];
b) Bonnier, M.; Marsura, A.; Luu-Duc, C. Synthesis of 2,4-diphenyl-5-ethoxycarbonyl-1-heptadeuterated isopropyl-2-imidazoline. J. Labelled Comp. Radiopharm., 1986, 23(1), 67-71.
[http://dx.doi.org/10.1002/jlcr.2580230109];
c) Marsura, A.; Luu-Duc, C.; Gellon, G. New one-step synthesis of functionalized 2-imidazolines. Synthesis, 1985, 1985(5), 537-541.
[http://dx.doi.org/10.1055/s-1985-31267];
d) Guchhait, S.K.; Hura, N.; Shah, A.P. Synthesis of polysubstituted 2-aminoimidazoles via alkene-diamination of guanidine with conjugated α-bromoalkenones. J. Org. Chem., 2017, 82(5), 2745-2752.
[http://dx.doi.org/10.1021/acs.joc.6b03021] [PMID: 28195472];
e) Shilcrat, S.C.; Mokhallalati, M.K.; Fortunak, J.M.D.; Pridgen, L.N. A new regioselective synthesis of 1,2,5-trisubstituted 1H-imidazoles and its application to the development of eprosartan. J. Org. Chem., 1997, 62(24), 8449-8454.
[http://dx.doi.org/10.1021/jo971304f] [PMID: 11671984]
b) Kolb, H.C.; Kanamarlapudi, R.C.; Richardson, P.F.; Khan, G. Modified safe and efficient process for the environmentally friendly synthesis of imidoesters. U.S. Patent 6806380 B2, 2002.;
c) Jung, K-Y.; Kim, S-K.; Gao, Z-G.; Gross, A.S.; Melman, N.; Jacobson, K.A.; Kin, Y-C. Structure–activity relationships of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists. Bioorg. Med. Chem., 2004, 12, 613-623.;
d) Lu, X.; Xin, X.; Wan, B. Silver-catalyzed [3+2+1] annulation of aryl amidines with benzyl isocyanide. Tetrahedron Lett., 2018, 59, 361-364.
[http://dx.doi.org/10.1055/s-1999-2741];
b) Rulev, A.Yu.; Ushakov, I.A.; Nenajdenko, V.G.; Balenkova, E.S.; Voronkov, M.G. Domino transformations of gem-trifluoroacetyl(bromo) alkenes under the action of secondary amines. Eur. J. Org. Chem, 2007, 2007(36), 6039-6045.;
c) Rulev, A.Yu.; Ushakov, I.A.; Nenajdenko, V.G. One-pot synthesis of functionalized indenols from 2-bromoalkenyl trifluoromethyl ketones. Tetrahedron, 2008, 64(35), 8073-8077.
[http://dx.doi.org/10.1016/j.tet.2008.06.069]
[http://dx.doi.org/10.1021/jo00177a042];
b) Kolb, H.C.; Kanamarlapudi, R.C.; Richardson, P.F.; Khan, G. Modified safe and efficient process for the environmentally friendly synthesis of imidoesters. U.S. Patent 6806380 B2, 2002.;
c) Jung, K.Y.; Kim, S.K.; Gao, Z.G.; Gross, A.S.; Melman, N.; Jacobson, K.A.; Kim, Y.C. Structure–activity relationships of thiazole and thiadiazole derivatives as potent and selective human adenosine A3 receptor antagonists. Bioorg. Med. Chem., 2004, 12(3), 613-623.
[http://dx.doi.org/10.1016/j.bmc.2003.10.041] [PMID: 14738972];
d) Lu, X.; Xin, X.; Wan, B. Silver-catalyzed [3+2+1] annulation of aryl amidines with benzyl isocyanide. Tetrahedron Lett., 2018, 59(4), 361-364.
[http://dx.doi.org/10.1016/j.tetlet.2017.10.032]
[http://dx.doi.org/10.1021/jo00193a012]