Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Diosgenin Glucoside Inhibits the Progression of Osteosarcoma MG-63 by Regulating the PI3K/AKT/mTOR Pathway

Author(s): Siyuan Ruan, Liuwei Gu, Yuqi Wang, Xincheng Huang and Hong Cao*

Volume 23, Issue 14, 2023

Published on: 16 May, 2023

Page: [1670 - 1677] Pages: 8

DOI: 10.2174/1871520623666230420081738

Price: $65

conference banner
Abstract

Background: Trillium tschonoskii Maxim (TTM) exerts antitumor effects on a variety of tumour cells. However, the antitumor mechanism of Diosgenin glucoside (DG) extracted from TTM is not clear.

Objective: This study aimed to investigate the anti-tumour effects of DG-induced osteosarcoma MG-63 cells and their molecular mechanism.

Methods: CCK-8 assay, HE staining, and flow cytometry were used to detect the effects of DG on the proliferation, apoptosis, and cell cycle of osteosarcoma cells. Wound healing and Transwell invasion assays were used to observe the effect of DG on the migration and invasion of osteosarcoma cells. The anti-tumour mechanism of DG on osteosarcoma cells was investigated by immunohistochemistry, Western blot, and RT-PCR.

Results: DG significantly inhibited osteosarcoma cell activity and proliferation, promoted apoptosis and blocked the G2 phase of the cell cycle. Both wound healing and Transwell invasion assays showed that DG inhibited osteosarcoma cell migration and invasion. Immunohistochemical and western blot results showed that DG inhibited the activation of PI3K/AKT/mTOR. We found that DG also significantly downregulated the expression of S6K1 and eIF4F, which might be associated with the inhibition of protein synthesis.

Conclusion: DG may inhibit proliferation, migration, invasion, and cell cycle G2 phase arrest of osteosarcoma MG-63 cells and promote apoptosis through the PI3K/AKT/mTOR signalling pathway.

Graphical Abstract

[1]
Vijayamurugan, N.; Bakhshi, S. Review of management issues in relapsed osteosarcoma. Expert Rev. Anticancer Ther., 2014, 14(2), 151-161.
[http://dx.doi.org/10.1586/14737140.2014.863453] [PMID: 24308680]
[2]
Yang, C.; Tian, Y.; Zhao, F.; Chen, Z.; Su, P.; Li, Y.; Qian, A. Bone microenvironment and osteosarcoma metastasis. Int. J. Mol. Sci., 2020, 21(19), 6985.
[http://dx.doi.org/10.3390/ijms21196985] [PMID: 32977425]
[3]
Brown, H.K.; Tellez-Gabriel, M.; Heymann, D. Cancer stem cells in osteosarcoma. Cancer Lett., 2017, 386(17), 189-195.
[http://dx.doi.org/10.1016/j.canlet.2016.11.019] [PMID: 27894960]
[4]
Zhang, J.; Yu, X.H.; Yan, Y.G.; Wang, C.; Wang, W.J. PI3K/Akt signaling in osteosarcoma. Clin. Chim. Acta, 2015, 44(4), 182-192.
[5]
Chou, A.J.; Geller, D.S.; Gorlick, R. Therapy for osteosarcoma. Paediatr. Drugs, 2008, 10(5), 315-327.
[http://dx.doi.org/10.2165/00148581-200810050-00005] [PMID: 18754698]
[6]
Gill, J.; Gorlick, R. Advancing therapy for osteosarcoma. Nat. Rev. Clin. Oncol., 2021, 18(10), 609-624.
[http://dx.doi.org/10.1038/s41571-021-00519-8] [PMID: 34131316]
[7]
Qian, S.; Tong, S.; Wu, J.; Tian, L.; Qi, Z.; Chen, B.; Zhu, D.; Zhang, Y. Paris saponin VII extracted from Trillium tschonoskii induces autophagy and apoptosis in NSCLC cells. J. Ethnopharmacol., 2020, 248(14)112304
[http://dx.doi.org/10.1016/j.jep.2019.112304] [PMID: 31626908]
[8]
Tang, G.E.; Niu, Y.X.; Li, Y.; Wu, C.Y.; Wang, X.Y.; Zhang, J. Paris saponin VII enhanced the sensitivity of HepG2/ADR cells to ADR via modulation of PI3K/AKT/MAPK signaling pathway. Kaohsiung J. Med. Sci., 2020, 36(2), 98-106.
[http://dx.doi.org/10.1002/kjm2.12145] [PMID: 31688993]
[9]
Lin, X.; Gajendran, B.; Varier, K.M.; Liu, W.; Song, J.; Rao, Q.; Wang, C.; Qiu, J.; Ni, W.; Qin, X.; Wen, M.; Liu, H.; Li, Y. Paris saponin VII induces apoptosis and cell cycle arrest in erythroleukemia cells by a mitochondrial membrane signaling pathway. Anticancer. Agents Med. Chem., 2021, 21(4), 498-507.
[http://dx.doi.org/10.2174/1871520620666200615134039] [PMID: 32538736]
[10]
Hernández-Vázquez, J.M.V.; López-Muñoz, H.; Escobar-Sánchez, M.L.; Flores-Guzmán, F.; Weiss-Steider, B.; Hilario-Martínez, J.C.; Sandoval-Ramírez, J.; Fernández-Herrera, M.A.; Sánchez, L. Apoptotic, necrotic, and antiproliferative activity of diosgenin and diosgenin glycosides on cervical cancer cells. Eur. J. Pharmacol., 2020, 871(23)172942
[http://dx.doi.org/10.1016/j.ejphar.2020.172942] [PMID: 31972180]
[11]
Shen, Z.; Wang, J.; Ke, K.; Chen, R.; Zuo, A.; Zhang, R.; Wan, W.; Xie, X.; Li, X.; Song, N.; Fu, H.; Zhang, Z.; Cai, E.; Shen, J.; Zhang, Q.; Shi, X.; Polyphyllin, I. Polyphyllin I, a lethal partner of Palbociclib, suppresses non-small cell lung cancer through activation of p21/CDK2/Rb pathway in vitro and in vivo. Cell Cycle, 2021, 20(23), 2494-2506.
[http://dx.doi.org/10.1080/15384101.2021.1991121] [PMID: 34658297]
[12]
Zhan, G.; Hu, J.; Xiao, B.; Wang, X.; Yang, Z.; Yang, G.; Lu, L. Trillin prevents proliferation and induces apoptosis through inhibiting STAT3 nuclear translocation in hepatoma carcinoma cells. Med. Oncol., 2020, 37(5), 44-49.
[http://dx.doi.org/10.1007/s12032-020-01369-7] [PMID: 32270306]
[13]
Chen, X.B.; Wang, Z.L.; Yang, Q.Y.; Zhao, F.Y.; Qin, X.L.; Tang, X.E.; Du, J.L.; Chen, Z.H.; Zhang, K.; Huang, F.J. Diosgenin glucoside protects against spinal cord injury by regulating autophagy and alleviating apoptosis. Int. J. Mol. Sci., 2018, 19(8), 2274.
[http://dx.doi.org/10.3390/ijms19082274] [PMID: 30072674]
[14]
Wu, Y.; Ye, F.; Lu, Y.; Yong, H.; Yin, R.; Chen, B.; Yong, Y. Diosgenin glucoside protects against myocardial injury in diabetic mice by inhibiting RIP140 signaling. Am. J. Transl. Res., 2018, 10(11), 3742-3749.
[PMID: 30662624]
[15]
Wang, B.; Li, J. Piceatannol suppresses the proliferation and induced apoptosis of osteosarcoma cells through PI3K/AKT/mTOR pathway. Cancer Manag. Res., 2020, 12(25), 2631-2640.
[http://dx.doi.org/10.2147/CMAR.S238173] [PMID: 32368141]
[16]
Zheng, C.; Tang, F.; Min, L.; Hornicek, F.; Duan, Z.; Tu, C. PTEN in osteosarcoma: Recent advances and the therapeutic potential. Biochim. Biophys. Acta Rev. Cancer, 2020, 1874(2)188405
[http://dx.doi.org/10.1016/j.bbcan.2020.188405] [PMID: 32827577]
[17]
Hay, N.; Sonenberg, N. Upstream and downstream of mTOR. Genes Dev., 2004, 18(16), 1926-1945.
[http://dx.doi.org/10.1101/gad.1212704] [PMID: 15314020]
[18]
Liu, P.; Gan, W.; Chin, Y.R.; Ogura, K.; Guo, J.; Zhang, J.; Wang, B.; Blenis, J.; Cantley, L.C.; Toker, A.; Su, B.; Wei, W. PtdIns(3,4,5) P 3-dependent activation of the mTORC2 kinase complex. Cancer Discov., 2015, 5(11), 1194-1209.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0460] [PMID: 26293922]
[19]
Lv, M.; Xu, Q.; Zhang, B.; Yang, Z.; Xie, J.; Guo, J.; He, F.; Wang, W. Imperatorin induces autophagy and G0/G1 phase arrest via PTEN-PI3K-AKT-mTOR/p21 signaling pathway in human osteosarcoma cells in vitro and in vivo. Cancer Cell Int., 2021, 21(1), 689-697.
[http://dx.doi.org/10.1186/s12935-021-02397-7] [PMID: 34923996]
[20]
Teng, J.F.; Qin, D.L.; Mei, Q.B.; Qiu, W.Q.; Pan, R.; Xiong, R.; Zhao, Y.; Law, B.Y.K.; Wong, V.K.W.; Tang, Y.; Yu, C.L.; Zhang, F.; Wu, J.M.; Wu, A.G.; Polyphyllin, V.I. Polyphyllin VI, a saponin from Trillium tschonoskii Maxim. induces apoptotic and autophagic cell death via the ROS triggered mTOR signaling pathway in non-small cell lung cancer. Pharmacol. Res., 2019, 147(17)104396
[http://dx.doi.org/10.1016/j.phrs.2019.104396] [PMID: 31404628]
[21]
Guertin, D.A.; Sabatini, D.M. An expanding role for mTOR in cancer. Trends Mol. Med., 2005, 11(8), 353-361.
[http://dx.doi.org/10.1016/j.molmed.2005.06.007] [PMID: 16002336]
[22]
Xu, K.; Liu, P.; Wei, W. mTOR signaling in tumorigenesis. Biochim. Biophys. Acta, 2014, 1846(2), 638-654.
[PMID: 25450580]
[23]
Litchfield, L.M.; Boehnke, K.; Brahmachary, M.; Mur, C.; Bi, C.; Stephens, J.R.; Sauder, J.M.; Gutiérrez, S.M.; McNulty, A.M.; Ye, X.S.; Wu, W.; Lallena, M.J.; Gong, X.; Merzoug, F.F.; Jansen, V.M.; Buchanan, S.G. Combined inhibition of PIM and CDK4/6 suppresses both mTOR signaling and Rb phosphorylation and potentiates PI3K inhibition in cancer cells. Oncotarget, 2020, 11(17), 1478-1492.
[http://dx.doi.org/10.18632/oncotarget.27539] [PMID: 32391118]
[24]
Duan, Y.; Haybaeck, J.; Yang, Z. Therapeutic potential of PI3K/AKT/mTOR pathway in gastrointestinal stromal tumors: Rationale and progress. Cancers, 2020, 12(10), 2972.
[http://dx.doi.org/10.3390/cancers12102972] [PMID: 33066449]
[25]
Merrick, W.C.; Pavitt, G.D. Protein synthesis initiation in eukaryotic cells. Cold Spring Harb. Perspect. Biol., 2018, 10(12)a033092
[http://dx.doi.org/10.1101/cshperspect.a033092] [PMID: 29735639]
[26]
Santini, E.; Klann, E. Reciprocal signaling between translational control pathways and synaptic proteins in autism spectrum disorders. Sci. Signal., 2014, 7(349), re10.
[http://dx.doi.org/10.1126/scisignal.2005832] [PMID: 25351249]
[27]
Peter, D.; Igreja, C.; Weber, R.; Wohlbold, L.; Weiler, C.; Ebertsch, L.; Weichenrieder, O.; Izaurralde, E. Molecular architecture of 4E-BP translational inhibitors bound to eIF4E. Mol. Cell, 2015, 57(6), 1074-1087.
[http://dx.doi.org/10.1016/j.molcel.2015.01.017] [PMID: 25702871]
[28]
Chawla, S.P.; Staddon, A.P.; Baker, L.H.; Schuetze, S.M.; Tolcher, A.W.; D’Amato, G.Z.; Blay, J.Y.; Mita, M.M.; Sankhala, K.K.; Berk, L.; Rivera, V.M.; Clackson, T.; Loewy, J.W.; Haluska, F.G.; Demetri, G.D. Phase II study of the mammalian target of rapamycin inhibitor ridaforolimus in patients with advanced bone and soft tissue sarcomas. J. Clin. Oncol., 2012, 30(1), 78-84.
[http://dx.doi.org/10.1200/JCO.2011.35.6329] [PMID: 22067397]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy