Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

Computational Insight into the Mechanism of Action of DNA Gyrase Inhibitors; Revealing a New Mechanism

Author(s): Muhammed Tilahun Muhammed* and Esin Aki-Yalcin

Volume 20, Issue 3, 2024

Published on: 08 May, 2023

Page: [224 - 235] Pages: 12

DOI: 10.2174/1573409919666230419094700

Price: $65

conference banner
Abstract

Background: Discovery of novel antimicrobial agents is in need to deal with antibiotic resistance. Elucidating the mechanism of action for established drugs contributes to this endeavor. DNA gyrase is a therapeutic target used in the design and development of new antibacterial agents. Selective antibacterial gyrase inhibitors are available; however, resistance development against them is a big challenge. Hence, novel gyrase inhibitors with novel mechanisms are required.

Objective: The aim of this study is to elucidate mode of action for existing DNA gyrase inhibitors and to pave the way towards discovery of novel inhibitors.

Methods: In this study, the mechanism of action for selected DNA gyrase inhibitors available was carried out through molecular docking and molecular dynamics (MD) simulation. In addition, pharmacophore analysis, density functional theory (DFT) calculations, and computational pharmacokinetics analysis of the gyrase inhibitors were performed.

Results: This study demonstrated that all the DNA gyrase inhibitors investigated, except compound 14, exhibit their activity by inhibiting gyrase B at a binding pocket. The interaction of the inhibitors at Lys103 was found to be essential for the binding. The molecular docking and MD simulation results revealed that compound 14 could act by inhibiting gyrase A. A pharmacophore model that consisted of the features that would help the inhibition effect was generated. The DFT analysis demonstrated 14 had relatively high chemical stability. Computational pharmacokinetics analysis revealed that most of the explored inhibitors were estimated to have good drug-like properties. Furthermore, most of the inhibitors were found to be non-mutagenic.

Conclusion: In this study, mode of action elucidation through molecular docking and MD simulation, pharmacophore model generation, pharmacokinetic property prediction, and DFT study for selected DNA gyrase inhibitors were carried out. The outcomes of this study are anticipated to contribute to the design of novel gyrase inhibitors.

Graphical Abstract

[1]
Arandjelovic, P.; Doerflinger, M.; Pellegrini, M. Current and emerging therapies to combat persistent intracellular pathogens. Curr. Opin. Pharmacol., 2019, 48, 33-39.
[http://dx.doi.org/10.1016/j.coph.2019.03.013] [PMID: 31051429]
[2]
Xu, Z.; Xu, D.; Zhou, W.; Zhang, X. Therapeutic potential of naturally occurring benzofuran derivatives and hybrids of benzofurans with other pharmacophores as antibacterial agents. Curr. Top. Med. Chem., 2022, 22(1), 64-82.
[http://dx.doi.org/10.2174/1568026621666211122162439] [PMID: 34809548]
[3]
Yilmaz, S.; Yalcin, I.; Okten, S.; Onurdag, F.K.; Aki-Yalcin, E. Synthesis and investigation of binding interactions of 1,4-benzoxazine derivatives on topoisomerase IV in Acinetobacter baumannii. SAR QSAR Environ. Res., 2017, 28(11), 941-956.
[http://dx.doi.org/10.1080/1062936X.2017.1404490] [PMID: 29206501]
[4]
Ebenezer, O.; Singh-Pillay, A.; Koorbanally, N.A.; Singh, P. Antibacterial evaluation and molecular docking studies of pyrazole–thiosemicarbazones and their pyrazole–thiazolidinone conjugates. Mol. Divers., 2021, 25(1), 191-204.
[http://dx.doi.org/10.1007/s11030-020-10046-w] [PMID: 32086698]
[5]
Pacios, O.; Blasco, L.; Bleriot, I.; Fernandez-Garcia, L.; González Bardanca, M.; Ambroa, A.; López, M.; Bou, G.; Tomás, M. Strategies to combat multidrug-resistant and persistent infectious diseases. Antibiotics, 2020, 9(2), 65.
[http://dx.doi.org/10.3390/antibiotics9020065] [PMID: 32041137]
[6]
Qin, Y.; Xu, L.; Teng, Y.; Wang, Y.; Ma, P. Discovery of novel antibacterial agents: Recent developments in D‐alanyl‐D‐alanine ligase inhibitors. Chem. Biol. Drug Des., 2021, 98(3), 305-322.
[http://dx.doi.org/10.1111/cbdd.13899] [PMID: 34047462]
[7]
Wise, R.; Blaser, M.; Carrs, O.; Cassell, G.; Fishman, N.; Guidos, R.; Levy, S.; Powers, J.; Norrby, R.; Tillotson, G.; Davies, R.; Projan, S.; Dawson, M.; Monnet, D.; Keogh-Brown, M.; Hand, K.; Garner, S.; Findlay, D.; Morel, C.; Wise, R.; Bax, R.; Burke, F.; Chopra, I.; Czaplewski, L.; Finch, R.; Livermore, D.; Piddock, L.J.V.; White, T. The urgent need for new antibacterial agents. J. Antimicrob. Chemother., 2011, 66(9), 1939-1940.
[http://dx.doi.org/10.1093/jac/dkr261] [PMID: 21700627]
[8]
Mantravadi, P.; Kalesh, K.; Dobson, R.; Hudson, A.; Parthasarathy, A. The quest for novel antimicrobial compounds: Emerging trends in research, development, and technologies. Antibiotics, 2019, 8(1), 8.
[http://dx.doi.org/10.3390/antibiotics8010008] [PMID: 30682820]
[9]
Collin, F.; Karkare, S.; Maxwell, A. Exploiting bacterial DNA gyrase as a drug target: Current state and perspectives. Appl. Microbiol. Biotechnol., 2011, 92(3), 479-497.
[http://dx.doi.org/10.1007/s00253-011-3557-z] [PMID: 21904817]
[10]
Schoeffler, A.J.; May, A.P.; Berger, J.M. A domain insertion in Escherichia coli GyrB adopts a novel fold that plays a critical role in gyrase function. Nucleic Acids Res., 2010, 38(21), 7830-7844.
[http://dx.doi.org/10.1093/nar/gkq665] [PMID: 20675723]
[11]
Wang, J.C. Cellular roles of DNA topoisomerases: A molecular perspective. Nat. Rev. Mol. Cell Biol., 2002, 3(6), 430-440.
[http://dx.doi.org/10.1038/nrm831] [PMID: 12042765]
[12]
Corbett, K.D.; Shultzaberger, R.K.; Berger, J.M. The C-terminal domain of DNA gyrase A adopts a DNA-bending β-pinwheel fold. Proc. Natl. Acad. Sci., 2004, 101(19), 7293-7298.
[http://dx.doi.org/10.1073/pnas.0401595101] [PMID: 15123801]
[13]
Khan, T.; Sankhe, K.; Suvarna, V.; Sherje, A.; Patel, K.; Dravyakar, B. DNA gyrase inhibitors: Progress and synthesis of potent compounds as antibacterial agents. Biomed. Pharmacother., 2018, 103, 923-938.
[http://dx.doi.org/10.1016/j.biopha.2018.04.021] [PMID: 29710509]
[14]
Hearnshaw, S.J.; Edwards, M.J.; Stevenson, C.E.; Lawson, D.M.; Maxwell, A. A new crystal structure of the bifunctional antibiotic simocyclinone D8 bound to DNA gyrase gives fresh insight into the mechanism of inhibition. J. Mol. Biol., 2014, 426(10), 2023-2033.
[http://dx.doi.org/10.1016/j.jmb.2014.02.017] [PMID: 24594357]
[15]
Petrella, S.; Capton, E.; Raynal, B.; Giffard, C.; Thureau, A.; Bonneté, F.; Alzari, P.M.; Aubry, A.; Mayer, C. Overall structures of Mycobacterium tuberculosis DNA gyrase reveal the role of a corynebacteriales GyrB-specific insert in ATPase activity. Structure, 2019, 27(4), 579-589.e5.
[http://dx.doi.org/10.1016/j.str.2019.01.004] [PMID: 30744994]
[16]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[17]
Bush, N.G.; Diez-Santos, I.; Abbott, L.R.; Maxwell, A. Quinolones: Mechanism, lethality and their contributions to antibiotic resistance. Molecules, 2020, 25(23), 5662-5689.
[http://dx.doi.org/10.3390/molecules25235662] [PMID: 33271787]
[18]
Blower, T.R.; Williamson, B.H.; Kerns, R.J.; Berger, J.M. Crystal structure and stability of gyrase–fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proc. Natl. Acad. Sci., 2016, 113(7), 1706-1713.
[http://dx.doi.org/10.1073/pnas.1525047113] [PMID: 26792525]
[19]
Bradford, P.A.; Miller, A.A.; O’Donnell, J.; Mueller, J.P. Zoliflodacin: An oral spiropyrimidinetrione antibiotic for the treatment of Neisseria gonorrheae, including multi-drug-resistant isolates. ACS Infect. Dis., 2020, 6(6), 1332-1345.
[http://dx.doi.org/10.1021/acsinfecdis.0c00021] [PMID: 32329999]
[20]
Muhammed, M.T.; Aki-Yalcin, E. Pharmacophore modeling in drug discovery: Methodology and current status. J Turkish Chem Soc Sect. Chem, 2021, 8, 759-772.
[21]
Muhammed, M.T.; Aki-Yalcin, E. Homology modeling in drug discovery: Overview, current applications, and future perspectives. Chem. Biol. Drug Des., 2019, 93(1), 12-20.
[http://dx.doi.org/10.1111/cbdd.13388] [PMID: 30187647]
[22]
Muhammed, M.T. Son, Ç.D.; İzgü, F. Three dimensional structure prediction of panomycocin, a novel Exo-β-1,3-glucanase isolated from Wickerhamomyces anomalus NCYC 434 and the computational site-directed mutagenesis studies to enhance its thermal stability for therapeutic applications. Comput. Biol. Chem., 2019, 80, 270-277.
[http://dx.doi.org/10.1016/j.compbiolchem.2019.04.006] [PMID: 31054539]
[23]
Fan, J.; Fu, A.; Zhang, L. Progress in molecular docking. Quant. Biol., 2019, 7(2), 83-89.
[http://dx.doi.org/10.1007/s40484-019-0172-y]
[24]
Muhammed, M.T.; Aki-Yalcin, E. Molecular docking: Principles, advances, and its applications in drug discovery. Lett. Drug Des. Discov., 2022, 19, 22.
[http://dx.doi.org/10.2174/1570180819666220922103109]
[25]
Kashid, B.B.; Ghanwat, A.A.; Khedkar, V.M.; Dongare, B.B.; Shaikh, M.H.; Deshpande, P.P.; Wakchaure, Y.B. Design, synthesis, in vitro antimicrobial, antioxidant evaluation, and molecular docking study of novel benzimidazole and benzoxazole derivatives. J. Heterocycl. Chem., 2019, 56(3), 895-908.
[http://dx.doi.org/10.1002/jhet.3467]
[26]
Alqahtani, S. In silico ADME-Tox modeling: Progress and prospects. Expert Opin. Drug Metab. Toxicol., 2017, 13(11), 1147-1158.
[http://dx.doi.org/10.1080/17425255.2017.1389897] [PMID: 28988506]
[27]
Tretter, E.M.; Schoeffler, A.J.; Weisfield, S.R.; Berger, J.M. Crystal structure of the DNA gyrase GyrA N-terminal domain from Mycobacterium tuberculosis. Proteins, 2010, 78(2), 492-495.
[http://dx.doi.org/10.1002/prot.22600] [PMID: 19787774]
[28]
Brvar, M.; Perdih, A.; Renko, M.; Anderluh, G.; Turk, D.; Solmajer, T. Structure-based discovery of substituted 4,5′-bithiazoles as novel DNA gyrase inhibitors. J. Med. Chem., 2012, 55(14), 6413-6426.
[http://dx.doi.org/10.1021/jm300395d] [PMID: 22731783]
[29]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem in 2021: New data content and improved web interfaces. Nucleic Acids Res., 2021, 49(D1), D1388-D1395.
[http://dx.doi.org/10.1093/nar/gkaa971] [PMID: 33151290]
[30]
Önem, E. Sarısu, H.C.; Özaydın, A.G.; Muhammed, M.T.; Ak, A. Phytochemical profile, antimicrobial, and anti‐quorum sensing properties of fruit stalks of Prunus avium L. Lett. Appl. Microbiol., 2021, 73(4), 426-437.
[http://dx.doi.org/10.1111/lam.13528] [PMID: 34173244]
[31]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[32]
BIOVIA, Dassault Systèmes, Discovery Studio. Comprehensive modeling and simulating for life sciences.
[33]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[34]
Schüttelkopf, A.W.; van Aalten, D.M.F. PRODRG: A tool for high-throughput crystallography of protein–ligand complexes. Acta Crystallogr. D Biol. Crystallogr., 2004, 60(8), 1355-1363.
[http://dx.doi.org/10.1107/S0907444904011679] [PMID: 15272157]
[35]
Bjelkmar, P.; Larsson, P.; Cuendet, M.A.; Hess, B.; Lindahl, E. Implementation of the charmm force field in GROMACS: Analysis of protein stability effects from correction maps, virtual interaction sites, and water models. J. Chem. Theory Comput., 2010, 6(2), 459-466.
[http://dx.doi.org/10.1021/ct900549r] [PMID: 26617301]
[36]
Akkoc, S.; Karatas, H.; Muhammed, M.T.; Kökbudak, Z.; Ceylan, A.; Almalki, F.; Laaroussi, H.; Ben Hadda, T. Drug design of new therapeutic agents: Molecular docking, molecular dynamics simulation, DFT and POM analyses of new Schiff base ligands and impact of substituents on bioactivity of their potential antifungal pharmacophore site. J. Biomol. Struct. Dyn., 2022, 1-14.
[http://dx.doi.org/10.1080/07391102.2022.2111360] [PMID: 35968554]
[37]
Accelrys Discovery Studio Client 3.5, Accelrys Software Inc., San Diego, CA.
[38]
Gaussian 09, Revision B.01. Gaussian Inc., Wallingford.
[39]
Becke, A.D. Density‐functional thermochemistry. IV. A new dynamical correlation functional and implications for exact‐exchange mixing. J. Chem. Phys., 1996, 104(3), 1040-1046.
[http://dx.doi.org/10.1063/1.470829]
[40]
Perdew, J.P.; Kurth, S.; Zupan, A.; Blaha, P. Accurate density functional with correct formal properties: A step beyond the generalized gradient approximation. Phys. Rev. Lett., 1999, 82(12), 2544-2547.
[http://dx.doi.org/10.1103/PhysRevLett.82.2544]
[41]
Dennington, R.D.; Keith, T.A.; Millam, J.M. GaussView 5.0; Gaussian Inc.: Wallingford, 2008, p. 20.
[42]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7(1), 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[43]
Han, Y.; Zhang, J.; Hu, C.Q.; Zhang, X.; Ma, B.; Zhang, P. In silico ADME and toxicity prediction of ceftazidime and its impurities. Front. Pharmacol., 2019, 10, 434-445.
[http://dx.doi.org/10.3389/fphar.2019.00434] [PMID: 31068821]
[44]
Lafitte, D.; Lamour, V.; Tsvetkov, P.O.; Makarov, A.A.; Klich, M.; Deprez, P.; Moras, D.; Briand, C.; Gilli, R. DNA gyrase interaction with coumarin-based inhibitors: The role of the hydroxybenzoate isopentenyl moiety and the 5′-methyl group of the noviose. Biochemistry, 2002, 41(23), 7217-7223.
[http://dx.doi.org/10.1021/bi0159837] [PMID: 12044152]
[45]
Holdgate, G.A.; Tunnicliffe, A.; Ward, W.H.J.; Weston, S.A.; Rosenbrock, G.; Barth, P.T.; Taylor, I.W.F.; Pauptit, R.A.; Timms, D. The entropic penalty of ordered water accounts for weaker binding of the antibiotic novobiocin to a resistant mutant of DNA gyrase: A thermodynamic and crystallographic study. Biochemistry, 1997, 36(32), 9663-9673.
[http://dx.doi.org/10.1021/bi970294+] [PMID: 9245398]
[46]
Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367.
[http://dx.doi.org/10.1093/nar/gky473] [PMID: 29860391]
[47]
Taylor, S.N.; Marrazzo, J.; Batteiger, B.E.; Hook, E.W., III; Seña, A.C.; Long, J.; Wierzbicki, M.R.; Kwak, H.; Johnson, S.M.; Lawrence, K.; Mueller, J. Single-dose zoliflodacin (ETX0914) for treatment of urogenital gonorrhea. N. Engl. J. Med., 2018, 379(19), 1835-1845.
[http://dx.doi.org/10.1056/NEJMoa1706988] [PMID: 30403954]
[48]
Basarab, G.S.; Kern, G.H.; McNulty, J.; Mueller, J.P.; Lawrence, K.; Vishwanathan, K.; Alm, R.A.; Barvian, K.; Doig, P.; Galullo, V.; Gardner, H.; Gowravaram, M.; Huband, M.; Kimzey, A.; Morningstar, M.; Kutschke, A.; Lahiri, S.D.; Perros, M.; Singh, R.; Schuck, V.J.A.; Tommasi, R.; Walkup, G.; Newman, J.V. Responding to the challenge of untreatable gonorrhea: ETX0914, a first-in-class agent with a distinct mechanism-of-action against bacterial Type II topoisomerases. Sci. Rep., 2015, 5(1), 11827.
[http://dx.doi.org/10.1038/srep11827]
[49]
Dong, Y.; Liao, M.; Meng, X.; Somero, G.N. Structural flexibility and protein adaptation to temperature: Molecular dynamics analysis of malate dehydrogenases of marine molluscs. Proc. Natl. Acad. Sci., 2018, 115(6), 1274-1279.
[http://dx.doi.org/10.1073/pnas.1718910115] [PMID: 29358381]
[50]
Parr, R.G.; Donnelly, R.A.; Levy, M.; Palke, W.E. Electronegativity: The density functional viewpoint. J. Chem. Phys., 1978, 68(8), 3801-3807.
[http://dx.doi.org/10.1063/1.436185]
[51]
Chattaraj, P.K.; Sarkar, U.; Roy, D.R. Electrophilicity Index. Chem. Rev., 2006, 106(6), 2065-2091.
[http://dx.doi.org/10.1021/cr040109f] [PMID: 16771443]
[52]
Koopmans, T. About the assignment of wave functions and eigenvalues to the individual electrons of an atom. Physica, 1934, 1, 104-113.
[http://dx.doi.org/10.1016/S0031-8914(34)90011-2]
[53]
Miar, M.; Shiroudi, A.; Pourshamsian, K. Theoretical investigations on the HOMO–LUMO gap and global reactivity descriptor studies, natural bond orbital, and nucleus-independent chemical shifts analyses of 3-phenylbenzo[d]thiazole-2(3H)-imine and its para-substituted derivatives: Solvent and subs. J. Chem. Res., 2021, 45, 147-158.
[http://dx.doi.org/10.1177/1747519820932091]
[54]
Ruiz-Morales, Y. HOMO-LUMO gap as an index of molecular size and structure for Polycyclic Aromatic Hydrocarbons (PAHs) and asphaltenes: A theoretical study. I. J. Phys. Chem. A, 2002, 106(46), 11283-11308.
[http://dx.doi.org/10.1021/jp021152e]
[55]
Han, M.İ.; Dengiz, C.; Doğan, Ş.D.; Gündüz, M.G.; Köprü, S.; Özkul, C. Isoquinolinedione-urea hybrids: Synthesis, antibacterial evaluation, drug-likeness, molecular docking and DFT studies. J. Mol. Struct., 2022, 1252, 132007.
[http://dx.doi.org/10.1016/j.molstruc.2021.132007]
[56]
Fonteh, P.; Elkhadir, A.; Omondi, B.; Guzei, I.; Darkwa, J.; Meyer, D. Impedance technology reveals correlations between cytotoxicity and lipophilicity of mono and bimetallic phosphine complexes. Biometals, 2015, 28(4), 653-667.
[http://dx.doi.org/10.1007/s10534-015-9851-y] [PMID: 25829148]
[57]
Barret, R. Importance and evaluation of the polar surface area (PSA and TPSA). In: Therapeutical Chemistry; , 2018; p. 89-95.
[58]
Qidwai, T. QSAR modeling, docking and ADMET studies for exploration of potential anti-malarial compounds against Plasmodium falciparum. In Silico Pharmacol., 2017, 5(1), 6.
[http://dx.doi.org/10.1007/s40203-017-0026-0] [PMID: 28726171]
[59]
Dahlgren, D.; Lennernäs, H. Intestinal permeability and drug absorption: Predictive experimental, computational and in vivo approaches. Pharmaceutics, 2019, 11(8), 411. Epub ahead of print
[http://dx.doi.org/10.3390/pharmaceutics11080411] [PMID: 31412551]
[60]
Martin, Y.C. A bioavailability score. J. Med. Chem., 2005, 48(9), 3164-3170.
[http://dx.doi.org/10.1021/jm0492002] [PMID: 15857122]
[61]
Muhammed, M.T.; Kuyucuklu, G.; Kaynak-Onurdag, F.; Aki-Yalcin, E. Synthesis, antimicrobial activity, and molecular modeling studies of some benzoxazole derivatives. Lett. Drug Des. Discov., 2022, 19(8), 757-768.
[http://dx.doi.org/10.2174/1570180819666220408133643]
[62]
Doherty, A.T.; Hayes, J.E.; Molloy, J.; Wood, C.; O’Donovan, M.R. Bone marrow micronucleus frequencies in the rat after oral administration of cyclophosphamide, hexamethylphosphoramide or gemifloxacin for 2 and 28 days. Toxicol. Res., 2013, 2(5), 321-327.
[http://dx.doi.org/10.1039/c3tx50028d]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy