Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Research Article

Folate Targeting Peptide Conjugates for Inflammatory Response Suppression

Author(s): Elizabeth Ruff and Scott Poh*

Volume 24, Issue 4, 2023

Published on: 10 May, 2023

Page: [283 - 289] Pages: 7

DOI: 10.2174/1389200224666230419090052

Price: $65

Abstract

Background and Objective: Protein kinases known as mitogen-activated protein kinases (MAPKs) are responsible for regulating a wide variety of physiological cell responses by generating and release of inflammatory mediators. Suppressing these inflammatory mediators can be utilized to control the propagation of inflammation. During the course of this research, we created folate-targeted MK2 inhibitor conjugates and analyzed the antiinflammatory effects of these compounds.

Methods: Using RAW264.7 cells, which are generated from murine macrophages, as an in vitro model. We synthesize and evaluated a folate linked peptide MK2 inhibitor. The cytotoxicity was assessed using the ELISA kits, CCK- 8 test kit, NO concentration and inflammatory factors TNF-, IL-1, and IL-6.

Results: The cytotoxicity assay results suggested that the concentration for MK2 inhibitors less than 50.0 μM be non-toxic. The ELISA Kits also demonstrated that MK2 peptide inhibitor treatment significantly decreased the content of NO, TNF-, IL-1, and IL-6 in LPS-stimulated RAW264.7 cells. It was also demonstrated that a folate-targeted MK2 inhibitor was more effective than a non-targeted inhibitor.

Conclusion: This experiment demonstrates that LPS-induced macrophages can produce oxidative stress and inflammatory mediators. According to our research, pro-inflammatory mediators can be reduced by targeting folate receptor- positive (FR+) macrophages with an FR-linked anti-inflammatory MK2 peptide inhibitor in vitro, and the uptake was FR-specific.

Graphical Abstract

[1]
Gordon, S. Alternative activation of macrophages. Nat. Rev. Immunol., 2003, 3(1), 23-35.
[http://dx.doi.org/10.1038/nri978] [PMID: 12511873]
[2]
Humes, J.L.; Bonney, R.J.; Pelus, L.; Dahlgren, M.E.; Sadowski, S.J.; Kuehl, F.A., Jr; Davies, P. Macrophages synthesise and release prostaglandins in response to inflammatory stimuli. Nature, 1977, 269(5624), 149-151.
[http://dx.doi.org/10.1038/269149a0] [PMID: 561892]
[3]
Yi, Y.S. Folate receptor-targeted diagnostics and therapeutics for inflammatory diseases. Immune Netw., 2016, 16(6), 337-343.
[http://dx.doi.org/10.4110/in.2016.16.6.337] [PMID: 28035209]
[4]
Yeo, L.; Adlard, N.; Biehl, M.; Juarez, M.; Smallie, T.; Snow, M.; Buckley, C.D.; Raza, K.; Filer, A.; Scheel-Toellner, D. Expression of chemokines CXCL4 and CXCL7 by synovial macrophages defines an early stage of rheumatoid arthritis. Ann. Rheum. Dis., 2015.
[PMID: 25858640]
[5]
Foster, M.H.; Kelley, V.R. Lupus nephritis: Update on pathogenesis and disease mechanisms. Semin. Nephrol., 1999, 19(2), 173-181.
[PMID: 10192250]
[6]
Grip, O.; Janciauskiene, S.; Lindgren, S. Macrophages in inflammatory bowel disease. Curr. Drug Targets Inflamm. Allergy, 2003, 2(2), 155-160.
[http://dx.doi.org/10.2174/1568010033484179] [PMID: 14561168]
[7]
von Vietinghoff, S.; Kurts, C. Regulation and function of CX3CR1 and its ligand CX3CL1 in kidney disease. Cell Tissue Res., 2021, 385(2), 335-344.
[http://dx.doi.org/10.1007/s00441-021-03473-0] [PMID: 34009468]
[8]
Robertson, T.A.; Maley, M.A.L.; Grounds, M.D.; Papadimitriou, J.M. The role of macrophages in skeletal muscle regeneration with particular reference to chemotaxis. Exp. Cell Res., 1993, 207(2), 321-331.
[http://dx.doi.org/10.1006/excr.1993.1199] [PMID: 8344384]
[9]
Espinoza-Jiménez, A.; Peón, A. N.; Terrazas, L. I. Alternatively activated macrophages in types 1 and 2 diabetes. Mediators Inflam., 2012, 2012
[http://dx.doi.org/10.1155/2012/815953]
[10]
Wewers, M.D.; Rennard, S.I.; Hance, A.J.; Bitterman, P.B.; Crystal, R.G. Normal human alveolar macrophages obtained by bronchoalveolar lavage have a limited capacity to release interleukin-1. J. Clin. Invest., 1984, 74(6), 2208-2218.
[http://dx.doi.org/10.1172/JCI111647] [PMID: 6334697]
[11]
Jura, J.; Węgrzyn, P.; Korostyński, M.; Guzik, K.; Oczko-Wojciechowska, M.; Jarząb, M.; Kowalska, M.; Piechota, M.; Przewłocki, R.; Koj, A. Identification of interleukin-1 and interleukin-6-responsive genes in human monocyte-derived macrophages using microarrays. Biochim. Biophys. Acta. Gene Regul. Mech., 2008, 1779(6-7), 383-389.
[http://dx.doi.org/10.1016/j.bbagrm.2008.04.006] [PMID: 18498781]
[12]
Riches, D.W.H.; Chan, E.D.; Winston, B.W. TNF-α-induced regulation and signalling in macrophages. Immunobiology, 1996, 195(4-5), 477-490.
[http://dx.doi.org/10.1016/S0171-2985(96)80017-9] [PMID: 8933152]
[13]
Valente, A.J.; Rozek, M.M.; Sprague, E.A.; Schwartz, C.J. Mechanisms in intimal monocyte-macrophage recruitment. A special role for monocyte chemotactic protein-1. Circulation, 1992, 86(Suppl. 6), III20-III25.
[PMID: 1424047]
[14]
Manea, A.; Manea, S.A.; Gan, A.M.; Constantin, A.; Fenyo, I.M.; Raicu, M.; Muresian, H.; Simionescu, M. Human monocytes and macrophages express NADPH oxidase 5; a potential source of reactive oxygen species in atherosclerosis. Biochem. Biophys. Res. Commun., 2015, 461(1), 172-179.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.021] [PMID: 25871798]
[15]
Gaestel, M. MAPKAP kinases-MKs-two’s company, three’s a crowd. Nat. Rev. Mol. Cell Biol., 2006, 7(2), 120-130.
[http://dx.doi.org/10.1038/nrm1834] [PMID: 16421520]
[16]
Neininger, A.; Kontoyiannis, D.; Kotlyarov, A.; Winzen, R.; Eckert, R.; Volk, H.D.; Holtmann, H.; Kollias, G.; Gaestel, M. MK2 targets AU-rich elements and regulates biosynthesis of tumor necrosis factor and interleukin-6 independently at different post-transcriptional levels. J. Biol. Chem., 2002, 277(5), 3065-3068.
[http://dx.doi.org/10.1074/jbc.C100685200] [PMID: 11741878]
[17]
Kotlyarov, A.; Neininger, A.; Schubert, C.; Eckert, R.; Birchmeier, C.; Volk, H-D.; Gaestel, M. Reduced oxazolone-induced skin inflammation in MAPKAP kinase 2 knockout mice. J. Invest. Dermatol., 2009, 129(4), 891-8.
[PMID: 18987672]
[18]
Taylor, P.C.; Feldmann, M. Anti-TNF biologic agents: Still the therapy of choice for rheumatoid arthritis. Nat. Rev. Rheumatol., 2009, 5(10), 578-582.
[http://dx.doi.org/10.1038/nrrheum.2009.181] [PMID: 19798034]
[19]
Barnes, P.J. How corticosteroids control inflammation: Quintiles prize lecture 2005. Br. J. Pharmacol., 2006, 148(3), 245-254.
[http://dx.doi.org/10.1038/sj.bjp.0706736] [PMID: 16604091]
[20]
Varga, G.; Ehrchen, J.; Tsianakas, A.; Tenbrock, K.; Rattenholl, A.; Seeliger, S.; Mack, M.; Roth, J.; Sunderkoetter, C. Glucocorticoids induce an activated, anti-inflammatory monocyte subset in mice that resembles myeloid-derived suppressor cells. J. Leukoc. Biol., 2008, 84(3), 644-650.
[http://dx.doi.org/10.1189/jlb.1107768] [PMID: 18611985]
[21]
Hamley, I.W. Small bioactive peptides for biomaterials design and therapeutics. Chem. Rev., 2017, 117(24), 14015-14041.
[http://dx.doi.org/10.1021/acs.chemrev.7b00522] [PMID: 29227635]
[22]
Muttenthaler, M.; King, G.F.; Adams, D.J.; Alewood, P.F. Trends in peptide drug discovery. Nat. Rev. Drug Discov., 2021, 20(4), 309-325.
[http://dx.doi.org/10.1038/s41573-020-00135-8] [PMID: 33536635]
[23]
Hayess, K.; Benndorf, R. Effect of protein kinase inhibitors on activity of mammalian small heat-shock protein (HSP25) kinase. Biochem. Pharmacol., 1997, 53(9), 1239-1247.
[http://dx.doi.org/10.1016/S0006-2952(96)00877-5] [PMID: 9214684]
[24]
Lopes, L.B.; Brophy, C.M.; Flynn, C.R.; Yi, Z.; Bowen, B.P.; Smoke, C.; Seal, B.; Panitch, A.; Komalavilas, P. A novel cell permeant peptide inhibitor of MAPKAP kinase II inhibits intimal hyperplasia in a human saphenous vein organ culture model. J. Vasc. Surg., 2010, 52(6), 1596-1607.
[http://dx.doi.org/10.1016/j.jvs.2010.06.168] [PMID: 20864298]
[25]
Lu, Y.; Stinnette, T.W.; Westrick, E.; Klein, P.J.; Gehrke, M.A.; Cross, V.A.; Vlahov, I.R.; Low, P.S.; Leamon, C.P. Treatment of experimental adjuvant arthritis with a novel folate receptor-targeted folic acid-aminopterin conjugate. Arthritis Res. Ther., 2011, 13(2), R56.
[http://dx.doi.org/10.1186/ar3304] [PMID: 21463515]
[26]
Levonen, A.L.; Patel, R.P.; Brookes, P.; Go, Y.M.; Jo, H.; Parthasarathy, S.; Anderson, P.G.; Darley-Usmar, V.M. Mechanisms of cell signaling by nitric oxide and peroxynitrite: From mitochondria to MAP kinases. Antioxid. Redox Signal., 2001, 3(2), 215-229.
[http://dx.doi.org/10.1089/152308601300185188] [PMID: 11396477]
[27]
Poh, S.; Lin, J.B.; Panitch, A. Release of anti-inflammatory peptides from thermosensitive nanoparticles with degradable cross-links suppresses pro-inflammatory cytokine production. Biomacromolecules, 2015, 16(4), 1191-1200.
[http://dx.doi.org/10.1021/bm501849p] [PMID: 25728363]
[28]
Xia, W.; Hilgenbrink, A.R.; Matteson, E.L.; Lockwood, M.B.; Cheng, J.X.; Low, P.S. A functional folate receptor is induced during macrophage activation and can be used to target drugs to activated macrophages. Blood, 2009, 113(2), 438-446.
[http://dx.doi.org/10.1182/blood-2008-04-150789] [PMID: 18952896]
[29]
Lai, J.; Liu, Y.; Liu, C.; Qi, M.; Liu, R.; Zhu, X.; Zhou, Q.; Chen, Y.; Guo, A.; Hu, C. Indirubin inhibits LPS-induced inflammation via TLR4 abrogation mediated by the NF-kB and MAPK signaling pathways. Inflammation, 2017, 40(1), 1-12.
[http://dx.doi.org/10.1007/s10753-016-0447-7] [PMID: 27718095]
[30]
Elnakat, H.; Ratnam, M. Distribution, functionality and gene regulation of folate receptor isoforms: Implications in targeted therapy. Adv. Drug Deliv. Rev., 2004, 56(8), 1067-1084.
[http://dx.doi.org/10.1016/j.addr.2004.01.001] [PMID: 15094207]
[31]
Hansen, M.J.; Low, P.S. Folate receptor positive macrophages: Cellular targets for imaging and therapy of inflammatory and autoimmune diseases. In: Targeted drug strategies for cancer and inflammation; Springer: Balin, 2011; pp. 181-193.
[http://dx.doi.org/10.1007/978-1-4419-8417-3_9]
[32]
Westerhof, G.R.; Schornagel, J.H.; Kathmann, I.; Jackman, A.L.; Rosowsky, A.; Forsch, R.A.; Hynes, J.B.; Boyle, F.T.; Peters, G.J.; Pinedo, H.M. Carrier- and receptor-mediated transport of folate antagonists targeting folate-dependent enzymes: Correlates of molecular-structure and biological activity. Mol. Pharmacol., 1995, 48(3), 459-471.
[PMID: 7565626]
[33]
Hutanu, D.; Frishberg, M.D.; Guo, L.; Darie, C.C. Recent applications of polyethylene glycols (PEGs) and PEG derivatives. Mod. Chem. Appl., 2014, 2(2), 1-6.
[http://dx.doi.org/10.4172/2329-6798.1000132]
[34]
Zhai, Y.; Lu, Q.; Liu, Y.; Cheng, Q.; Wei, Y.; Zhang, F.; Li, C.; Yin, X. Over-production of nitric oxide by oxidative stress-induced activation of the TGF-β1/PI3K/Akt pathway in mesangial cells cultured in high glucose. Acta Pharmacol. Sin., 2013, 34(4), 507-514.
[http://dx.doi.org/10.1038/aps.2012.207] [PMID: 23524565]
[35]
Gill, R.; Tsung, A.; Billiar, T. Linking oxidative stress to inflammation: Toll-like receptors. Free Radic. Biol. Med., 2010, 48(9), 1121-1132.
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.01.006] [PMID: 20083193]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy