Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Advances in Drug Discovery based on Genomics, Proteomics and Bioinformatics in Malaria

Author(s): Shalini Aggarwal, Amit Karmakar, Sanjana Krishnakumar, Utpalendu Paul, Anjali Singh, Nirjhar Banerjee, Nehashri Laha, Graham Roy Ball and Sanjeeva Srivastava*

Volume 23, Issue 7, 2023

Published on: 15 May, 2023

Page: [551 - 578] Pages: 28

DOI: 10.2174/1568026623666230418114455

Price: $65

Abstract

Malaria is one of the neglected infectious diseases, and drugs are the first line of action taken against the onset of malaria as therapeutics. The drugs can be of either natural or artificial origin. Drug development has multiple impediments grouped under three categories, a. drug discovery and screening, b. the drug's action on the host and the pathogen, and c. clinical trials. Drug development takes coon’s age from discovery to the market after FDA approval. At the same time, targeted organisms develop drug resistance quicker than drug approval, raising the requirement for advancement in drug development. The approach to explore drug candidates using the classical methods from natural sources, computation-based docking, mathematical and machine learningbased high throughput in silico models or drug repurposing has been investigated and developed. Also, drug development with information about the interaction between Plasmodium species and its host, humans, may facilitate obtaining an efficient drug cohort for further drug discovery or repurposing expedition. However, drugs may have side effects on the host system. Hence, machine learning and systems-based approaches may provide a holistic view of genomic, proteomic, and transcriptomic data and their interaction with the selected drug candidates. This review comprehensively describes the drug discovery workflows using drug and target screening methodologies, followed by possible ways to check the binding affinity of the drug and targets using various docking software.

Graphical Abstract

[1]
World malaria report 2020: 20 years of global progress & challenges; 2020. Available from: https://reliefweb.int/.
[2]
Yang, J.; He, Y.; Li, Y.; Zhang, X.; Wong, Y.K.; Shen, S.; Zhong, T.; Zhang, J.; Liu, Q.; Wang, J. Advances in the research on the targets of anti-malaria actions of artemisinin. Pharmacol. Ther., 2020, 216, 107697.
[http://dx.doi.org/10.1016/j.pharmthera.2020.107697] [PMID: 33035577]
[3]
File, T.; Dinka, H.; Golassa, L. A retrospective analysis on the transmission of Plasmodium falciparum and Plasmodium vivax: the case of Adama city, East Shoa Zone, Oromia, Ethiopia. Malar. J., 2019, 18(1), 193.
[http://dx.doi.org/10.1186/s12936-019-2827-6] [PMID: 31185977]
[4]
Gowda, D.C.; Dayananda, K.K.; Achur, R.N. Epidemiology, drug resistance, and pathophysiology of Plasmodium vivax malaria. J. Vector Borne Dis., 2018, 55(1), 1-8.
[http://dx.doi.org/10.4103/0972-9062.234620] [PMID: 29916441]
[5]
Baird, J.K.; Maguire, J.D.; Price, R.N. Diagnosis and treatment of Plasmodium vivax Malaria. In: Advances in Parasitology; Elsevier, 2012; 80, pp. 203-270.
[http://dx.doi.org/10.1016/B978-0-12-397900-1.00004-9]
[6]
Neafsey, D.E.; Galinsky, K.; Jiang, R.H.Y.; Young, L.; Sykes, S.M.; Saif, S.; Gujja, S.; Goldberg, J.M.; Young, S.; Zeng, Q.; Chapman, S.B.; Dash, A.P.; Anvikar, A.R.; Sutton, P.L.; Birren, B.W.; Escalante, A.A.; Barnwell, J.W.; Carlton, J.M. The malaria parasite Plasmodium vivax exhibits greater genetic diversity than Plasmodium falciparum. Nat. Genet., 2012, 44(9), 1046-1050.
[http://dx.doi.org/10.1038/ng.2373] [PMID: 22863733]
[7]
Feng, X.; Carlton, J.M.; Joy, D.A.; Mu, J.; Furuya, T.; Suh, B.B.; Wang, Y.; Barnwell, J.W.; Su, X.Z. Single-nucleotide polymorphisms and genome diversity in Plasmodium vivax. Proc. Natl. Acad. Sci., 2003, 100(14), 8502-8507.
[http://dx.doi.org/10.1073/pnas.1232502100] [PMID: 12799466]
[8]
Dobson, M.J. Malaria in England: A geographical and historical perspective. Parassitologia, 1994, 36(1-2), 35-60.
[PMID: 7898959]
[9]
Russell, B.; Suwanarusk, R.; Lek-Uthai, U. Plasmodium vivax genetic diversity: microsatellite length matters. Trends Parasitol., 2006, 22(9), 399-401.
[http://dx.doi.org/10.1016/j.pt.2006.06.013] [PMID: 16837246]
[10]
Popovici, J.; Ménard, D. Challenges in antimalarial drug treatment for vivax malaria control. Trends Mol. Med., 2015, 21(12), 776-788.
[http://dx.doi.org/10.1016/j.molmed.2015.10.004] [PMID: 26611336]
[11]
Braga, C.B. Side effects of chloroquine and primaquine and symptom reduction in malaria endemic area (Mâncio Lima, Acre, Brazil). Interdiscip. Perspect. Infect. Dis., 2015, 2015, 346853.
[http://dx.doi.org/10.1155/2015/346853]
[12]
Sidhu, A.B.S.; Verdier-Pinard, D.; Fidock, D.A. Chloroquine resistance in Plasmodium falciparum malaria parasites conferred by pfcrt mutations. Science, 2002, 298(5591), 210-213.
[http://dx.doi.org/10.1126/science.1074045] [PMID: 12364805]
[13]
Campo, B.; Vandal, O.; Wesche, D.L.; Burrows, J.N. Killing the hypnozoite – drug discovery approaches to prevent relapse in Plasmodium vivax. Pathog. Glob. Health, 2015, 109(3), 107-122.
[http://dx.doi.org/10.1179/2047773215Y.0000000013] [PMID: 25891812]
[14]
Thomé, R.; Lopes, S.C.P.; Costa, F.T.M.; Verinaud, L. Chloroquine: Modes of action of an undervalued drug. Immunol. Lett., 2013, 153(1-2), 50-57.
[http://dx.doi.org/10.1016/j.imlet.2013.07.004] [PMID: 23891850]
[15]
Fitch, C.D.; Chevli, R.; Banyal, H.S.; Phillips, G.; Pfaller, M.A.; Krogstad, D.J. Lysis of Plasmodium falciparum by ferriprotoporphyrin IX and a chloroquine-ferriprotoporphyrin IX complex. Antimicrob. Agents Chemother., 1982, 21(5), 819-822.
[http://dx.doi.org/10.1128/AAC.21.5.819] [PMID: 7049079]
[16]
Li, G.D. Nucleus may be the key site of chloroquine antimalarial action and resistance development. Med. Hypotheses, 2006, 67(2), 323-326.
[http://dx.doi.org/10.1016/j.mehy.2006.02.008] [PMID: 16549276]
[17]
Takenaka, T. Classical vs reverse pharmacology in drug discovery. BJU Int., 2001, 88(Suppl. 2), 7-10.
[http://dx.doi.org/10.1111/j.1464-410X.2001.00112.x] [PMID: 11589663]
[18]
Das, A.; Sharma, M.; Gupta, B.; Dash, A.P. Plasmodium falciparum and Plasmodium vivax: so similar, yet very different. Parasitol. Res., 2009, 105(4), 1169-1171.
[http://dx.doi.org/10.1007/s00436-009-1521-y] [PMID: 19543915]
[19]
Carlton, J.M.; Adams, J.H.; Silva, J.C.; Bidwell, S.L.; Lorenzi, H.; Caler, E.; Crabtree, J.; Angiuoli, S.V.; Merino, E.F.; Amedeo, P.; Cheng, Q.; Coulson, R.M.R.; Crabb, B.S.; del Portillo, H.A.; Essien, K.; Feldblyum, T.V.; Fernandez-Becerra, C.; Gilson, P.R.; Gueye, A.H.; Guo, X.; Kang’a, S.; Kooij, T.W.A.; Korsinczky, M.; Meyer, E.V.S.; Nene, V.; Paulsen, I.; White, O.; Ralph, S.A.; Ren, Q.; Sargeant, T.J.; Salzberg, S.L.; Stoeckert, C.J.; Sullivan, S.A.; Yamamoto, M.M.; Hoffman, S.L.; Wortman, J.R.; Gardner, M.J.; Galinski, M.R.; Barnwell, J.W.; Fraser-Liggett, C.M. Comparative genomics of the neglected human malaria parasite Plasmodium vivax. Nature, 2008, 455(7214), 757-763.
[http://dx.doi.org/10.1038/nature07327] [PMID: 18843361]
[20]
Anstey, N.M.; Russell, B.; Yeo, T.W.; Price, R.N. The pathophysiology of vivax malaria. Trends Parasitol., 2009, 25(5), 220-227.
[http://dx.doi.org/10.1016/j.pt.2009.02.003] [PMID: 19349210]
[21]
McQueen, P.G.; McKenzie, F.E. Competition for red blood cells can enhance Plasmodium vivax parasitemia in mixed-species malaria infections. Am. J. Trop. Med. Hyg., 2006, 75(1), 112-125.
[http://dx.doi.org/10.4269/ajtmh.2006.75.112] [PMID: 16837717]
[22]
Tjitra, E.; Anstey, N.M.; Sugiarto, P.; Warikar, N.; Kenangalem, E.; Karyana, M.; Lampah, D.A.; Price, R.N. Multidrug-resistant Plasmodium vivax associated with severe and fatal malaria: A prospective study in Papua, Indonesia. PLoS Med., 2008, 5(6), e128.
[http://dx.doi.org/10.1371/journal.pmed.0050128] [PMID: 18563962]
[23]
Hemmer, C.J.; Holst, F.G.E.; Kern, P.; Chiwakata, C.B.; Dietrich, M.; Reisinger, E.C. Stronger host response per parasitized erythrocyte in Plasmodium vivax or ovale than in Plasmodium falciparum malaria. Trop. Med. Int. Health, 2006, 11(6), 817-823.
[http://dx.doi.org/10.1111/j.1365-3156.2006.01635.x] [PMID: 16772003]
[24]
Karunaweera, N.; Wanasekara, D.; Chandrasekharan, V.; Mendis, K.; Carter, R. Plasmodium vivax: paroxysm-associated lipids mediate leukocyte aggregation. Malar. J., 2007, 6(1), 62.
[http://dx.doi.org/10.1186/1475-2875-6-62] [PMID: 17517147]
[25]
Turner, G.D.H.; Morrison, H.; Jones, M.; Davis, T.M.; Looareesuwan, S.; Buley, I.D.; Gatter, K.C.; Newbold, C.I.; Pukritayakamee, S.; Nagachinta, B. An immunohistochemical study of the pathology of fatal malaria. Evidence for widespread endothelial activation and a potential role for intercellular adhesion molecule-1 in cerebral sequestration. Am. J. Pathol., 1994, 145(5), 1057-1069.
[PMID: 7526692]
[26]
Udomsangpetch, R.; Thanikkul, K.; Pukrittayakamee, S.; White, N.J. Rosette formation by Plasmodium vivax. Trans. R. Soc. Trop. Med. Hyg., 1995, 89(6), 635-637.
[http://dx.doi.org/10.1016/0035-9203(95)90422-0] [PMID: 8594679]
[27]
Rogerson, S.J.; Hviid, L.; Duffy, P.E.; Leke, R.F.G.; Taylor, D.W. Malaria in pregnancy: Pathogenesis and immunity. Lancet Infect. Dis., 2007, 7(2), 105-117.
[http://dx.doi.org/10.1016/S1473-3099(07)70022-1] [PMID: 17251081]
[28]
McGREADY, R.O.S.E.; Davison, B.B.; Looareesuwan, S.; Cho, T.; Shee, H.; Nosten, F.; Udomsangpetch, R.; Meshnick, S.R.; Stepniewska, K.; White, N.J.; Brockman, A. The effects of Plasmodium falciparum and P. vivax infections on placental histopathology in an area of low malaria transmission. Am. J. Trop. Med. Hyg., 2004, 70(4), 398-407.
[http://dx.doi.org/10.4269/ajtmh.2004.70.398] [PMID: 15100454]
[29]
Lage, O.; Ramos, M.; Calisto, R.; Almeida, E.; Vasconcelos, V.; Vicente, F. Current screening methodologies in drug discovery for selected human diseases. Mar. Drugs, 2018, 16(8), 279.
[http://dx.doi.org/10.3390/md16080279] [PMID: 30110923]
[30]
Swinney, D.C.; Anthony, J. How were new medicines discovered? Nat. Rev. Drug Discov., 2011, 10(7), 507-519.
[http://dx.doi.org/10.1038/nrd3480] [PMID: 21701501]
[31]
O. of the Commissioner. The Drug Development Process; FDA, 2020.
[32]
Sahu, R.; Walker, L.A.; Tekwani, B.L. In vitro and in vivo antimalarial activity of tigecycline, a glycylcycline antibiotic, in combination with chloroquine. Malar. J., 2014, 13(1), 414.
[http://dx.doi.org/10.1186/1475-2875-13-414] [PMID: 25336038]
[33]
Sidhu, A.B.S.; Sun, Q.; Nkrumah, L.J.; Dunne, M.W.; Sacchettini, J.C.; Fidock, D.A. In vitro efficacy, resistance selection, and structural modeling studies implicate the malarial parasite apicoplast as the target of azithromycin. J. Biol. Chem., 2007, 282(4), 2494-2504.
[http://dx.doi.org/10.1074/jbc.M608615200] [PMID: 17110371]
[34]
Goodman, C.D.; Su, V.; McFadden, G.I. The effects of anti-bacterials on the malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol., 2007, 152(2), 181-191.
[http://dx.doi.org/10.1016/j.molbiopara.2007.01.005] [PMID: 17289168]
[35]
Djapa, L.Y.; Zelikson, R.; Delahodde, A.; Bolotin-Fukuhara, M.; Mazabraud, A. Plasmodium vivax dihydrofolate reductase as a target of sulpha drugs. FEMS Microbiol. Lett., 2006, 256(1), 105-111.
[http://dx.doi.org/10.1111/j.1574-6968.2005.00095.x] [PMID: 16487326]
[36]
Śledź, P.; Caflisch, A. Protein structure-based drug design: from docking to molecular dynamics. Curr. Opin. Struct. Biol., 2018, 48, 93-102.
[http://dx.doi.org/10.1016/j.sbi.2017.10.010] [PMID: 29149726]
[37]
Yazdani, S.; Mukherjee, P.; Chauhan, V.; Chitnis, C. Immune responses to asexual blood-stages of malaria parasites. Curr. Mol. Med., 2006, 6(2), 187-203.
[http://dx.doi.org/10.2174/156652406776055212] [PMID: 16515510]
[38]
Rohrbach, P.; Rohrbach, P.; Dalton, J.P. The malaria digestive vacuole. Front. Biosci. (Schol. Ed.), 2012, S4(4), 1424-1448.
[http://dx.doi.org/10.2741/s344] [PMID: 22652884]
[39]
Goldberg, D.E.; Slater, A.F.G. The pathway of hemoglobin degradation in malaria parasites. Parasitol. Today, 1992, 8(8), 280-283.
[http://dx.doi.org/10.1016/0169-4758(92)90146-S] [PMID: 15463640]
[40]
Gluzman, I.Y.; Francis, S.E.; Oksman, A.; Smith, C.E.; Duffin, K.L.; Goldberg, D.E. Order and specificity of the Plasmodium falciparum hemoglobin degradation pathway. J. Clin. Invest., 1994, 93(4), 1602-1608.
[http://dx.doi.org/10.1172/JCI117140] [PMID: 8163662]
[41]
Schwarzer, E.; Kühn, H.; Valente, E.; Arese, P. Malaria-parasitized erythrocytes and hemozoin nonenzymatically generate large amounts of hydroxy fatty acids that inhibit monocyte functions. Blood, 2003, 101(2), 722-728.
[http://dx.doi.org/10.1182/blood-2002-03-0979] [PMID: 12393662]
[42]
Mathew, R.; Wunderlich, J.; Thivierge, K.; Cwiklinski, K.; Dumont, C.; Tilley, L.; Rohrbach, P.; Dalton, J.P. Biochemical and cellular characterisation of the Plasmodium falciparum M1 alanyl aminopeptidase (PfM1AAP) and M17 leucyl aminopeptidase (PfM17LAP). Sci. Rep., 2021, 11(1), 2854.
[http://dx.doi.org/10.1038/s41598-021-82499-4] [PMID: 33536500]
[43]
McGowan, S.; Porter, C.J.; Lowther, J.; Stack, C.M.; Golding, S.J.; Skinner-Adams, T.S.; Trenholme, K.R.; Teuscher, F.; Donnelly, S.M.; Grembecka, J.; Mucha, A.; Kafarski, P.; DeGori, R.; Buckle, A.M.; Gardiner, D.L.; Whisstock, J.C.; Dalton, J.P. Structural basis for the inhibition of the essential Plasmodium falciparum M1 neutral aminopeptidase. Proc. Natl. Acad. Sci. USA, 2009, 106(8), 2537-2542.
[http://dx.doi.org/10.1073/pnas.0807398106] [PMID: 19196988]
[44]
Stack, C.M.; Lowther, J.; Cunningham, E.; Donnelly, S.; Gardiner, D.L.; Trenholme, K.R.; Skinner-Adams, T.S.; Teuscher, F.; Grembecka, J.; Mucha, A.; Kafarski, P.; Lua, L.; Bell, A.; Dalton, J.P. Characterization of the Plasmodium falciparum M17 leucyl aminopeptidase. A protease involved in amino acid regulation with potential for antimalarial drug development. J. Biol. Chem., 2007, 282(3), 2069-2080.
[http://dx.doi.org/10.1074/jbc.M609251200] [PMID: 17107951]
[45]
Malcolm, T.R.; Swiderska, K.W.; Hayes, B.K.; Webb, C.T.; Drag, M.; Drinkwater, N.; McGowan, S. Mapping the substrate specificity of the Plasmodium M1 and M17 aminopeptidases. Biochem. J., 2021, 478(13), 2697-2713.
[http://dx.doi.org/10.1042/BCJ20210172] [PMID: 34133730]
[46]
Drinkwater, N.; Vinh, N.B.; Mistry, S.N.; Bamert, R.S.; Ruggeri, C.; Holleran, J.P.; Loganathan, S.; Paiardini, A.; Charman, S.A.; Powell, A.K.; Avery, V.M.; McGowan, S.; Scammells, P.J. Potent dual inhibitors of Plasmodium falciparum M1 and M17 aminopeptidases through optimization of S1 pocket interactions. Eur. J. Med. Chem., 2016, 110, 43-64.
[http://dx.doi.org/10.1016/j.ejmech.2016.01.015] [PMID: 26807544]
[47]
Skinner-Adams, T.S.; Lowther, J.; Teuscher, F.; Stack, C.M.; Grembecka, J.; Mucha, A.; Kafarski, P.; Trenholme, K.R.; Dalton, J.P.; Gardiner, D.L. Identification of phosphinate dipeptide analog inhibitors directed against the Plasmodium falciparum M17 leucine aminopeptidase as lead antimalarial compounds. J. Med. Chem., 2007, 50(24), 6024-6031.
[http://dx.doi.org/10.1021/jm070733v] [PMID: 17960925]
[48]
Nankya-Kitaka, M.F.; Curley, G.P.; Gavigan, C.S.; Bell, A.; Dalton, J.P. Plasmodium chabaudi chabaudi and P. falciparum : Inhibition of aminopeptidase and parasite growth by bestatin and nitrobestatin. Parasitol. Res., 1998, 84(7), 552-558.
[http://dx.doi.org/10.1007/s004360050447] [PMID: 9694371]
[49]
Skinner-Adams, T.S.; Peatey, C.L.; Anderson, K.; Trenholme, K.R.; Krige, D.; Brown, C.L.; Stack, C.; Nsangou, D.M.M.; Mathews, R.T.; Thivierge, K.; Dalton, J.P.; Gardiner, D.L. The aminopeptidase inhibitor CHR-2863 is an orally bioavailable inhibitor of murine malaria. Antimicrob. Agents Chemother., 2012, 56(6), 3244-3249.
[http://dx.doi.org/10.1128/AAC.06245-11] [PMID: 22450967]
[50]
Rout, S.; Mahapatra, R.K. In silico study of M18 aspartyl amino peptidase (M18AAP) of Plasmodium vivax as an antimalarial drug target. Bioorg. Med. Chem., 2019, 27(12), 2553-2571.
[http://dx.doi.org/10.1016/j.bmc.2019.03.039] [PMID: 30929948]
[51]
Yadav, M.K.; Singh, A.; Swati, D. A knowledge-based approach for identification of drugs against vivapain-2 protein of Plasmodium vivax through pharmacophore-based virtual screening with comparative modelling. Appl. Biochem. Biotechnol., 2014, 173(8), 2174-2188.
[http://dx.doi.org/10.1007/s12010-014-1023-y] [PMID: 24970047]
[52]
Na, B.K.; Shenai, B.R.; Sijwali, P.S.; Choe, Y.; Pandey, K.C.; Singh, A.; Craik, C.S.; Rosenthal, P.J. Identification and biochemical characterization of vivapains, cysteine proteases of the malaria parasite Plasmodium vivax. Biochem. J., 2004, 378(2), 529-538.
[http://dx.doi.org/10.1042/bj20031487] [PMID: 14629194]
[53]
Greenbaum, D.C.; Baruch, A.; Grainger, M.; Bozdech, Z.; Medzihradszky, K.F.; Engel, J.; DeRisi, J.; Holder, A.A.; Bogyo, M. A role for the protease falcipain 1 in host cell invasion by the human malaria parasite. Science, 2002, 298(5600), 2002-2006.
[http://dx.doi.org/10.1126/science.1077426] [PMID: 12471262]
[54]
Hanspal, M.; Dua, M.; Takakuwa, Y.; Chishti, A.H.; Mizuno, A. Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development. Blood, 2002, 100(3), 1048-1054.
[http://dx.doi.org/10.1182/blood-2002-01-0101] [PMID: 12130521]
[55]
Downie, M.J.; Kirk, K.; Mamoun, C.B. Purine salvage pathways in the intraerythrocytic malaria parasite Plasmodium falciparum. Eukaryot. Cell, 2008, 7(8), 1231-1237.
[http://dx.doi.org/10.1128/EC.00159-08] [PMID: 18567789]
[56]
Frame, I.J.; Deniskin, R.; Arora, A.; Akabas, M.H. Purine import into malaria parasites as a target for antimalarial drug development. Ann. N. Y. Acad. Sci., 2015, 1342(1), 19-28.
[http://dx.doi.org/10.1111/nyas.12568] [PMID: 25424653]
[57]
Deniskin, R.; Frame, I.J.; Sosa, Y.; Akabas, M.H. Targeting the Plasmodium vivax equilibrative nucleoside transporter 1 (PvENT1) for antimalarial drug development. Int. J. Parasitol. Drugs Drug Resist., 2016, 6(1), 1-11.
[http://dx.doi.org/10.1016/j.ijpddr.2015.11.003] [PMID: 26862473]
[58]
Oehring, S.C.; Woodcroft, B.J.; Moes, S.; Wetzel, J.; Dietz, O.; Pulfer, A.; Dekiwadia, C.; Maeser, P.; Flueck, C.; Witmer, K.; Brancucci, N.M.B.; Niederwieser, I.; Jenoe, P.; Ralph, S.A.; Voss, T.S. Organellar proteomics reveals hundreds of novel nuclear proteins in the malaria parasite Plasmodium falciparum. Genome Biol., 2012, 13(11), R108.
[http://dx.doi.org/10.1186/gb-2012-13-11-r108] [PMID: 23181666]
[59]
Saggu, G.S.; Garg, S.; Pala, Z.R.; Kochar, S.K.; Saxena, V. Deciphering the role of IspD (2-C-methyl-D-erythritol 4-phosphate cytidyltransferase) enzyme as a potential therapeutic drug target against Plasmodium vivax. Gene, 2018, 675, 240-253.
[http://dx.doi.org/10.1016/j.gene.2018.06.084] [PMID: 29958953]
[60]
Sheiner, L.; Vaidya, A.B.; McFadden, G.I. The metabolic roles of the endosymbiotic organelles of Toxoplasma and Plasmodium spp. Curr. Opin. Microbiol., 2013, 16(4), 452-458.
[http://dx.doi.org/10.1016/j.mib.2013.07.003] [PMID: 23927894]
[61]
Gisselberg, J.E.; Dellibovi-Ragheb, T.A.; Matthews, K.A.; Bosch, G.; Prigge, S.T. The suf iron-sulfur cluster synthesis pathway is required for apicoplast maintenance in malaria parasites. PLoS Pathog., 2013, 9(9), e1003655.
[http://dx.doi.org/10.1371/journal.ppat.1003655] [PMID: 24086138]
[62]
Vaughan, A.M.; O’Neill, M.T.; Tarun, A.S.; Camargo, N.; Phuong, T.M.; Aly, A.S.I.; Cowman, A.F.; Kappe, S.H.I. Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell. Microbiol., 2009, 11(3), 506-520.
[http://dx.doi.org/10.1111/j.1462-5822.2008.01270.x] [PMID: 19068099]
[63]
Pereira, P.H.S.; Curra, C.; Garcia, C.R.S. Ubiquitin proteasome system as a potential drug target for malaria. Curr. Top. Med. Chem., 2018, 18(5), 315-320.
[http://dx.doi.org/10.2174/1568026618666180427145308] [PMID: 29701143]
[64]
Pandey, A.V.; Babbarwal, V.K.; Okoyeh, J.N.; Joshi, R.M.; Puri, S.K.; Singh, R.L.; Chauhan, V.S. Hemozoin formation in malaria: A two-step process involving histidine-rich proteins and lipids. Biochem. Biophys. Res. Commun., 2003, 308(4), 736-743.
[http://dx.doi.org/10.1016/S0006-291X(03)01465-7] [PMID: 12927780]
[65]
Dhingra, S.K.; Redhi, D.; Combrinck, J.M.; Yeo, T.; Okombo, J.; Henrich, P.P.; Cowell, A.N.; Gupta, P.; Stegman, M.L.; Hoke, J.M.; Cooper, R.A.; Winzeler, E.; Mok, S.; Egan, T.J.; Fidock, D.A. A variant PfCRT isoform can contribute to plasmodium falciparum resistance to the first-line partner drug piperaquine. MBio, 2017, 8(3), e00303-17.
[http://dx.doi.org/10.1128/mBio.00303-17] [PMID: 28487425]
[66]
Vanaerschot, M.; Lucantoni, L.; Li, T.; Combrinck, J.M.; Ruecker, A.; Kumar, T.R.S.; Rubiano, K.; Ferreira, P.E.; Siciliano, G.; Gulati, S.; Henrich, P.P.; Ng, C.L.; Murithi, J.M.; Corey, V.C.; Duffy, S.; Lieberman, O.J.; Veiga, M.I.; Sinden, R.E.; Alano, P.; Delves, M.J.; Lee Sim, K.; Winzeler, E.A.; Egan, T.J.; Hoffman, S.L.; Avery, V.M.; Fidock, D.A. Hexahydroquinolines are antimalarial candidates with potent blood-stage and transmission-blocking activity. Nat. Microbiol., 2017, 2(10), 1403-1414.
[http://dx.doi.org/10.1038/s41564-017-0007-4] [PMID: 28808258]
[67]
de Villiers, K.A.; Egan, T.J. Heme detoxification in the malaria parasite: A target for antimalarial drug development. Acc. Chem. Res., 2021, 54(11), 2649-2659.
[http://dx.doi.org/10.1021/acs.accounts.1c00154] [PMID: 33982570]
[68]
Azeredo, L.F.S.P.; Coutinho, J.P.; Jabor, V.A.P.; Feliciano, P.R.; Nonato, M.C.; Kaiser, C.R.; Menezes, C.M.S.; Hammes, A.S.O.; Caffarena, E.R.; Hoelz, L.V.B.; de Souza, N.B.; Pereira, G.A.N.; Cerávolo, I.P.; Krettli, A.U.; Boechat, N. Evaluation of 7-arylaminopyrazolo[1,5-a]pyrimidines as anti-Plasmodium falciparum, antimalarial, and Pf-dihydroorotate dehydrogenase inhibitors. Eur. J. Med. Chem., 2017, 126, 72-83.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.073] [PMID: 27744189]
[69]
Arendse, L.B.; Wyllie, S.; Chibale, K.; Gilbert, I.H. Plasmodium kinases as potential drug targets for malaria: Challenges and opportunities. ACS Infect. Dis., 2021, 7(3), 518-534.
[http://dx.doi.org/10.1021/acsinfecdis.0c00724] [PMID: 33590753]
[70]
Sumam de Oliveira, D.; Kronenberger, T.; Palmisano, G.; Wrenger, C.; de Souza, E.E. Targeting sumoylation in Plasmodium as a potential target for malaria therapy. Front. Cell. Infect. Microbiol., 2021, 11, 685866.
[http://dx.doi.org/10.3389/fcimb.2021.685866] [PMID: 34178724]
[71]
Wagner, M.P.; Formaglio, P.; Gorgette, O.; Dziekan, J.M.; Huon, C.; Berneburg, I.; Rahlfs, S.; Barale, J.C.; Feinstein, S.I.; Fisher, A.B.; Ménard, D.; Bozdech, Z.; Amino, R.; Touqui, L.; Chitnis, C.E. Human peroxiredoxin 6 is essential for malaria parasites and provides a host-based drug target. Cell Rep., 2022, 39(11), 110923.
[http://dx.doi.org/10.1016/j.celrep.2022.110923] [PMID: 35705035]
[72]
Agnihotry, S.; Pathak, R.K.; Singh, D.B.; Tiwari, A.; Hussain, I. Protein structure prediction. Bioinformatics; Elsevier, 2022, pp. 177-188.
[http://dx.doi.org/10.1016/B978-0-323-89775-4.00023-7]
[73]
Hilbert, M.; Böhm, G.; Jaenicke, R. Structural relationships of homologous proteins as a fundamental principle in homology modeling. Proteins, 1993, 17(2), 138-151.
[http://dx.doi.org/10.1002/prot.340170204] [PMID: 8265562]
[74]
Batool, M.; Ahmad, B.; Choi, S. A structure-based drug discovery paradigm. Int. J. Mol. Sci., 2019, 20(11), 2783.
[http://dx.doi.org/10.3390/ijms20112783] [PMID: 31174387]
[75]
Jalily Hasani, H.; Barakat, K. Homology modeling: an overview of fundamentals and tools. International Review on Modelling and Simulations (IREMOS), 2017, 10(2), 129.
[http://dx.doi.org/10.15866/iremos.v10i2.11412]
[76]
Vyas, V.K.; Ukawala, R.D.; Chintha, C.; Ghate, M. Homology modeling a fast tool for drug discovery: Current perspectives. Indian J. Pharm. Sci., 2012, 74(1), 1-17.
[http://dx.doi.org/10.4103/0250-474X.102537] [PMID: 23204616]
[77]
Raval, A.; Piana, S.; Eastwood, M.P.; Dror, R.O.; Shaw, D.E. Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins, 2012, 80(8), 2071-2079.
[http://dx.doi.org/10.1002/prot.24098] [PMID: 22513870]
[78]
Feig, M. Computational protein structure refinement: almost there, yet still so far to go. Wiley Interdiscip. Rev. Comput. Mol. Sci., 2017, 7(3), e1307.
[http://dx.doi.org/10.1002/wcms.1307] [PMID: 30613211]
[79]
Park, H.; Ovchinnikov, S.; Kim, D.E.; DiMaio, F.; Baker, D. Protein homology model refinement by large-scale energy optimization. Proc. Natl. Acad. Sci., 2018, 115(12), 3054-3059.
[http://dx.doi.org/10.1073/pnas.1719115115] [PMID: 29507254]
[80]
Lonergan, G.J.; Cline, D.B.; Abbondanzo, S.L. Sickle cell anemia. Radiographics, 2001, 21(4), 971-994.
[http://dx.doi.org/10.1148/radiographics.21.4.g01jl23971] [PMID: 11452073]
[81]
Jiménez-Díaz, M.B.; Ebert, D.; Salinas, Y.; Pradhan, A.; Lehane, A.M.; Myrand-Lapierre, M.E.; O’Loughlin, K.G.; Shackleford, D.M.; Justino de Almeida, M.; Carrillo, A.K.; Clark, J.A.; Dennis, A.S.M.; Diep, J.; Deng, X.; Duffy, S.; Endsley, A.N.; Fedewa, G.; Guiguemde, W.A.; Gómez, M.G.; Holbrook, G.; Horst, J.; Kim, C.C.; Liu, J.; Lee, M.C.S.; Matheny, A.; Martínez, M.S.; Miller, G.; Rodríguez-Alejandre, A.; Sanz, L.; Sigal, M.; Spillman, N.J.; Stein, P.D.; Wang, Z.; Zhu, F.; Waterson, D.; Knapp, S.; Shelat, A.; Avery, V.M.; Fidock, D.A.; Gamo, F.J.; Charman, S.A.; Mirsalis, J.C.; Ma, H.; Ferrer, S.; Kirk, K.; Angulo-Barturen, I.; Kyle, D.E.; DeRisi, J.L.; Floyd, D.M.; Guy, R.K. (+)-SJ733, a clinical candidate for malaria that acts through ATP4 to induce rapid hostmediated clearance of Plasmodium. Proc. Natl. Acad. Sci., 2014, 111(50), E5455-E5462.
[http://dx.doi.org/10.1073/pnas.1414221111] [PMID: 25453091]
[82]
Kelley, L.A.; Sternberg, M.J.E. Protein structure prediction on the Web: A case study using the Phyre server. Nat. Protoc., 2009, 4(3), 363-371.
[http://dx.doi.org/10.1038/nprot.2009.2] [PMID: 19247286]
[83]
Deng, H.; Jia, Y.; Zhang, Y. Protein structure prediction. Int. J. Mod. Phys. B, 2018, 32(18), 1840009.
[http://dx.doi.org/10.1142/S021797921840009X] [PMID: 30853739]
[84]
Xu, J.; Jiao, F.; Yu, L. Protein structure prediction using threading. In: Protein Structure Prediction; Zaki, M.J.; Bystroff, C., Eds.; Humana Press: Totowa, NJ, 2008; pp. 91-121.
[http://dx.doi.org/10.1007/978-1-59745-574-9_4]
[85]
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 2008, 9(1), 40.
[http://dx.doi.org/10.1186/1471-2105-9-40] [PMID: 18215316]
[86]
Method of the Year 2021: Protein structure prediction. Nat. Methods, 2022, 19(1), 1-1.
[http://dx.doi.org/10.1038/s41592-021-01380-4] [PMID: 35017739]
[87]
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S.A.A.; Ballard, A.J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A.W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly accurate protein structure prediction with AlphaFold. Nature, 2021, 596(7873), 583-589.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[88]
Najafi, A.; Sobhanardakani, S.; Marjani, M. Exploring QSAR for antimalarial activities and drug distribution within blood of a series of 4-aminoquinoline drugs using genetic-MLR. J. Chem., 2013, 2013, 560415.
[http://dx.doi.org/10.1155/2013/560415]
[89]
Verma, J.; Khedkar, V.; Coutinho, E. 3D-QSAR in drug design-a review. Curr. Top. Med. Chem., 2010, 10(1), 95-115.
[http://dx.doi.org/10.2174/156802610790232260] [PMID: 19929826]
[90]
Kumari, M.; Chandra, S.; Tiwari, N.; Subbarao, N. 3D QSAR, pharmacophore and molecular docking studies of known inhibitors and designing of novel inhibitors for M18 aspartyl aminopeptidase of Plasmodium falciparum. BMC Struct. Biol., 2016, 16(1), 12.
[http://dx.doi.org/10.1186/s12900-016-0063-7] [PMID: 27534744]
[91]
Deepak, R.K.; Andrew, M.L. QSAR based predictive modeling for anti-malarial molecules. Bioinformation, 2017, 13(05), 154-159.
[http://dx.doi.org/10.6026/97320630013154]
[92]
Guerler, A.; Moll, S.; Weber, M.; Meyer, H.; Cordes, F. Selection and flexible optimization of binding modes from conformation ensembles. Biosystems, 2008, 92(1), 42-48.
[http://dx.doi.org/10.1016/j.biosystems.2007.11.004] [PMID: 18241979]
[93]
Zhang, X.; Wang, J.; Hong, C.; Lvo, W.; Wang, C. Design synthesis and evaluation of genistein-polyamine conjugates as multifunctional anti-alzheimer agents. Acta. Farm Sin. B., 2015 Jan;5(1), 67-73. Epub 2015 Jan 23
[http://dx.doi.org/10.1016/j.apsb.2014.12.008.] [PMID: 26579427] [PMCID: PMC4629212]
[94]
Basha, S.H.; Talluri, D.; Raminni, N.P. Computational repositioning of ethno medicine elucidated gB-gH-gL complex as novel anti herpes drug target. BMC Complement. Altern. Med., 2013, 13(1), 85.
[http://dx.doi.org/10.1186/1472-6882-13-85] [PMID: 23587166]
[95]
Ferreira, L.; dos Santos, R.; Oliva, G.; Andricopulo, A. Molecular docking and structure-based drug design strategies. Molecules, 2015, 20(7), 13384-13421.
[http://dx.doi.org/10.3390/molecules200713384] [PMID: 26205061]
[96]
Kumar, M.; Sharma, A. Design of Novel Dual-Target Hits Against Malaria and Tuberculosis Using Computational Docking. In: Multi-Target Drug Design Using Chem-Bioinformatic Approaches; Roy, K., Ed.; Springer New York: New York, NY, 2018; pp. 419-442.
[http://dx.doi.org/10.1007/7653_2018_22]
[97]
Subramaniam, S.; Mehrotra, M.; Gupta, D. Support vector machine based prediction of P. falciparum proteasome inhibitors and development of focused library by molecular docking. Comb. Chem. High Throughput Screen., 2011, 14(10), 898-907.
[http://dx.doi.org/10.2174/138620711797537058] [PMID: 21843142]
[98]
Gelpi, J.; Hospital, A.; Goñi, R.; Orozco, M. Molecular dynamics simulations: Advances and applications. Adv. Appl. Bioinform. Chem., 2015, 8(Nov), 37-47.
[http://dx.doi.org/10.2147/AABC.S70333] [PMID: 26604800]
[99]
Gioia, D.; Bertazzo, M.; Recanatini, M.; Masetti, M.; Cavalli, A. Dynamic docking: A paradigm shift in computational drug discovery. Molecules, 2017, 22(11), 2029.
[http://dx.doi.org/10.3390/molecules22112029] [PMID: 29165360]
[100]
Decherchi, S.; Bottegoni, G.; Spitaleri, A.; Rocchia, W.; Cavalli, A. BiKi life sciences: A new suite for molecular dynamics and related methods in drug discovery. J. Chem. Inf. Model., 2018, 58(2), 219-224.
[http://dx.doi.org/10.1021/acs.jcim.7b00680] [PMID: 29338240]
[101]
Nelson, M.T.; Humphrey, W.; Gursoy, A.; Dalke, A.; Kalé, L.V.; Skeel, R.D.; Schulten, K. NAMD: A parallel, object-oriented molecular dynamics program. Int. J. High Perform. Comput. Appl., 1996, 10(4), 251-268.
[http://dx.doi.org/10.1177/109434209601000401]
[102]
Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput., 2008, 4(3), 435-447.
[http://dx.doi.org/10.1021/ct700301q] [PMID: 26620784]
[103]
Brooks, B.R.; Brooks, C.L., III; Mackerell, A.D., Jr; Nilsson, L.; Petrella, R.J.; Roux, B.; Won, Y.; Archontis, G.; Bartels, C.; Boresch, S.; Caflisch, A.; Caves, L.; Cui, Q.; Dinner, A.R.; Feig, M.; Fischer, S.; Gao, J.; Hodoscek, M.; Im, W.; Kuczera, K.; Lazaridis, T.; Ma, J.; Ovchinnikov, V.; Paci, E.; Pastor, R.W.; Post, C.B.; Pu, J.Z.; Schaefer, M.; Tidor, B.; Venable, R.M.; Woodcock, H.L.; Wu, X.; Yang, W.; York, D.M.; Karplus, M. CHARMM: The biomolecular simulation program. J. Comput. Chem., 2009, 30(10), 1545-1614.
[http://dx.doi.org/10.1002/jcc.21287] [PMID: 19444816]
[104]
Meyer, T.; D’Abramo, M.; Hospital, A.; Rueda, M.; Ferrer-Costa, C.; Pérez, A.; Carrillo, O.; Camps, J.; Fenollosa, C.; Repchevsky, D.; Gelpí, J.L.; Orozco, M. MoDEL (Molecular Dynamics Extended Library): A database of atomistic molecular dynamics trajectories. Structure, 2010, 18(11), 1399-1409.
[http://dx.doi.org/10.1016/j.str.2010.07.013] [PMID: 21070939]
[105]
Tribello, G.A.; Ceriotti, M.; Parrinello, M. A self-learning algorithm for biased molecular dynamics. Proc. Natl. Acad. Sci., 2010, 107(41), 17509-17514.
[http://dx.doi.org/10.1073/pnas.1011511107] [PMID: 20876135]
[106]
Söderhjelm, P.; Tribello, G.A.; Parrinello, M. Locating binding poses in protein-ligand systems using reconnaissance metadynamics. Proc. Natl. Acad. Sci., 2012, 109(14), 5170-5175.
[http://dx.doi.org/10.1073/pnas.1201940109] [PMID: 22440749]
[107]
Lima, M.N.N.; Neves, B.J.; Cassiano, G.C.; Gomes, M.N.; Tomaz, K.C.P.; Ferreira, L.T.; Tavella, T.A.; Calit, J.; Bargieri, D.Y.; Muratov, E.N.; Costa, F.T.M.; Andrade, C.H. Chalcones as a basis for computer-aided drug design: Innovative approaches to tackle malaria. Future Med. Chem., 2019, 11(20), 2635-2646.
[http://dx.doi.org/10.4155/fmc-2018-0255] [PMID: 31556721]
[108]
Moorthy, N.S.H.N.; Sousa, S.F.; Ramos, M.J.; Fernandes, P.A. Molecular dynamic simulations and structure-based pharmacophore development for farnesyltransferase inhibitors discovery. J. Enzyme Inhib. Med. Chem., 2016, 31(6), 1428-1442.
[http://dx.doi.org/10.3109/14756366.2016.1144593] [PMID: 26887913]
[109]
Ojha, P.; Roy, K. Exploring structural requirements for a class of nucleoside inhibitors (PfdUTPase) as antimalarials: First report on QSAR, pharmacophore mapping and multiple docking studies. Comb. Chem. High Throughput Screen., 2013, 16(9), 739-757.
[http://dx.doi.org/10.2174/13862073113169990002] [PMID: 23701009]
[110]
Dror, O.; Shulman-Peleg, A.; Nussinov, R.; Wolfson, H. Predicting molecular interactions in silico: I. A guide to pharmacophore identification and its applications to drug design. Curr. Med. Chem., 2004, 11(1), 71-90.
[http://dx.doi.org/10.2174/0929867043456287] [PMID: 14754427]
[111]
De Villiers, K.; Egan, T. Recent advances in the discovery of haem-targeting drugs for malaria and schistosomiasis. Molecules, 2009, 14(8), 2868-2887.
[http://dx.doi.org/10.3390/molecules14082868] [PMID: 19701131]
[112]
Ruiz-Garcia, A.; Bermejo, M.; Moss, A.; Casabo, V.G. Pharmacokinetics in drug discovery. J. Pharm. Sci., 2008, 97(2), 654-690.
[http://dx.doi.org/10.1002/jps.21009] [PMID: 17630642]
[113]
Goodwin, R.J.A.; Bunch, J.; McGinnity, D.F. Mass spectrometry imaging in oncology drug discovery. In: Advances in Cancer Research; Elsevier, 2017; 134, pp. 133-171.
[http://dx.doi.org/10.1016/bs.acr.2016.11.005]
[114]
Reichel, A.; Lienau, P. Pharmacokinetics in drug discovery: an exposure-centred approach to optimising and predicting drug efficacy and safety. In: New Approaches to Drug Discovery; Nielsch, U.; Fuhrmann, U.; Jaroch, S., Eds.; Springer International Publishing: Cham, 2015; Vol. 232, pp. 235-260.
[http://dx.doi.org/10.1007/164_2015_26]
[115]
Slater, H.C.; Walker, P.G.T.; Bousema, T.; Okell, L.C.; Ghani, A.C. The potential impact of adding ivermectin to a mass treatment intervention to reduce malaria transmission: A modelling study. J. Infect. Dis., 2014, 210(12), 1972-1980.
[http://dx.doi.org/10.1093/infdis/jiu351] [PMID: 24951826]
[116]
Eicher, T.; Kinnebrew, G.; Patt, A.; Spencer, K.; Ying, K.; Ma, Q.; Machiraju, R.; Mathé, E.A. Metabolomics and multi-omics integration: A survey of computational methods and resources. Metabolites, 2020, 10(5), 202.
[http://dx.doi.org/10.3390/metabo10050202] [PMID: 32429287]
[117]
Jamal, S.; Periwal, V.; Scaria, V. Predictive modeling of anti-malarial molecules inhibiting apicoplast formation. BMC Bioinformatics, 2013, 14(1), 55.
[http://dx.doi.org/10.1186/1471-2105-14-55] [PMID: 23419172]
[118]
Tun, K.M.; Imwong, M.; Lwin, K.M.; Win, A.A.; Hlaing, T.M.; Hlaing, T.; Lin, K.; Kyaw, M.P.; Plewes, K.; Faiz, M.A.; Dhorda, M.; Cheah, P.Y.; Pukrittayakamee, S.; Ashley, E.A.; Anderson, T.J.C.; Nair, S.; McDew-White, M.; Flegg, J.A.; Grist, E.P.M.; Guerin, P.; Maude, R.J.; Smithuis, F.; Dondorp, A.M.; Day, N.P.J.; Nosten, F.; White, N.J.; Woodrow, C.J. Spread of artemisininresistant Plasmodium falciparum in Myanmar: A cross-sectional survey of the K13 molecular marker. Lancet Infect. Dis., 2015, 15(4), 415-421.
[http://dx.doi.org/10.1016/S1473-3099(15)70032-0] [PMID: 25704894]
[119]
Correa Rojo, A.; Heylen, D.; Aerts, J.; Thas, O.; Hooyberghs, J.; Ertaylan, G.; Valkenborg, D. Towards building a quantitative proteomics toolbox in precision medicine: A mini-review. Front. Physiol., 2021, 12, 723510.
[http://dx.doi.org/10.3389/fphys.2021.723510] [PMID: 34512391]
[120]
Maindola, P.; Jamal, S.; Grover, A. Cheminformatics based machine learning models for ama1-ron2 abrogators for inhibiting plasmodium falciparum erythrocyte invasion. Mol. Inform., 2015, 34(10), 655-664.
[http://dx.doi.org/10.1002/minf.201400139] [PMID: 27490966]
[121]
Viira, B.; Gendron, T.; Lanfranchi, D.; Cojean, S.; Horvath, D.; Marcou, G.; Varnek, A.; Maes, L.; Maran, U.; Loiseau, P.; Davioud-Charvet, E. In silico mining for antimalarial structure-activity knowledge and discovery of novel antimalarial curcuminoids. Molecules, 2016, 21(7), 853.
[http://dx.doi.org/10.3390/molecules21070853] [PMID: 27367660]
[122]
Lima, M.N.N.; Cassiano, G.C.; Tomaz, K.C.P.; Silva, A.C.; Sousa, B.K.P.; Ferreira, L.T.; Tavella, T.A.; Calit, J.; Bargieri, D.Y.; Neves, B.J.; Costa, F.T.M.; Andrade, C.H. Integrative multi-kinase approach for the identification of potent antiplasmodial hits. Front Chem., 2019, 7, 773.
[http://dx.doi.org/10.3389/fchem.2019.00773] [PMID: 31824917]
[123]
Sahu, S.; Ghosh, S.K.; Kalita, J.M.; Ginjupalli, M.C.; K, K.R. Discovery of potential 1,3,5-Triazine compounds against strains of Plasmodium falciparum using supervised machine learning models. Eur. J. Pharm. Sci., 2020, 144, 105208.
[http://dx.doi.org/10.1016/j.ejps.2019.105208] [PMID: 31883446]
[124]
Neves, B.J.; Braga, R.C.; Alves, V.M.; Lima, M.N.N.; Cassiano, G.C.; Muratov, E.N.; Costa, F.T.M.; Andrade, C.H. Deep Learning-driven research for drug discovery: Tackling Malaria. PLOS Comput. Biol., 2020, 16(2), e1007025.
[http://dx.doi.org/10.1371/journal.pcbi.1007025] [PMID: 32069285]
[125]
Keshavarzi, A.A.; Salem, M.; Collins, J.; Yuan, J.S.; Chakrabarti, D. DeepMalaria: Artificial intelligence driven discovery of potent antiplasmodials. Front. Pharmacol., 2020, 10.
[http://dx.doi.org/10.3389/fphar.2019.01526]
[126]
Fuhad, K.M.F.; Tuba, J.F.; Sarker, M.R.A.; Momen, S.; Mohammed, N.; Rahman, T. Deep learning based automatic malaria parasite detection from blood smear and its smartphone based application. Diagnostics, 2020, 10(5), 329.
[http://dx.doi.org/10.3390/diagnostics10050329] [PMID: 32443868]
[127]
Deelder, W.; Benavente, E.D.; Phelan, J.; Manko, E.; Campino, S.; Palla, L.; Clark, T.G. Using deep learning to identify recent positive selection in malaria parasite sequence data. Malar. J., 2021, 20(1), 270.
[http://dx.doi.org/10.1186/s12936-021-03788-x] [PMID: 34126997]
[128]
MacLean, F. Knowledge graphs and their applications in drug discovery. Expert Opin. Drug Discov., 2021, 16(9), 1057-1069.
[http://dx.doi.org/10.1080/17460441.2021.1910673] [PMID: 33843398]
[129]
Xu, J.; Kim, S.; Song, M.; Jeong, M.; Kim, D.; Kang, J.; Rousseau, J.F.; Li, X.; Xu, W.; Torvik, V.I.; Bu, Y.; Chen, C.; Ebeid, I.A.; Li, D.; Ding, Y. Building a PubMed knowledge graph. Sci. Data, 2020, 7(1), 205.
[http://dx.doi.org/10.1038/s41597-020-0543-2] [PMID: 32591513]
[130]
Nicholson, D.N.; Greene, C.S. Constructing knowledge graphs and their biomedical applications. Comput. Struct. Biotechnol. J., 2020, 18, 1414-1428.
[http://dx.doi.org/10.1016/j.csbj.2020.05.017] [PMID: 32637040]
[131]
Tiddi, I.; Schlobach, S. Knowledge graphs as tools for explainable machine learning: A survey. Artif. Intell., 2022, 302, 103627.
[http://dx.doi.org/10.1016/j.artint.2021.103627]
[132]
Yachie-Kinoshita, A.; Palaniappan, S.K.; Ghosh, S. Computational systems biology applications. In: Encyclopedia of Bioinformatics and Computational Biology; Elsevier, 2019; pp. 66-73.
[http://dx.doi.org/10.1016/B978-0-12-809633-8.20079-4]
[133]
Ayers, D.; Day, P.J. Systems medicine: The application of systems biology approaches for modern medical research and drug development. Mol. Biol. Int., 2015, 2015, 698169.
[http://dx.doi.org/10.1155/2015/698169] [PMID: 26357572]
[134]
Stalidzans, E.; Seiman, A.; Peebo, K.; Komasilovs, V.; Pentjuss, A. Model-based metabolism design: Constraints for kinetic and stoichiometric models. Biochem. Soc. Trans., 2018, 46(2), 261-267.
[http://dx.doi.org/10.1042/BST20170263] [PMID: 29472367]
[135]
Galinski, M.R. Systems biology of malaria explored with nonhuman primates. Malar. J., 2022, 21(1), 177.
[http://dx.doi.org/10.1186/s12936-022-04199-2] [PMID: 35672852]
[136]
Cortopassi, W.A.; Celmar, C.F.T.; Krettli, A.U. A systems biology approach to antimalarial drug discovery. Expert Opin. Drug Discov., 2018, 13(7), 617-626.
[http://dx.doi.org/10.1080/17460441.2018.1471056] [PMID: 29737894]
[137]
Santos, G.; Torres, N.V. New targets for drug discovery against malaria. PLoS One, 2013, 8(3), e59968.
[http://dx.doi.org/10.1371/journal.pone.0059968] [PMID: 23555851]
[138]
Ogbunugafor, C.B.; Wylie, C.S.; Diakite, I.; Weinreich, D.M.; Hartl, D.L. Adaptive landscape by environment interactions dictate evolutionary dynamics in models of drug resistance. PLOS Comput. Biol., 2016, 12(1), e1004710.
[http://dx.doi.org/10.1371/journal.pcbi.1004710] [PMID: 26808374]
[139]
Malhotra, K.; Subramaniyan, M.; Rawat, K.; Kalamuddin, M.; Qureshi, M.I.; Malhotra, P.; Mohmmed, A.; Cornish, K.; Daniell, H.; Kumar, S. Compartmentalized metabolic engineering for artemisinin biosynthesis and effective malaria treatment by oral delivery of plant cells. Mol. Plant, 2016, 9(11), 1464-1477.
[http://dx.doi.org/10.1016/j.molp.2016.09.013] [PMID: 27773616]
[140]
Wilkinson, M.D.; Lai, H.E.; Freemont, P.S.; Baum, J. A biosynthetic platform for antimalarial drug discovery. Antimicrob. Agents Chemother., 2020, 64(5), e02129-19.
[http://dx.doi.org/10.1128/AAC.02129-19] [PMID: 32152076]
[141]
Tewari, S.G.; Prigge, S.T.; Reifman, J.; Wallqvist, A. Using a genome-scale metabolic network model to elucidate the mechanism of chloroquine action in Plasmodium falciparum. Int. J. Parasitol. Drugs Drug Resist., 2017, 7(2), 138-146.
[http://dx.doi.org/10.1016/j.ijpddr.2017.03.004] [PMID: 28355531]
[142]
Chiappino-Pepe, A.; Tymoshenko, S.; Ataman, M.; Soldati-Favre, D.; Hatzimanikatis, V. Bioenergetics-based modeling of Plasmodium falciparum metabolism reveals its essential genes, nutritional requirements, and thermodynamic bottlenecks. PLOS Comput. Biol., 2017, 13(3), e1005397.
[http://dx.doi.org/10.1371/journal.pcbi.1005397] [PMID: 28333921]
[143]
Stanway, R.R.; Bushell, E.; Chiappino-Pepe, A.; Roques, M.; Sanderson, T.; Franke-Fayard, B.; Caldelari, R.; Golomingi, M.; Nyonda, M.; Pandey, V.; Schwach, F.; Chevalley, S.; Ramesar, J.; Metcalf, T.; Herd, C.; Burda, P.C.; Rayner, J.C.; Soldati-Favre, D.; Janse, C.J.; Hatzimanikatis, V.; Billker, O.; Heussler, V.T. Genome-scale identification of essential metabolic processes for targeting the plasmodium liver stage. Cell, 2019, 179(5), 1112-1128.e26.
[http://dx.doi.org/10.1016/j.cell.2019.10.030] [PMID: 31730853]
[144]
Huthmacher, C.; Hoppe, A.; Bulik, S.; Holzhütter, H.G. Antimalarial drug targets in Plasmodium falciparum predicted by stage-specific metabolic network analysis. BMC Syst. Biol., 2010, 4(1), 120.
[http://dx.doi.org/10.1186/1752-0509-4-120] [PMID: 20807400]
[145]
Plata, G.; Hsiao, T.L.; Olszewski, K.L.; Llinás, M.; Vitkup, D. Reconstruction and flux‐balance analysis of the Plasmodium falciparum metabolic network. Mol. Syst. Biol., 2010, 6(1), 408.
[http://dx.doi.org/10.1038/msb.2010.60] [PMID: 20823846]
[146]
Oyelade, J.; Isewon, I.; Aromolaran, O.; Uwoghiren, E.; Dokunmu, T.; Rotimi, S.; Aworunse, O.; Obembe, O.; Adebiyi, E. Computational identification of metabolic pathways of Plasmodium falciparum using the k -shortest path algorithm. Int. J. Genomics, 2019, 2019, 1750291.
[http://dx.doi.org/10.1155/2019/1750291] [PMID: 31662957]
[147]
Abdel-Haleem, A.M.; Hefzi, H.; Mineta, K.; Gao, X.; Gojobori, T.; Palsson, B.O.; Lewis, N.E.; Jamshidi, N. Functional interrogation of Plasmodium genus metabolism identifies species- and stage-specific differences in nutrient essentiality and drug targeting. PLOS Comput. Biol., 2018, 14(1), e1005895.
[http://dx.doi.org/10.1371/journal.pcbi.1005895] [PMID: 29300748]
[148]
Alemayehu, C.; Mitchell, G.; Nikles, J. Barriers for conducting clinical trials in developing countries- a systematic review. Int. J. Equity Health, 2018, 17(1), 37.
[http://dx.doi.org/10.1186/s12939-018-0748-6] [PMID: 29566721]
[149]
Collins, K.A.; Wang, C.Y.T.; Adams, M.; Mitchell, H.; Robinson, G.J.; Rampton, M.; Elliott, S.; Odedra, A.; Khoury, D.; Ballard, E.; Shelper, T.B.; Lucantoni, L.; Avery, V.M.; Chalon, S.; Moehrle, J.J.; McCarthy, J.S. A Plasmodium vivax experimental human infection model for evaluating efficacy of interventions. J. Clin. Invest., 2020, 130(6), 2920-2927.
[http://dx.doi.org/10.1172/JCI134923] [PMID: 32045385]
[150]
Sinxadi, P.; Donini, C.; Johnstone, H.; Langdon, G.; Wiesner, L.; Allen, E.; Duparc, S.; Chalon, S.; McCarthy, J.S.; Lorch, U.; Chibale, K.; Möhrle, J.; Barnes, K.I. Safety, tolerability, pharmacokinetics, and antimalarial activity of the novel Plasmodium Phosphatidylinositol 4-kinase inhibitor mmv390048 in healthy volunteers. Antimicrob. Agents Chemother., 2020, 64(4), e01896-19.
[http://dx.doi.org/10.1128/AAC.01896-19] [PMID: 31932368]
[151]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[152]
Farha, M.A.; Brown, E.D. Drug repurposing for antimicrobial discovery. Nat. Microbiol., 2019, 4(4), 565-577.
[http://dx.doi.org/10.1038/s41564-019-0357-1] [PMID: 30833727]
[153]
Liu, Z.; Fang, H.; Reagan, K.; Xu, X.; Mendrick, D.L.; Slikker, W., Jr; Tong, W. In silico drug repositioning – what we need to know. Drug Discov. Today, 2013, 18(3-4), 110-115.
[http://dx.doi.org/10.1016/j.drudis.2012.08.005] [PMID: 22935104]
[154]
Shim, J.S.; Liu, J.O. Recent advances in drug repositioning for the discovery of new anticancer drugs. Int. J. Biol. Sci., 2014, 10(7), 654-663.
[http://dx.doi.org/10.7150/ijbs.9224] [PMID: 25013375]
[155]
Hodos, R.A.; Kidd, B.A.; Shameer, K.; Readhead, B.P.; Dudley, J.T. In silico methods for drug repurposing and pharmacology. Wiley Interdiscip. Rev. Syst. Biol. Med., 2016, 8(3), 186-210.
[http://dx.doi.org/10.1002/wsbm.1337] [PMID: 27080087]
[156]
Ferreira, L.T.; Rodrigues, J.; Cassiano, G.C.; Tavella, T.A.; Tomaz, K.C.P.; Baia-da-Silva, D.C.; Souza, M.F.; Lima, M.N.N.; Mottin, M.; Almeida, L.D.; Calit, J.; Puça, M.C.S.B.; Melo, G.C.; Bargieri, D.Y.; Lopes, S.C.P.; Lacerda, M.V.G.; Bilsland, E.; Sunnerhagen, P.; Neves, B.J.; Andrade, C.H.; Cravo, P.V.L.; Costa, F.T.M. Computational chemogenomics drug repositioning strategy enables the discovery of epirubicin as a new repurposed hit for plasmodium falciparum and p. vivax. Antimicrob. Agents Chemother., 2020, 64(9), e02041-19.
[http://dx.doi.org/10.1128/AAC.02041-19] [PMID: 32601162]
[157]
Dahl, E.L.; Shock, J.L.; Shenai, B.R.; Gut, J.; DeRisi, J.L.; Rosenthal, P.J. Tetracyclines specifically target the apicoplast of the malaria parasite Plasmodium falciparum. Antimicrob. Agents Chemother., 2006, 50(9), 3124-3131.
[http://dx.doi.org/10.1128/AAC.00394-06] [PMID: 16940111]
[158]
Tan, K.R.; Magill, A.J.; Arguin, P.M.; Parise, M.E. Doxycycline for malaria chemoprophylaxis and treatment: report from the CDC expert meeting on malaria chemoprophylaxis. Am. J. Trop. Med. Hyg., 2011, 84(4), 517-531.
[http://dx.doi.org/10.4269/ajtmh.2011.10-0285] [PMID: 21460003]
[159]
Gaillard, T.; Madamet, M.; Tsombeng, F.F.; Dormoi, J.; Pradines, B. Antibiotics in malaria therapy: which antibiotics except tetracyclines and macrolides may be used against malaria? Malar. J., 2016, 15(1), 556.
[http://dx.doi.org/10.1186/s12936-016-1613-y] [PMID: 27846898]
[160]
CDC - Malaria - Travelers - Choosing a Drug to Prevent Malaria, 2019. Available from: https://www.cdc.gov/malaria/travelers/drugs.html [Accessed on: March 25, 2022].
[161]
Pazhayam, N.M.; Chhibber-Goel, J.; Sharma, A. New leads for drug repurposing against malaria. Drug Discov. Today, 2019, 24(1), 263-271.
[http://dx.doi.org/10.1016/j.drudis.2018.08.006] [PMID: 30099124]
[162]
Nsanzabana, C.; Rosenthal, P.J. In vitro activity of antiretroviral drugs against Plasmodium falciparum. Antimicrob. Agents Chemother., 2011, 55(11), 5073-5077.
[http://dx.doi.org/10.1128/AAC.05130-11] [PMID: 21876053]
[163]
da Cruz, F.P.; Martin, C.; Buchholz, K.; Lafuente-Monasterio, M.J.; Rodrigues, T.; Sönnichsen, B.; Moreira, R.; Gamo, F.J.; Marti, M.; Mota, M.M.; Hannus, M.; Prudêncio, M. Drug screen targeted at Plasmodium liver stages identifies a potent multistage antimalarial drug. J. Infect. Dis., 2012, 205(8), 1278-1286.
[http://dx.doi.org/10.1093/infdis/jis184] [PMID: 22396598]
[164]
Badhan, R.; Zakaria, Z.; Olafuyi, O. The repurposing of ivermectin for malaria: A prospective pharmacokinetics-based virtual clinical trials assessment of dosing regimen options. J. Pharm. Sci., 2018, 107(8), 2236-2250.
[http://dx.doi.org/10.1016/j.xphs.2018.03.026] [PMID: 29626533]
[165]
Vera, I.M.; Grilo Ruivo, M.T.; Lemos Rocha, L.F.; Marques, S.; Bhatia, S.N.; Mota, M.M.; Mancio-Silva, L. Targeting liver stage malaria with metformin. JCI Insight, 2019, 4(24), e127441.
[http://dx.doi.org/10.1172/jci.insight.127441] [PMID: 31852843]
[166]
Henry, M.; Alibert, S.; Baragatti, M.; Mosnier, J.; Baret, E.; Amalvict, R.; Legrand, E.; Fusai, T.; Barbe, J.; Rogier, C.; Pagès, J.M.; Pradines, B. Dihydroethanoanthracene derivatives reverse in vitro quinoline resistance in Plasmodium falciparum malaria. Med. Chem., 2008, 4(5), 426-437.
[http://dx.doi.org/10.2174/157340608785700234] [PMID: 18782039]
[167]
Derbyshire, E.R.; Prudêncio, M.; Mota, M.M.; Clardy, J. Liver-stage malaria parasites vulnerable to diverse chemical scaffolds. Proc. Natl. Acad. Sci., 2012, 109(22), 8511-8516.
[http://dx.doi.org/10.1073/pnas.1118370109] [PMID: 22586124]
[168]
Nordor, A.V.; Bellet, D.; Siwo, G.H. Cancer–malaria: Hidden connections. Open Biol., 2018, 8(10), 180127.
[http://dx.doi.org/10.1098/rsob.180127] [PMID: 30381365]
[169]
Nzila, A.; Okombo, J.; Becker, R.P.; Chilengi, R.; Lang, T.; Niehues, T. Anticancer agents against malaria: Time to revisit? Trends Parasitol., 2010, 26(3), 125-129.
[http://dx.doi.org/10.1016/j.pt.2009.12.002] [PMID: 20056487]
[170]
Russell, C.; Rahman, A.; Mohammed, A.R. Application of genomics, proteomics and metabolomics in drug discovery, development and clinic. Ther. Deliv., 2013, 4(3), 395-413.
[http://dx.doi.org/10.4155/tde.13.4] [PMID: 23442083]
[171]
Saddala, M.S.; Adi, P.J. Discovery of small molecules through pharmacophore modeling, docking and molecular dynamics simulation against Plasmodium vivax Vivapain-3 (VP-3). Heliyon, 2018, 4(5), e00612.
[http://dx.doi.org/10.1016/j.heliyon.2018.e00612] [PMID: 29756074]
[172]
Bouillon, A.; Giganti, D.; Benedet, C.; Gorgette, O.; Pêtres, S.; Crublet, E.; Girard-Blanc, C.; Witkowski, B.; Ménard, D.; Nilges, M.; Mercereau-Puijalon, O.; Stoven, V.; Barale, J.C. In silico screening on the three-dimensional model of the Plasmodium vivax SUB1 protease leads to the validation of a novel anti-parasite compound. J. Biol. Chem., 2013, 288(25), 18561-18573.
[http://dx.doi.org/10.1074/jbc.M113.456764] [PMID: 23653352]
[173]
Rahul, C.N.; Shiva Krishna, K.; Pawar, A.P.; Bai, M.; Kumar, V.; Phadke, S.; Rajesh, V. Genetic and structural characterization of PvSERA4: Potential implication as therapeutic target for Plasmodium vivax malaria. J. Biomol. Struct. Dyn., 2014, 32(4), 580-590.
[http://dx.doi.org/10.1080/07391102.2013.782824] [PMID: 23582016]
[174]
Yeh, E.; DeRisi, J.L. Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage Plasmodium falciparum. PLoS Biol., 2011, 9(8), e1001138.
[http://dx.doi.org/10.1371/journal.pbio.1001138] [PMID: 21912516]
[175]
Moon, S.U.; Kang, J.M.; Kim, T.S.; Kong, Y.; Sohn, W.M.; Na, B.K. Plasmodium vivax: Collaborative roles for plasmepsin 4 and vivapains in hemoglobin hydrolysis. Exp. Parasitol., 2011, 128(2), 127-132.
[http://dx.doi.org/10.1016/j.exppara.2011.02.015] [PMID: 21334328]
[176]
Venkatramani, A.; Gravina Ricci, C.; Oldfield, E.; McCammon, J.A. Remarkable similarity in Plasmodium falciparum and Plasmodium vivax geranylgeranyl diphosphate synthase dynamics and its implication for antimalarial drug design. Chem. Biol. Drug Des., 2018, 91(6), 1068-1077.
[http://dx.doi.org/10.1111/cbdd.13170] [PMID: 29345110]
[177]
Singh, A.P.; Zhang, Y.; No, J.H.; Docampo, R.; Nussenzweig, V.; Oldfield, E. Lipophilic bisphosphonates are potent inhibitors of Plasmodium liver-stage growth. Antimicrob. Agents Chemother., 2010, 54(7), 2987-2993.
[http://dx.doi.org/10.1128/AAC.00198-10] [PMID: 20457823]
[178]
Simwela, N.V.; Hughes, K.R.; Rennie, M.T.; Barrett, M.P.; Waters, A.P. Mammalian deubiquitinating enzyme inhibitors display in vitro and in vivo activity against malaria parasites and potentiate artemisinin action. ACS Infect. Dis., 2021, 7(2), 333-346.
[http://dx.doi.org/10.1021/acsinfecdis.0c00580] [PMID: 33400499]
[179]
Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367.
[http://dx.doi.org/10.1093/nar/gky473] [PMID: 29860391]
[180]
Gao, M.; Skolnick, J. APoc: large-scale identification of similar protein pockets. Bioinformatics, 2013, 29(5), 597-604.
[http://dx.doi.org/10.1093/bioinformatics/btt024] [PMID: 23335017]
[181]
Capra, J.A.; Laskowski, R.A.; Thornton, J.M.; Singh, M.; Funkhouser, T.A. Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure. PLOS Comput. Biol., 2009, 5(12), e1000585.
[http://dx.doi.org/10.1371/journal.pcbi.1000585] [PMID: 19997483]
[182]
Brylinski, M.; Feinstein, W.P. eFindSite: Improved prediction of ligand binding sites in protein models using meta-threading, machine learning and auxiliary ligands. J. Comput. Aided Mol. Des., 2013, 27(6), 551-567.
[http://dx.doi.org/10.1007/s10822-013-9663-5] [PMID: 23838840]
[183]
Lin, Y.; Yoo, S.; Sanchez, R. SiteComp: A server for ligand binding site analysis in protein structures. Bioinformatics, 2012, 28(8), 1172-1173.
[http://dx.doi.org/10.1093/bioinformatics/bts095] [PMID: 22368247]
[184]
Bikadi, Z.; Hazai, E. Application of the PM6 semi-empirical method to modeling proteins enhances docking accuracy of AutoDock. J. Cheminform., 2009, 1(1), 15.
[http://dx.doi.org/10.1186/1758-2946-1-15] [PMID: 20150996]
[185]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDock-Tools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[186]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2009, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334]
[187]
Bolia, A.; Gerek, Z.N.; Ozkan, S.B. BP-Dock: A flexible docking scheme for exploring protein-ligand interactions based on unbound structures. J. Chem. Inf. Model., 2014, 54(3), 913-925.
[http://dx.doi.org/10.1021/ci4004927] [PMID: 24380381]
[188]
Gagnon, J.K.; Law, S.M.; Brooks, C.L. III Flexible CDOCKER: Development and application of a pseudo-explicit structure-based docking method within CHARMM. J. Comput. Chem., 2016, 37(8), 753-762.
[http://dx.doi.org/10.1002/jcc.24259] [PMID: 26691274]
[189]
FLIPDock: Docking flexible ligands into flexible receptors - Zhao - 2007 - Proteins: Structure, Function, and Bioinformatics. Available from: https://onlinelibrary.wiley.com/doi/10.1002/prot.21423
[190]
Michael, J.H.; Marcel, L.V.; Gianni, C.; Suzanne, C.B.; Wijnand, M.M.; Paul, N.M.; Christopher, W.M. Diverse, high-quality test set for the validation of protein−ligand docking performance. J. Med. Chem., 2007, 50(4), 726-741.
[191]
Friesner, R.A.; Murphy, R.B.; Repasky, M.P.; Frye, L.L.; Greenwood, J.R.; Halgren, T.A.; Sanschagrin, P.C.; Mainz, D.T. Extra precision glide: Docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. J. Med. Chem., 2006, 49(21), 6177-6196.
[http://dx.doi.org/10.1021/jm051256o] [PMID: 17034125]
[192]
idock: A multithreaded virtual screening tool for flexible ligand docking; IEEE, San Diego, CA, USA.
[193]
SwissDock, a protein-small molecule docking web service based on EADock DSS | Nucleic Acids Research; Nucleic Acids Res., 2011, 39, W270-7.
[194]
Computer aided molecular design, drug design, QSAR, Molecular Modeling Software; Available from: https://pubmed.ncbi.nlm.nih.gov/26721410/
[195]
ZDOCK server: interactive docking prediction of protein–protein complexes and symmetric multimers. In: Bioinformatics; Oxford Academic, 2016.
[196]
Schneidman-Duhovny, D.; Hammel, M.; Tainer, J.A.; Sali, A. FoXS, FoXSDock and MultiFoXS: Single-state and multi-state structural modeling of proteins and their complexes based on SAXS profiles. Nucleic Acids Res., 2016, 44(W1), W424-W429.
[http://dx.doi.org/10.1093/nar/gkw389] [PMID: 27151198]
[197]
Bowers, K.J. Scalable algorithms for molecular dynamics simulations on commodity clusters SC ’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 2006.IEEE, Tampa, FL, USA http://dl.amc.org/doi/10.145/1188455.1188544
[198]
Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 2015, 1-2, 19-25.
[http://dx.doi.org/10.1016/j.softx.2015.06.001]
[199]
Vilar, S.; Cozza, G.; Moro, S. Medicinal chemistry and the molecular operating environment (MOE): application of QSAR and molecular docking to drug discovery. Curr. Top. Med. Chem., 2008, 8(18), 1555-1572.
[http://dx.doi.org/10.2174/156802608786786624] [PMID: 19075767]
[200]
Phillips, J.C.; Braun, R.; Wang, W.; Gumbart, J.; Tajkhorshid, E.; Villa, E.; Chipot, C.; Skeel, R.D.; Kalé, L.; Schulten, K. Scalable molecular dynamics with NAMD. J. Comput. Chem., 2005, 26(16), 1781-1802.
[http://dx.doi.org/10.1002/jcc.20289] [PMID: 16222654]
[201]
Land, H.; Humble, M.S. YASARA: A Tool to Obtain Structural Guidance in Biocatalytic Investigations. In: Protein Engineering: Methods and Protocols; Bornscheuer, U.T.; Höhne, M., Eds.; Springer: New York, NY, 2018; pp. 43-67.
[http://dx.doi.org/10.1007/978-1-4939-7366-8_4]
[202]
Andrew, W.; Martino, B.; Stefan, B.; Gabriel, S. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res., 46(W1), W296-W303.
[http://dx.doi.org/10.1093/nar/gky427]
[203]
Webb, B.; Sali, A. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinforma., 2016, 54(1), 5.6.1-5.6.37.
[http://dx.doi.org/10.1002/cpbi.3]
[204]
Yifan, S.; Frank, D.; Yu-Ruei, R.W.; David, K.; Chris, M.; Brunette, T.; James, T.; David, B. High-resolution comparative modeling with RosettaCM. Structure, 2013, 21(10), 1735-1742.
[205]
McGuffin, L.J.; Adiyaman, R.; Maghrabi, A.H.A.; Shuid, A.N.; Brackenridge, D.A.; Nealon, J.O.; Philomina, L.S. IntFOLD: an integrated web resource for high performance protein structure and function prediction. Nucleic Acids Res., 2019, 47(W1), W408-W413.
[http://dx.doi.org/10.1093/nar/gkz322] [PMID: 31045208]
[206]
Kelley, L.A.; Mezulis, S.; Yates, C.M.; Wass, M.N.; Sternberg, M.J.E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc., 2015, 10(6), 845-858.
[http://dx.doi.org/10.1038/nprot.2015.053] [PMID: 25950237]
[207]
Ma, J.; Wang, S.; Zhao, F.; Xu, J. Protein threading using context-specific alignment potential. Bioinformatics, 2013, 29(13), i257-i265.
[http://dx.doi.org/10.1093/bioinformatics/btt210] [PMID: 23812991]
[208]
Grünberg, R.; Nilges, M.; Leckner, J. Biskit—A software platform for structural bioinformatics. Bioinformatics, 2007, 23(6), 769-770.
[http://dx.doi.org/10.1093/bioinformatics/btl655] [PMID: 17237072]
[209]
Lambert, C.; Léonard, N.; De Bolle, X.; Depiereux, E. ESyPred3D: Prediction of proteins 3D structures. Bioinformatics, 2002, 18(9), 1250-1256.
[http://dx.doi.org/10.1093/bioinformatics/18.9.1250] [PMID: 12217917]
[210]
Schymkowitz, J.; Borg, J.; Stricher, F.; Nys, R.; Rousseau, F.; Serrano, L. The FoldX web server: An online force field. Nucleic Acids Res., 2005, 33(S2), W382-W388.
[http://dx.doi.org/10.1093/nar/gki387]
[211]
Zimmermann, L.; Stephens, A.; Nam, S.Z.; Rau, D.; Kübler, J.; Lozajic, M.; Gabler, F.; Söding, J.; Lupas, A.N.; Alva, V. A completely reimplemented mpi bioinformatics toolkit with a new HHpred server at its Core. J. Mol. Biol., 2018, 430(15), 2237-2243.
[http://dx.doi.org/10.1016/j.jmb.2017.12.007] [PMID: 29258817]
[212]
Adhikari, B.; Bhattacharya, D.; Cao, R.; Cheng, J. CONFOLD: Residue-residue contact-guided ab initio protein folding. Proteins, 2015, 83(8), 1436-1449.
[http://dx.doi.org/10.1002/prot.24829] [PMID: 25974172]
[213]
Kim, D.E.; Chivian, D.; Baker, D. Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res., 2004, 32(S2), W526-W531.
[http://dx.doi.org/10.1093/nar/gkh468]
[214]
Jayaram, B.; Dhingra, P.; Mishra, A.; Kaushik, R.; Mukherjee, G.; Singh, A.; Shekhar, S. Bhageerath-H: A homology/ab initio hybrid server for predicting tertiary structures of monomeric soluble proteins. BMC Bioinformat., 2014, 15(S16), S7.
[http://dx.doi.org/10.1186/1471-2105-15-S16-S7] [PMID: 25521245]
[215]
Tortorella, S.; Carosati, E.; Sorbi, G.; Bocci, G.; Cross, S.; Cruciani, G.; Storchi, L. Combining machine learning and quantum mechanics yields more CHEMICALLY AWARE molecular descriptors for medicinal chemistry applications. J. Comput. Chem., 2021, 42(29), 2068-2078.
[http://dx.doi.org/10.1002/jcc.26737] [PMID: 34410004]
[216]
Bahl, A.; Brunk, B.; Crabtree, J.; Fraunholz, M.J.; Gajria, B.; Grant, G.R.; Ginsburg, H.; Gupta, D.; Kissinger, J.C.; Labo, P.; Li, L.; Mailman, M.D.; Milgram, A.J.; Pearson, D.S.; Roos, D.S.; Schug, J.; Stoeckert, C.J., Jr; Whetzel, P. Plasmo DB: The Plasmodium genome resource. A database integrating experimental and computational data. Nucleic Acids Res., 2003, 31(1), 212-215.
[http://dx.doi.org/10.1093/nar/gkg081] [PMID: 12519984]
[217]
Wishart, D. S. DrugBank: A knowledgebase for drugs, drug actions and drug targets. Nucleic Acids Res., 2008, 36(S1), D901-D906.
[http://dx.doi.org/10.1093/nar/gkm958]
[218]
Kim, S.; Thiessen, P.A.; Bolton, E.E.; Chen, J.; Fu, G.; Gindulyte, A.; Han, L.; He, J.; He, S.; Shoemaker, B.A.; Wang, J.; Yu, B.; Zhang, J.; Bryant, S.H. PubChem substance and compound databases. Nucleic Acids Res., 2016, 44(D1), D1202-D1213.
[http://dx.doi.org/10.1093/nar/gkv951] [PMID: 26400175]
[219]
Fu, C.; Jin, G.; Gao, J.; Zhu, R.; Ballesteros-villagrana, E.; Wong, S.T.C. DrugMap Central: an on-line query and visualization tool to facilitate drug repositioning studies. Bioinformatics, 2013, 29(14), 1834-1836.
[http://dx.doi.org/10.1093/bioinformatics/btt279] [PMID: 23681121]
[220]
Okuno, Y.; Yang, J.; Taneishi, K.; Yabuuchi, H.; Tsujimoto, G. GLIDA: GPCR-ligand database for chemical genomic drug discovery. Nucleic Acids Res., 2006, 34(S1), D673-D677.
[http://dx.doi.org/10.1093/nar/gkj028]
[221]
Chen, X.; Ji, Z.L.; Chen, Y.Z. TTD: Therapeutic target database. Nucleic Acids Res., 2002, 30(1), 412-415.
[http://dx.doi.org/10.1093/nar/30.1.412] [PMID: 11752352]
[222]
Thorn, C.F.; Klein, T.E.; Altman, R.B. PharmGKB: The pharmacogenomics knowledge base. In: Pharmacogenomics: Methods and Protocols; Innocenti, F.; van Schaik, R.H.N., Eds.; Humana Press: Totowa, NJ, 2013; pp. 311-320.
[http://dx.doi.org/10.1007/978-1-62703-435-7_20]
[223]
Pence, H.E.; Williams, A. ChemSpider: An online chemical information resource. J. Chem. Educ., 2010, 87(11), 1123-1124.
[http://dx.doi.org/10.1021/ed100697w]
[224]
Burley, S.K.; Bhikadiya, C.; Bi, C.; Bittrich, S.; Chen, L.; Crichlow, G.V.; Duarte, J.M.; Dutta, S.; Fayazi, M.; Feng, Z.; Flatt, J.W.; Ganesan, S.J.; Goodsell, D.S.; Ghosh, S.; Kramer Green, R.; Guranovic, V.; Henry, J.; Hudson, B.P.; Lawson, C.L.; Liang, Y.; Lowe, R.; Peisach, E.; Persikova, I.; Piehl, D.W.; Rose, Y.; Sali, A.; Segura, J.; Sekharan, M.; Shao, C.; Vallat, B.; Voigt, M.; Westbrook, J.D.; Whetstone, S.; Young, J.Y.; Zardecki, C. RCSB protein data bank: Celebrating 50 years of the PDB with new tools for understanding and visualizing biological macromolecules in 3D. Protein Sci., 2022, 31(1), 187-208.
[http://dx.doi.org/10.1002/pro.4213] [PMID: 34676613]
[225]
Lomize, M.A.; Lomize, A.L.; Pogozheva, I.D.; Mosberg, H.I. OPM: orientations of proteins in membranes database. Bioinformatics, 2006, 22(5), 623-625.
[http://dx.doi.org/10.1093/bioinformatics/btk023] [PMID: 16397007]
[226]
Hodis, E.; Prilusky, J.; Martz, E.; Silman, I.; Moult, J.; Sussman, J.L. Proteopedia - a scientific ‘wiki’ bridging the rift between three-dimensional structure and function of biomacromolecules. Genome Biol., 2008, 9(8), R121.
[http://dx.doi.org/10.1186/gb-2008-9-8-r121] [PMID: 18673581]
[227]
Weekes, D.; Krishna, S.S.; Bakolitsa, C.; Wilson, I.A.; Godzik, A.; Wooley, J. TOPSAN: A collaborative annotation environment for structural genomics. BMC Bioinformatics, 2010, 11(1), 426.
[http://dx.doi.org/10.1186/1471-2105-11-426] [PMID: 20716366]
[228]
Michael, K.; Christian, V.M.; Monica, C. STITCH: Interaction networks of chemicals and proteins. Nucleic Acids Res., 36, D684-D688.
[http://dx.doi.org/10.1093/nar/gkm795]
[229]
Liu, T.; Lin, Y.; Wen, X.; Jorissen, R. N.; Gilson, M. K. Binding DB: A web-accessible database of experimentally determined protein–ligand binding affinities. Nucleic Acids Res., 2007, 35(S1), D198-D201.
[http://dx.doi.org/10.1093/nar/gkl999]
[230]
Kuhn, M.; Letunic, I.; Jensen, L.J.; Bork, P. The SIDER database of drugs and side effects. Nucleic Acids Res., 2016, 44(D1), D1075-D1079.
[http://dx.doi.org/10.1093/nar/gkv1075] [PMID: 26481350]
[231]
Home - ClinicalTrials.gov. Available from: https://clinicaltrials.gov/
[232]
O. of the Commissioner. U.S. Food and Drug Administration; FDA, 2022.
[233]
Kanehisa, M.; Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res., 2000, 28(1), 27-30.
[http://dx.doi.org/10.1093/nar/28.1.27] [PMID: 10592173]
[234]
Jassal, B.; Matthews, L.; Viteri, G.; Gong, C.; Lorente, P.; Fabregat, A.; Sidiropoulos, K.; Cook, J.; Gillespie, M.; Haw, R.; Loney, F.; May, B.; Milacic, M.; Rothfels, K.; Sevilla, C.; Shamovsky, V.; Shorser, S.; Varusai, T.; Weiser, J.; Wu, G.; Stein, L.; Hermjakob, H.; D’Eustachio, P. The reactome pathway knowledgebase. Nucleic Acids Res., 2019, 48(D1), gkz1031.
[http://dx.doi.org/10.1093/nar/gkz1031] [PMID: 31691815]
[235]
Schaefer, C.F. PID: The pathway interaction database. Nucleic Acids Res., 2009, 37(S1), D674-D679.
[http://dx.doi.org/10.1093/nar/gkn653]
[236]
MPMP - Home. Available from: https://mpmp.huji.ac.il/ [Accessed on: March 25, 2022].
[237]
Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; Mesirov, J.P. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci., 2005, 102(43), 15545-15550.
[http://dx.doi.org/10.1073/pnas.0506580102] [PMID: 16199517]
[238]
STRING: functional protein association networks. Available from: https://string-db.org/ [Accessed on: March 25, 2022].
[239]
Keshava, P.T.S. Human protein reference database-2009 update. Nucleic Acids Res., 2009, 37(S1), D767-D772.
[http://dx.doi.org/10.1093/nar/gkn892]
[240]
Home - GEO - NCBI. Available from: https://www.ncbi.nlm.nih.gov/geo/ [Accessed on: March 25, 2022].
[241]
Leinonen, R.; Sugawara, H.; Shumway, M. The Sequence read archive. Nucleic Acids Res., 2011, 39(S1), D19-D21.
[http://dx.doi.org/10.1093/nar/gkq1019]
[242]
Sushko, I.; Novotarskyi, S.; Körner, R.; Pandey, A.K.; Rupp, M.; Teetz, W.; Brandmaier, S.; Abdelaziz, A.; Prokopenko, V.V.; Tanchuk, V.Y.; Todeschini, R.; Varnek, A.; Marcou, G.; Ertl, P.; Potemkin, V.; Grishina, M.; Gasteiger, J.; Schwab, C.; Baskin, I.I.; Palyulin, V.A.; Radchenko, E.V.; Welsh, W.J.; Kholodovych, V.; Chekmarev, D.; Cherkasov, A.; Aires-de-Sousa, J.; Zhang, Q.Y.; Bender, A.; Nigsch, F.; Patiny, L.; Williams, A.; Tkachenko, V.; Tetko, I.V. Online chemical modeling environment (OCHEM): web platform for data storage, model development and publishing of chemical information. J. Comput. Aided Mol. Des., 2011, 25(6), 533-554.
[http://dx.doi.org/10.1007/s10822-011-9440-2] [PMID: 21660515]
[243]
Georgewill, U.O.; Adikwu, E. Repurposing dihydroartemisinin-piperaquine-doxycycline as an antimalarial drug: A study in plasmodium berghei-infected mice. Biol. Med. Natural Prod. Chem., 2021, 10(2), 135-140.
[http://dx.doi.org/10.14421/biomedich.2021.102.135-140]
[244]
Report on antimalarial drug efficacy, resistance and response: 10 years of surveillance (2010-2019); WHO, 2022.
[245]
Chaccour, C.; Barrio, Á.I.; Royo, A.G.G.; Urbistondo, D.M.; Slater, H.; Hammann, F.; Del Pozo, J.L. Screening for an ivermectin slow-release formulation suitable for malaria vector control. Malar. J., 2015, 14(1), 102.
[http://dx.doi.org/10.1186/s12936-015-0618-2] [PMID: 25872986]
[246]
Lell, B.; Kremsner, P.G. Clindamycin as an antimalarial drug: Review of clinical trials. Antimicrob. Agents Chemother., 2002, 46(8), 2315-2320.
[http://dx.doi.org/10.1128/AAC.46.8.2315-2320.2002] [PMID: 12121898]
[247]
Furet, Y.X.; Pechère, J.C. Newly documented antimicrobial activity of quinolones. Eur. J. Clin. Microbiol. Infect. Dis., 1991, 10(4), 249-254.
[http://dx.doi.org/10.1007/BF01966997] [PMID: 1864284]
[248]
Gurney, R.; Thomas, C.M. Mupirocin: Biosynthesis, special features and applications of an antibiotic from a Gram-negative bacterium. Appl. Microbiol. Biotechnol., 2011, 90(1), 11-21.
[http://dx.doi.org/10.1007/s00253-011-3128-3] [PMID: 21336932]
[249]
Hobbs, C.V.; De La Vega, P.; Penzak, S.R.; Van Vliet, J.; Krzych, U.; Sinnis, P.; Borkowsky, W.; Duffy, P.E. The effect of antiretrovirals on Plasmodium falciparum liver stages. AIDS, 2013, 27(10), 1674-1677.
[http://dx.doi.org/10.1097/QAD.0b013e3283621dd4] [PMID: 23907270]
[250]
Redmond, A.M.; Skinner-Adams, T.; Andrews, K.T.; Gardiner, D.L.; Ray, J.; Kelly, M.; McCarthy, J.S. Antimalarial activity of sera from subjects taking HIV protease inhibitors. AIDS, 2007, 21(6), 763-765.
[http://dx.doi.org/10.1097/QAD.0b013e328031f41a] [PMID: 17413699]
[251]
Peatey, C.L.; Andrews, K.T.; Eickel, N.; MacDonald, T.; Butterworth, A.S.; Trenholme, K.R.; Gardiner, D.L.; McCarthy, J.S.; Skinner-Adams, T.S. Antimalarial asexual stage-specific and gametocytocidal activities of HIV protease inhibitors. Antimicrob. Agents Chemother., 2010, 54(3), 1334-1337.
[http://dx.doi.org/10.1128/AAC.01512-09] [PMID: 20028821]
[252]
Hobbs, C.V.; Voza, T.; De La Vega, P.; Vanvliet, J.; Conteh, S.; Penzak, S.R.; Fay, M.P.; Anders, N.; Ilmet, T.; Li, Y.; Borkowsky, W.; Krzych, U.; Duffy, P.E.; Sinnis, P. HIV nonnucleoside reverse transcriptase inhibitors and trimethoprim-sulfamethoxazole inhibit plasmodium liver stages. J. Infect. Dis., 2012, 206(11), 1706-1714.
[http://dx.doi.org/10.1093/infdis/jis602] [PMID: 23125449]
[253]
Mendes, A.M.; Albuquerque, I.S.; Machado, M.; Pissarra, J.; Meireles, P.; Prudêncio, M. Inhibition of plasmodium liver infection by ivermectin. Antimicrob. Agents Chemother., 2017, 61(2), e02005-16.
[http://dx.doi.org/10.1128/AAC.02005-16] [PMID: 27895022]
[254]
Quan, H.; Tang, L-H. In vitro potentiation of chloroquine activity in Plasmodium falciparum by ketotifen and cyproheptadine. Zhongguo Ji Sheng Chong Xue Yu Ji Sheng Chong Bing Za Zhi, 2008, 26(5), 338-342.
[PMID: 19157295]
[255]
Maguire, J.D.; Krisin, H.; Marwoto, H.; Richie, T.L.; Fryauff, D.J.; Baird, J.K. Mefloquine is highly efficacious against chloroquine-resistant Plasmodium vivax malaria and Plasmodium falciparum malaria in Papua, Indonesia. Clin. Infect. Dis., 2006, 42(8), 1067-1072.
[http://dx.doi.org/10.1086/501357] [PMID: 16575721]
[256]
Schlagenhauf, P. Mefloquine for malaria chemoprophylaxis 1992-1998: A review. J. Travel Med., 1999, 6(2), 122-133.
[http://dx.doi.org/10.1111/j.1708-8305.1999.tb00843.x] [PMID: 10381965]
[257]
McKeage, K.; Scott, L.J. Atovaquone/Proguanil. Drugs, 2003, 63(6), 597-623.
[http://dx.doi.org/10.2165/00003495-200363060-00006] [PMID: 12656656]
[258]
Gaillard, T.; Madamet, M.; Pradines, B. Tetracyclines in malaria. Malar. J., 2015, 14(1), 445.
[http://dx.doi.org/10.1186/s12936-015-0980-0] [PMID: 26555664]
[259]
Okada, M.; Guo, P.; Nalder, S.; Sigala, P.A. Doxycycline has distinct apicoplast-specific mechanisms of antimalarial activity. eLife, 2020, 9, e60246.
[http://dx.doi.org/10.7554/eLife.60246] [PMID: 33135634]
[260]
Camarda, G.; Jirawatcharadech, P.; Priestley, R.S.; Saif, A.; March, S.; Wong, M.H.L.; Leung, S.; Miller, A.B.; Baker, D.A.; Alano, P.; Paine, M.J.I.; Bhatia, S.N.; O’Neill, P.M.; Ward, S.A.; Biagini, G.A. Antimalarial activity of primaquine operates via a two-step biochemical relay. Nat. Commun., 2019, 10(1), 3226.
[http://dx.doi.org/10.1038/s41467-019-11239-0] [PMID: 31324806]
[261]
Slater, A.F.G.; Cerami, A. Inhibition by chloroquine of a novel haem polymerase enzyme activity in malaria trophozoites. Nature, 1992, 355(6356), 167-169.
[http://dx.doi.org/10.1038/355167a0] [PMID: 1729651]
[262]
Lacerda, M.V.G.; Llanos-Cuentas, A.; Krudsood, S.; Lon, C.; Saunders, D.L.; Mohammed, R.; Yilma, D.; Batista Pereira, D.; Espino, F.E.J.; Mia, R.Z.; Chuquiyauri, R.; Val, F.; Casapía, M.; Monteiro, W.M.; Brito, M.A.M.; Costa, M.R.F.; Buathong, N.; Noedl, H.; Diro, E.; Getie, S.; Wubie, K.M.; Abdissa, A.; Zeynudin, A.; Abebe, C.; Tada, M.S.; Brand, F.; Beck, H.P.; Angus, B.; Duparc, S.; Kleim, J.P.; Kellam, L.M.; Rousell, V.M.; Jones, S.W.; Hardaker, E.; Mohamed, K.; Clover, D.D.; Fletcher, K.; Breton, J.J.; Ugwuegbulam, C.O.; Green, J.A.; Koh, G.C.K.W. Single-dose tafenoquine to prevent relapse of Plasmodium vivax Malaria. N. Engl. J. Med., 2019, 380(3), 215-228.
[http://dx.doi.org/10.1056/NEJMoa1710775] [PMID: 30650322]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy