Generic placeholder image

Current Molecular Medicine

Editor-in-Chief

ISSN (Print): 1566-5240
ISSN (Online): 1875-5666

Research Article

Novel Insights of ANGPTL-3 on Modulating Cholesterol Efflux Capacity Induced by HDL Particle

Author(s): Min Lai, Xiang Jiang, Bin Wang*, Ye Cheng* and Xin Su

Volume 24, Issue 6, 2024

Published on: 12 July, 2023

Page: [771 - 779] Pages: 9

DOI: 10.2174/1566524023666230418104400

Price: $65

Abstract

Background: Angiopoietin-like protein 3 (ANGPTL-3) modulates lipid metabolism and the risk of coronary artery disease (CAD), especially stable angina (SA), via suppressing lipoprotein lipase (LPL). However, whether there are other mechanisms is not elucidated yet. The current research explored the modulatory roles of ANGPTL-3 on high-density lipoprotein (HDL), which further affects atherosclerotic development.

Methods: A total of 200 individuals were enrolled in the present study. Serum ANGPTL- 3 levels were detected via enzyme-linked immunosorbent assays (ELISA). Cholesterol efflux capacity induced by HDL particles was detected through H3-cholesterol loading THP-1 cell.

Results: The serum ANGPTL-3 levels presented no significant discordance between the SA group and the non-SA group, whereas the serum ANGPTL-3 levels in type 2 diabetes mellitus (T2DM) group were significantly elevated compared with those in the non-T2DM group [428.3 (306.2 to 736.8) ng/ml vs. 298.2 (156.8 to 555.6) ng/ml, p <0.05]. Additionally, the serum ANGPTL-3 levels were elevated in patients with low TG levels compared to those in patients with high TG levels [519.9 (377.6 to 809.0) ng/ml vs. 438.7 (329.2 to 681.0) ng/ml, p <0.05]. By comparison, the individuals in the SA group and T2DM group presented decreased cholesterol efflux induced by HDL particles [SA: (12.21±2.11)% vs. (15.51±2.76)%, p <0.05; T2DM: (11.24±2.13)% vs. (14.65± 3.27)%, p <0.05]. In addition, the serum concentrations of ANGPTL-3 were inversely associated with the cholesterol efflux capacity of HDL particles (r=-0.184, p <0.05). Through regression analysis, the serum concentrations of ANGPTL-3 were found to be an independent modulator of the cholesterol efflux capacity of HDL particles (standardized β=-0.172, p <0.05).

Conclusion: ANGPTL-3 exhibited a negative modulatory function on cholesterol efflux capacity induced by HDL particles.

[1]
Miao J, Zang X, Cui X, Zhang J. Autophagy, hyperlipidemia, and atherosclerosis. Adv Exp Med Biol 2020; 1207: 237-64.
[http://dx.doi.org/10.1007/978-981-15-4272-5_18 ] [PMID: 32671753]
[2]
Boekholdt SM, Arsenault BJ, Hovingh GK, et al. Levels and changes of HDL cholesterol and apolipoprotein A-I in relation to risk of cardiovascular events among statin-treated patients: A meta-analysis. Circulation 2013; 128(14): 1504-12.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.002670 ] [PMID: 23965489]
[3]
Boden WE, Probstfield JL, Anderson T, et al. Niacin in patients with low HDL cholesterol levels receiving intensive statin therapy. N Engl J Med 2011; 365(24): 2255-67.
[http://dx.doi.org/10.1056/NEJMoa1107579 ] [PMID: 22085343]
[4]
Keene D, Price C, Shun-Shin MJ, Francis DP. Effect on cardiovascular risk of high density lipoprotein targeted drug treatments niacin, fibrates, and CETP inhibitors: Meta-analysis of randomised controlled trials including 117 411 patients. BMJ 2014; 349(2): g4379.
[http://dx.doi.org/10.1136/bmj.g4379 ] [PMID: 25038074]
[5]
Ouimet M, Barrett TJ, Fisher EA. HDL and reverse cholesterol transport. Circ Res 2019; 124(10): 1505-18.
[http://dx.doi.org/10.1161/CIRCRESAHA.119.312617 ] [PMID: 31071007]
[6]
Lee JJ, Chi G, Fitzgerald C, et al. Cholesterol efflux capacity and its association with adverse cardiovascular events: A systematic review and meta-analysis. Front Cardiovasc Med 2021; 8: 774418.
[http://dx.doi.org/10.3389/fcvm.2021.774418 ] [PMID: 34966797]
[7]
Rohatgi A, Khera A, Berry JD, et al. HDL cholesterol efflux capacity and incident cardiovascular events. N Engl J Med 2014; 371(25): 2383-93.
[http://dx.doi.org/10.1056/NEJMoa1409065 ] [PMID: 25404125]
[8]
Zhong F, Liu S, Li Y, et al. ANGPTL3 impacts proteinuria and hyperlipidemia in primary nephrotic syndrome. Lipids Health Dis 2022; 21(1): 38.
[http://dx.doi.org/10.1186/s12944-022-01632-y ] [PMID: 35399079]
[9]
Warnick GR, Albers JJ. A comprehensive evaluation of the heparin–manganese precipitation procedure for estimating high density lipoprotein cholesterol. J Lipid Res 1978; 19(1): 65-76.
[http://dx.doi.org/10.1016/S0022-2275(20)41577-9 ] [PMID: 202660]
[10]
Davidson WS, Heink A, Sexmith H, et al. The effects of apolipoprotein B depletion on HDL subspecies composition and function. J Lipid Res 2016; 57(4): 674-86.
[http://dx.doi.org/10.1194/jlr.M066613 ] [PMID: 26908829]
[11]
Triolo M, Annema W, de Boer JF, Tietge UJF, Dullaart RPF. Simvastatin and bezafibrate increase cholesterol efflux in men with type 2 diabetes. Eur J Clin Invest 2014; 44(3): 240-8.
[http://dx.doi.org/10.1111/eci.12226 ] [PMID: 24325778]
[12]
Gómez-Ambrosi J, Pascual-Corrales E, Catalán V, et al. Altered Concentrations in dyslipidemia evidence a role for ANGPTL8/betatrophin in lipid metabolism in humans. J Clin Endocrinol Metab 2016; 101(10): 3803-11.
[http://dx.doi.org/10.1210/jc.2016-2084 ] [PMID: 27472196]
[13]
Saleheen D, Scott R, Javad S, et al. Association of HDL cholesterol efflux capacity with incident coronary heart disease events: A prospective case-control study. Lancet Diabetes Endocrinol 2015; 3(7): 507-13.
[http://dx.doi.org/10.1016/S2213-8587(15)00126-6 ] [PMID: 26025389]
[14]
Shiu SW, Wong Y, Tan KC. Pre-β1 HDL in type 2 diabetes mellitus. Atherosclerosis 2017; 263: 24-8.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.05.031 ] [PMID: 28595104]
[15]
He Y, Ronsein GE, Tang C, et al. Diabetes impairs cellular cholesterol efflux from ABCA1 to small HDL particles. Circ Res 2020; 127(9): 1198-210.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317178 ] [PMID: 32819213]
[16]
Blanco-Rojo R, Perez-Martinez P, Lopez-Moreno J, et al. HDL cholesterol efflux normalised to apoA-I is associated with future development of type 2 diabetes: From the CORDIOPREV trial. Sci Rep 2017; 7(1): 12499.
[http://dx.doi.org/10.1038/s41598-017-12678-9 ] [PMID: 28970513]
[17]
Zheng L, Nukuna B, Brennan ML, et al. Apolipoprotein A-I is a selective target for myeloperoxidase-catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J Clin Invest 2004; 114(4): 529-41.
[http://dx.doi.org/10.1172/JCI200421109 ] [PMID: 15314690]
[18]
Dullaart RPF, Annema W, de Boer JF, Tietge UJF. Pancreatic β-cell function relates positively to HDL functionality in well-controlled Type 2 diabetes mellitus. Atherosclerosis 2012; 222(2): 567-73.
[http://dx.doi.org/10.1016/j.atherosclerosis.2012.03.037 ] [PMID: 22541874]
[19]
Yassine HN, Belopolskaya A, Schall C, Stump CS, Lau SS, Reaven PD. Enhanced cholesterol efflux to HDL through the ABCA1 transporter in hypertriglyceridemia of type 2 diabetes. Metabolism 2014; 63(5): 727-34.
[http://dx.doi.org/10.1016/j.metabol.2014.03.001 ] [PMID: 24636347]
[20]
Adam RC, Mintah IJ, Alexa-Braun CA, et al. Angiopoietin-like protein 3 governs LDL-cholesterol levels through endothelial lipase-dependent VLDL clearance. J Lipid Res 2020; 61(9): 1271-86.
[http://dx.doi.org/10.1194/jlr.RA120000888 ] [PMID: 32646941]
[21]
Geladari E, Tsamadia P, Vallianou NG. ANGPTL3 inhibitors — their role in cardiovascular disease through regulation of lipid metabolism. Circ J 2019; 83(2): 267-73.
[http://dx.doi.org/10.1253/circj.CJ-18-0442 ] [PMID: 30504621]
[22]
Chung HS, Lee MJ, Hwang SY, et al. Circulating angiopoietin-like protein 8 (ANGPTL8) and ANGPTL3 concentrations in relation to anthropometric and metabolic profiles in Korean children: A prospective cohort study. Cardiovasc Diabetol 2016; 15(1): 1.
[http://dx.doi.org/10.1186/s12933-015-0324-y ] [PMID: 26739706]
[23]
Chen YQ, Pottanat TG, Siegel RW, et al. Angiopoietin-like protein 8 differentially regulates ANGPTL3 and ANGPTL4 during postprandial partitioning of fatty acids. J Lipid Res 2020; 61(8): 1203-20.
[http://dx.doi.org/10.1194/jlr.RA120000781 ] [PMID: 32487544]
[24]
Rose G, Crocco P, De Rango F, et al. Metabolism and successful aging: Polymorphic variation of syndecan-4 (SDC4) gene associate with longevity and lipid profile in healthy elderly Italian subjects. Mech Ageing Dev 2015; 150: 27-33.
[http://dx.doi.org/10.1016/j.mad.2015.08.003 ] [PMID: 26254886]
[25]
Shrestha P, van de Sluis B, Dullaart RPF, van den Born J. Novel aspects of PCSK9 and lipoprotein receptors in renal disease-related dyslipidemia. Cell Signal 2019; 55: 53-64.
[http://dx.doi.org/10.1016/j.cellsig.2018.12.001 ] [PMID: 30550765]
[26]
Tikka A, Soronen J, Laurila PP, Metso J, Ehnholm C, Jauhiainen M. Silencing of ANGPTL 3 (angiopoietin-like protein 3) in human hepatocytes results in decreased expression of gluconeogenic genes and reduced triacylglycerol-rich VLDL secretion upon insulin stimulation. Biosci Rep 2014; 34(6): e00160.
[http://dx.doi.org/10.1042/BSR20140115 ] [PMID: 25495645]
[27]
Xu YX, Redon V, Yu H, et al. Role of angiopoietin-like 3 (ANGPTL3) in regulating plasma level of low-density lipoprotein cholesterol. Atherosclerosis 2018; 268: 196-206.
[http://dx.doi.org/10.1016/j.atherosclerosis.2017.08.031 ] [PMID: 29183623]
[28]
Quagliarini F, Wang Y, Kozlitina J, et al. Atypical angiopoietin-like protein that regulates ANGPTL3. Proc Natl Acad Sci USA 2012; 109(48): 19751-6.
[http://dx.doi.org/10.1073/pnas.1217552109 ] [PMID: 23150577]
[29]
Haller JF, Mintah IJ, Shihanian LM, et al. ANGPTL8 requires ANGPTL3 to inhibit lipoprotein lipase and plasma triglyceride clearance. J Lipid Res 2017; 58(6): 1166-73.
[http://dx.doi.org/10.1194/jlr.M075689 ] [PMID: 28413163]
[30]
Zhao D, Yang LY, Wang XH, et al. Different relationship between ANGPTL3 and HDL components in female non-diabetic subjects and type-2 diabetic patients. Cardiovasc Diabetol 2016; 15(1): 132.
[http://dx.doi.org/10.1186/s12933-016-0450-1 ] [PMID: 27620179]
[31]
Cho KI, Sakuma I, Sohn IS, Hayashi T, Shimada K, Koh KK. Best treatment strategies with statins to maximize the cardiometabolic benefits. Circ J 2018; 82(4): 937-43.
[http://dx.doi.org/10.1253/circj.CJ-17-1445 ] [PMID: 29503409]
[32]
Graham MJ, Lee RG, Brandt TA, et al. Cardiovascular and metabolic effects of ANGPTL3 antisense oligonucleotides. N Engl J Med 2017; 377(3): 222-32.
[http://dx.doi.org/10.1056/NEJMoa1701329 ] [PMID: 28538111]
[33]
Chen PY, Gao WY, Liou JW, Lin CY, Wu MJ, Yen JH. Angiopoietin-Like Protein 3 (ANGPTL3) Modulates Lipoprotein Metabolism and Dyslipidemia. Int J Mol Sci 2021; 22(14): 7310.
[http://dx.doi.org/10.3390/ijms22147310 ] [PMID: 34298929]
[34]
Ruscica M, Zimetti F, Adorni MP, Sirtori CR, Lupo MG, Ferri N. Pharmacological aspects of ANGPTL3 and ANGPTL4 inhibitors: New therapeutic approaches for the treatment of atherogenic dyslipidemia. Pharmacol Res 2020; 153: 104653.
[http://dx.doi.org/10.1016/j.phrs.2020.104653 ] [PMID: 31931117]
[35]
Banerjee P, Chan KC, Tarabocchia M, et al. Functional analysis of LDLR (Low-Density Lipoprotein Receptor) variants in patient lymphocytes to assess the effect of evinacumab in homozygous familial hypercholesterolemia patients with a spectrum of LDLR activity. Arterioscler Thromb Vasc Biol 2019; 39(11): 2248-60.
[http://dx.doi.org/10.1161/ATVBAHA.119.313051 ] [PMID: 31578082]
[36]
Reeskamp LF, Nurmohamed NS, Bom MJ, et al. Marked plaque regression in homozygous familial hypercholesterolemia. Atherosclerosis 2021; 327: 13-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2021.04.014 ] [PMID: 34004483]
[37]
Luo M, Zhang Z, Peng Y, Wang S, Peng D. The negative effect of ANGPTL8 on HDL-mediated cholesterol efflux capacity. Cardiovasc Diabetol 2018; 17(1): 142-50.
[http://dx.doi.org/10.1186/s12933-018-0785-x ] [PMID: 30409151]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy