Generic placeholder image

Current Organic Chemistry

Editor-in-Chief

ISSN (Print): 1385-2728
ISSN (Online): 1875-5348

Perspective

Cruzain Inhibitors: State-of-Art of Novel Synthetic Strategies

Author(s): Pedro Alves Bezerra Morais* and Gustavo Henrique Goulart Trossini

Volume 27, Issue 4, 2023

Published on: 22 May, 2023

Page: [243 - 247] Pages: 5

DOI: 10.2174/1385272827666230418100932

Price: $65

Abstract

Concerned about a million people are infected worldwide, and other millions are living at risk zones of infection. Chagas disease causes 10 000 deaths annually, and the discovery of safe and effective drugs on a nanomolar scale has been headlined as a crucial goal by the worldwide research community and international health agencies. Nifurtimox and Benznidazole are the only marketed drugs for Chagas disease therapy, with the mode of action depending on the formation of free radicals. Thus, diverse studies have revealed cysteine proteases from T. cruzi as well-established targets for drug discovery. Validation of cruzain as a promising target has been based on several findings on the molecular biology of T. cruzi. Hence, several inhibitor classes have been elucidated, consisting of peptidic and nonpeptidic, and covalent and noncovalent. Thus, we present a perspective for the synthesis of novel cruzain inhibitors from scaffolds both recently approached and well established with an IC50 range of micromolar to nanomolar and supported by computational techniques.

Next »
Graphical Abstract

[1]
Rocha, D.A.; Silva, E.B.; Fortes, I.S.; Lopes, M.S.; Ferreira, R.S.; Andrade, S.F. Synthesis and structure-activity relationship studies of cruzain and rhodesain inhibitors. Eur. J. Med. Chem., 2018, 157, 1426-1459.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.079] [PMID: 30282318]
[2]
Hotez, P.J.; Bottazzi, M.E.; Franco-Paredes, C.; Ault, S.K.; Periago, M.R. The neglected tropical diseases of Latin America and the Caribbean: A review of disease burden and distribution and a roadmap for control and elimination. PLoS Negl. Trop. Dis., 2008, 2(9), e300.
[http://dx.doi.org/10.1371/journal.pntd.0000300] [PMID: 18820747]
[3]
Lee, B.Y.; Bacon, K.M.; Bottazzi, M.E.; Hotez, P.J. Global economic burden of Chagas disease: A computational simulation model. Lancet Infect. Dis., 2013, 13(4), 342-348.
[http://dx.doi.org/10.1016/S1473-3099(13)70002-1] [PMID: 23395248]
[4]
Cardoso, M.V.O.; Oliveira Filho, G.B.; Siqueira, L.R.P.; Espíndola, J.W.P.; Silva, E.B.; Mendes, A.P.O.; Pereira, V.R.A.; Castro, M.C.A.B.; Ferreira, R.S.; Villela, F.S.; Costa, F.M.R.; Meira, C.S.; Moreira, D.R.M.; Soares, M.B.P.; Leite, A.C.L. 2-(phenylthio)ethylidene derivatives as anti-Trypanosoma cruzi compounds: Structural design, synthesis and antiparasitic activity. Eur. J. Med. Chem., 2019, 180, 191-203.
[http://dx.doi.org/10.1016/j.ejmech.2019.07.018] [PMID: 31306906]
[5]
de Souza, M.L.; de Oliveira Rezende, Junior, C.; Ferreira, R.S.; Espinoza Chávez, R.M.; Ferreira, L.L.G.; Slafer, B.W.; Magalhães, L.G.; Krogh, R.; Oliva, G.; Cruz, F.C.; Dias, L.C.; Andricopulo, A.D. Discovery of potent, reversible, and competitive cruzain inhibitors with trypanocidal activity: a structure-based drug design approach. J. Chem. Inf. Model., 2020, 60(2), 1028-1041.
[http://dx.doi.org/10.1021/acs.jcim.9b00802] [PMID: 31765144]
[6]
Bourguignon, S.C.; Castro, H.C.; Santos, D.O.; Alves, C.R.; Ferreira, V.F.; Gama, I.L.; Silva, F.C.; Seguins, W.S.; Pinho, R.T. Trypanosoma cruzi: In vitro activity of Epoxy-α-Lap, a derivative of α-lapachone, on trypomastigote and amastigote forms. Exp. Parasitol., 2009, 122(2), 91-96.
[http://dx.doi.org/10.1016/j.exppara.2009.03.002] [PMID: 19285074]
[7]
Marciano, D.; Llorente, C.; Maugeri, D.A.; de la Fuente, C.; Opperdoes, F.; Cazzulo, J.J.; Nowicki, C. Biochemical characterization of stage-specific isoforms of aspartate aminotransferases from Trypanosoma cruzi and Trypanosoma brucei. Mol. Biochem. Parasitol., 2008, 161(1), 12-20.
[http://dx.doi.org/10.1016/j.molbiopara.2008.05.005] [PMID: 18602174]
[8]
Duschak, V.G. Major kinds of drug targets in Chagas disease or American Trypanosomiasis. Curr. Drug Targets, 2019, 20(11), 1203-1216.
[http://dx.doi.org/10.2174/1389450120666190423160804] [PMID: 31020939]
[9]
Chen, Y.T.; Lira, R.; Hansell, E.; McKerrow, J.H.; Roush, W.R. Synthesis of macrocyclic trypanosomal cysteine protease inhibitors. Bioorg. Med. Chem. Lett., 2008, 18(22), 5860-5863.
[http://dx.doi.org/10.1016/j.bmcl.2008.06.012] [PMID: 18585034]
[10]
Jasinski, G.; Salas-Sarduy, E.; Vega, D.; Fabian, L.; Martini, M.F.; Moglioni, A.G. Thiosemicarbazone derivatives: Evaluation as cruzipain inhibitors and molecular modeling study of complexes with cruzain. Bioorg. Med. Chem., 2022, 61, 116708.
[http://dx.doi.org/10.1016/j.bmc.2022.116708] [PMID: 35334448]
[11]
González, F.V.; Izquierdo, J. Rodrı´guez, S.; McKerrow, J.H.; Hansell, E. Dipeptidyl-αβ-epoxyesters as potent irreversible inhibitors of the cysteine proteases cruzain and rhodesain. Bioorg. Med. Chem. Lett., 2007, 17(24), 6697-6700.
[http://dx.doi.org/10.1016/j.bmcl.2007.10.056] [PMID: 17977725]
[12]
Ettari, R.; Tamborini, L.; Angelo, I.C.; Grasso, S.; Schirmeister, T.; Lo Presti, L.; De Micheli, C.; Pinto, A.; Conti, P. Development of rhodesain inhibitors with a 3-bromoisoxazoline warhead. ChemMedChem, 2013, 8(12), 2070-2076.
[http://dx.doi.org/10.1002/cmdc.201300390] [PMID: 24243827]
[13]
Braga, S.F.P.; Martins, L.C.; da Silva, E.B.; Sales Júnior, P.A.; Murta, S.M.F.; Romanha, A.J.; Soh, W.T.; Brandstetter, H.; Ferreira, R.S.; de Oliveira, R.B. Synthesis and biological evaluation of potential inhibitors of the cysteine proteases cruzain and rhodesain designed by molecular simplification. Bioorg. Med. Chem., 2017, 25(6), 1889-1900.
[http://dx.doi.org/10.1016/j.bmc.2017.02.009] [PMID: 28215783]
[14]
Ferreira, R.S.; Dessoy, M.A.; Pauli, I.; Souza, M.L.; Krogh, R.; Sales, A.I.L.; Oliva, G.; Dias, L.C.; Andricopulo, A.D. Synthesis, biological evaluation, and structure-activity relationships of potent noncovalent and nonpeptidic cruzain inhibitors as anti-Trypanosoma cruzi agents. J. Med. Chem., 2014, 57(6), 2380-2392.
[http://dx.doi.org/10.1021/jm401709b] [PMID: 24533839]
[15]
Carneiro, P.F.; Pinto, M.C.R.F.; Marra, R.K.F.; da Silva, F.C.; Resende, J.A.L.C.; Rocha e Silva, L.F.; Alves, H.G.; Barbosa, G.S.; de Vasconcellos, M.C.; Lima, E.S.; Pohlit, A.M.; Ferreira, V.F. Synthesis and antimalarial activity of quinones and structurally-related oxirane derivatives. Eur. J. Med. Chem., 2016, 108, 134-140.
[http://dx.doi.org/10.1016/j.ejmech.2015.11.020] [PMID: 26638044]
[16]
Araújo, I.A.C.; de Paula, R.C.; Alves, C.L.; Faria, K.F.; Oliveira, M.M.; Mendes, G.G.; Dias, E.M.F.A.; Ribeiro, R.R.; Oliveira, A.B.; Silva, S.M. Efficacy of lapachol on treatment of cutaneous and visceral leishmaniasis. Exp. Parasitol., 2019, 199, 67-73.
[http://dx.doi.org/10.1016/j.exppara.2019.02.013] [PMID: 30797783]
[17]
Silva, L.R.; Guimarães, A.S.; do Nascimento, J.; do Santos Nascimento, I.J.; da Silva, E.B.; McKerrow, J.H.; Cardoso, S.H.; da Silva-Júnior, E.F. Computer-aided design of 1,4-naphthoquinone-based inhibitors targeting cruzain and rhodesain cysteine proteases. Bioorg. Med. Chem., 2021, 41, 116213.
[http://dx.doi.org/10.1016/j.bmc.2021.116213] [PMID: 33992862]
[18]
Ayati, A.; Emami, S.; Asadipour, A.; Shafiee, A.; Foroumadi, A. Recent applications of 1,3-thiazole core structure in the identification of new lead compounds and drug discovery. Eur. J. Med. Chem., 2015, 97, 699-718.
[http://dx.doi.org/10.1016/j.ejmech.2015.04.015] [PMID: 25934508]
[19]
Álvarez, G.; Varela, J.; Cruces, E.; Fernández, M.; Gabay, M.; Leal, S.M.; Escobar, P.; Sanabria, L.; Serna, E.; Torres, S.; Figueredo Thiel, S.J.; Yaluff, G.; Vera de Bilbao, N.I.; Cerecetto, H.; González, M. Identification of a new amide-containing thiazole as a drug candidate for treatment of Chagas’ disease. Antimicrob. Agents Chemother., 2015, 59(3), 1398-1404.
[http://dx.doi.org/10.1128/AAC.03814-14] [PMID: 25512408]
[20]
Du, X.; Guo, C.; Hansell, E.; Doyle, P.S.; Caffrey, C.R.; Holler, T.P.; McKerrow, J.H.; Cohen, F.E. Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J. Med. Chem., 2002, 45(13), 2695-2707.
[http://dx.doi.org/10.1021/jm010459j] [PMID: 12061873]
[21]
Cazzulo, J.J.; Couso, R.; Raimondi, A.; Wernstedt, C.; Hellman, U. Further characterization and partial amino acid sequence of a cysteine proteinase from Trypanosoma cruzi. Mol. Biochem. Parasitol., 1989, 33(1), 33-41.
[http://dx.doi.org/10.1016/0166-6851(89)90039-X] [PMID: 2651912]
[22]
Chenna, B.C.; Li, L.; Mellott, D.M.; Zhai, X.; Siqueira-Neto, J.L.; Calvet Alvarez, C.; Bernatchez, J.A.; Desormeaux, E.; Alvarez Hernandez, E.; Gomez, J.; McKerrow, J.H.; Cruz-Reyes, J.; Meek, T.D. Peptidomimetic vinyl heterocyclic inhibitors of cruzain effect antitrypanosomal activity. J. Med. Chem., 2020, 63(6), 3298-3316.
[http://dx.doi.org/10.1021/acs.jmedchem.9b02078] [PMID: 32125159]
[23]
Yang, P.Y.; Wang, M.; He, C.Y.; Yao, S.Q. Proteomic profiling and potential cellular target identification of K11777, a clinical cysteine protease inhibitor, in Trypanosoma brucei. Chem. Commun., 2012, 48(6), 835-837.
[http://dx.doi.org/10.1039/C1CC16178D] [PMID: 22124229]
[24]
Miller, B.E.; Mayer, R.J.; Goyal, N.; Bal, J.; Dallow, N.; Boyce, M.; Carpenter, D.; Churchill, A.; Heslop, T.; Lazaar, A.L. Epithelial desquamation observed in a phase I study of an oral cathepsin C inhibitor (GSK2793660). Br. J. Clin. Pharmacol., 2017, 83(12), 2813-2820.
[http://dx.doi.org/10.1111/bcp.13398] [PMID: 28800383]
[25]
Yepes, A.F.; Quintero-Saumeth, J.; Cardona-G, W. Chalcone-quinoline conjugates as potential T. cruzi Cruzipain Inhibitors: Docking studies, molecular dynamics and evaluation of drug-likeness. ChemistrySelect, 2020, 5(23), 7104-7112.
[http://dx.doi.org/10.1002/slct.202000777]
[26]
Kumar, S.; Bawa, S.; Gupta, H. Biological activities of quinoline derivatives. Mini Rev. Med. Chem., 2009, 9(14), 1648-1654.
[http://dx.doi.org/10.2174/138955709791012247] [PMID: 20088783]
[27]
Coa, J.C.; García, E.; Carda, M.; Agut, R.; Vélez, I.D.; Muñoz, J.A.; Yepes, L.M.; Robledo, S.M.; Cardona, W.I. Synthesis, leishmanicidal, trypanocidal and cytotoxic activities of quinoline-chalcone and quinoline-chromone hybrids. Med. Chem. Res., 2017, 26(7), 1405-1414.
[http://dx.doi.org/10.1007/s00044-017-1846-5]
[28]
Andrade, M.M.S.; Martins, L.C.; Marques, G.V.L.; Silva, C.A.; Faria, G.; Caldas, S.; dos Santos, J.S.C.; Leclercq, S.Y.; Maltarollo, V.G.; Ferreira, R.S.; Oliveira, R.B. Synthesis of quinoline derivatives as potential cysteine protease inhibitors. Future Med. Chem., 2020, 12(7), fmc-2019-0201.
[http://dx.doi.org/10.4155/fmc-2019-0201] [PMID: 32116030]
[29]
Fonseca-Berzal, C.; Rojas Ruiz, F.A.; Escario, J.A.; Kouznetsov, V.V.; Gómez-Barrio, A. In vitro phenotypic screening of 7-chloro-4-amino(oxy)quinoline derivatives as putative anti- Trypanosoma cruzi agents. Bioorg. Med. Chem. Lett., 2014, 24(4), 1209-1213.
[http://dx.doi.org/10.1016/j.bmcl.2013.12.071] [PMID: 24461296]
[30]
Rogers, K.E.; Keränen, H.; Durrant, J.D.; Ratnam, J.; Doak, A.; Arkin, M.R.; McCammon, J.A. Novel cruzain inhibitors for the treatment of Chagas’ disease. Chem. Biol. Drug Des., 2012, 80(3), 398-405.
[http://dx.doi.org/10.1111/j.1747-0285.2012.01416.x] [PMID: 22613098]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy