Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Research Article

Evaluation of the Adsorptive Performance of Rambutan-shaped γ-Al2O3 Micro-nanostructure against Wastewater Containing the Azo Dye: Methyl Orange

Author(s): Zheng Ju, Jing Xu, Jingui Zhang, Jing Kong* and Ming Shen*

Volume 20, Issue 3, 2024

Published on: 22 May, 2023

Page: [399 - 408] Pages: 10

DOI: 10.2174/1573413719666230418100828

Price: $65

Abstract

Aim: The aim of this study is to explore and evaluate the possibility of rambutan-shaped micro-nanostructured γ-Al2O3 material’s usage as an adsorbent in industrial wastewater processing.

Background: Every year, more than 7 million tons of dyestuff-containing wastewater are produced in the industry. Although there are many adsorbents like fly ash and clays, the shortages limit their actual applications. It is still necessary to find a new cheaper adsorbent.

Objective: The paper aimed to investigate the adsorption capacity and decolorization ability of rambutan- shaped γ-Al2O3 material synthesized via a composite soft template method.

Methods: The rambutan-shaped γ-Al2O3 material was prepared and characterized via XRD, TEM, FE-SEM, and FT-IR (See our group’s published article in “Ming Shen*, et al., Acta Phys.-Chim. Sin. 2013, 29 (10), 2286-2294”). The methyl orange aqueous solution was selected as the model of industrial wastewater. The methyl orange solution (15.0 mg·L-1) with different pH (2~9) was exposed to a series of amounts of γ-Al2O3 powder ranging from 10.0 to 70.0 mg. Different concentrations of methyl orange solution, ranging from 5.0 to 200.0 mg·L-1 were also tested with the same amount of γ-Al2O3 powder (50.0 mg). The adsorption-calcination cycle analysis was performed with methyl orange solution (50.0 mg·L-1) and 500.0 mg of γ-Al2O3 powder at pH=3.

Results: The γ-Al2O3 material exhibits excellent adsorption capacity (114.10 mg·g-1) towards acidic methyl orange aqueous solution. At the same time, the decolorization rate of the γ-Al2O3 material reaches about 88%. This material still keeps a 50% decolorization rate after 6 repeats of the adsorption- calcination cycle. Moreover, the excellent self-sedimentation ability of this material also provides an easy separation for future industrial applications.

Conclusion: The γ-Al2O3 material with rambutan-like micro-nanostructure presents excellent adsorption capacity/decolorization ability and self-sedimentation ability. It can be used as a new type of adsorbent for wastewater processing. The rambutan-shaped micro-nanostructure plays an important role in maintaining the adsorption ability of the γ-Al2O3 material.

Graphical Abstract

[1]
Silveira, E.; Marques, P.P.; Silva, S.S.; Lima-Filho, J.L.; Porto, A.L.F.; Tambourgi, E.B. Selection of Pseudomonas for industrial textile dyes decolourization. Int. Biodeterior. Biodegradation, 2009, 63(2), 230-235.
[http://dx.doi.org/10.1016/j.ibiod.2008.09.007]
[2]
Ziarani, G.M.; Moradi, R.; Lashgari, N.; Kruger, H.G. Azo Dyes.Metal-Free Synthetic Organic Dyes; Elsevier, 2018, pp. 47-93.
[http://dx.doi.org/10.1016/B978-0-12-815647-6.00004-2]
[3]
Rendic, S.; Guengerich, F.P. Contributions of human enzymes in carcinogen metabolism. Chem. Res. Toxicol., 2012, 25(7), 1316-1383.
[http://dx.doi.org/10.1021/tx300132k] [PMID: 22531028]
[4]
Chung, K.T.; Cerniglia, C.E. Mutagenicity of azo dyes: Structure-activity relationships. Mutat. Res. Rev. Genet. Toxicol., 1992, 277(3), 201-220.
[http://dx.doi.org/10.1016/0165-1110(92)90044-A] [PMID: 1381050]
[5]
Akansha, K.; Chakraborty, D.; Sachan, S.G. Decolorization and degradation of methyl orange by Bacillus stratosphericus SCA1007. Biocatal. Agric. Biotechnol., 2019, 18, 101044.
[http://dx.doi.org/10.1016/j.bcab.2019.101044]
[6]
Wang, Q.Y.; Chen, X.D.; Zhuang, J.T.; Zhou, Y.P.; Huang, Y.; Liu, Z.L. Adsorption removal of methyl orange from aqueous solution by mesoporous Al2O3. Adv. Mat. Res., 2012, 554-556(7), 498-501.
[http://dx.doi.org/10.4028/www.scientific.net/AMR.554-556.498]
[7]
Wu, C-H.; Zheng, G-Y.; Wang, J-L.; Mo, S-Y.; Zou, Z-G.; Long, F. Preparation and adsorption properties for methyl orange of highly dispersed boehmite and alumina nanostructures. Wuji Huaxue Xuebao, 2019, 35(3), 449-458.
[http://dx.doi.org/10.11862/CJIC.2019.061]
[8]
Xiao, J.; Ji, H.; Shen, Z.; Yang, W.; Guo, C.; Wang, S.; Zhang, X.; Fu, R.; Ling, F. Self-assembly of flower-like γ-AlOOH and γ-Al 2 O 3 with hierarchical nanoarchitectures and enhanced adsorption performance towards methyl orange. RSC Advances, 2014, 4(66), 35077-35083.
[http://dx.doi.org/10.1039/C4RA05343E]
[9]
Cyril, N.; George, J.B.; Joseph, L.; Sylas, V.P. Catalytic degradation of methyl orange and selective sensing of mercury ion in aqueous solutions using green synthesized silver nanoparticles from the seeds of Derris trifoliata. J. Cluster Sci., 2019, 30(2), 459-468.
[http://dx.doi.org/10.1007/s10876-019-01508-9]
[10]
Al-Degs, Y. Effect of carbon surface chemistry on the removal of reactive dyes from textile effluent. Water Res., 2000, 34(3), 927-935.
[http://dx.doi.org/10.1016/S0043-1354(99)00200-6]
[11]
Katheresan, V.; Kansedo, J.; Lau, S.Y. Efficiency of various recent wastewater dye removal methods: A review. J. Environ. Chem. Eng., 2018, 6(4), 4676-4697.
[http://dx.doi.org/10.1016/j.jece.2018.06.060]
[12]
Ledakowicz, S. Paździor, K. Recent achievements in dyes removal focused on advanced oxidation processes integrated with biological methods. Molecules, 2021, 26(4), 870-915.
[http://dx.doi.org/10.3390/molecules26040870] [PMID: 33562176]
[13]
Yan, Z.; Jiang, Y.; Liu, L.; Li, Z.; Chen, X.; Xia, M.; Fan, G.; Ding, A. Membrane distillation for wastewater treatment: A mini review. Water, 2021, 13(24), 3480-3508.
[http://dx.doi.org/10.3390/w13243480]
[14]
Piaskowski, K. Świderska-Dąbrowska, R.; Zarzycki, P.K. Dye removal from water and wastewater using various physical, chemical, and biological processes. J. AOAC Int., 2018, 101(5), 1371-1384.
[http://dx.doi.org/10.5740/jaoacint.18-0051] [PMID: 29669626]
[15]
Lu, X.; Liu, R. Treatment of azo dye-containing wastewater using integrated processes.Biodegradation of Azo Dyes; Erkurt, H.A., Ed.; Springer: Berlin, 2010, Vol. 9, pp. 133-155.
[http://dx.doi.org/10.1007/698_2009_47]
[16]
Hua, W.S.; Xu, H.J.; Xie, W.H. Review on adsorption materials and system configurations of the adsorption desalination applications. Appl. Therm. Eng., 2022, 204(3), 117958.
[http://dx.doi.org/10.1016/j.applthermaleng.2021.117958]
[17]
Zhou, Y.; Lu, J.; Zhou, Y.; Liu, Y. Recent advances for dyes removal using novel adsorbents: A review. Environ. Pollut., 2019, 252(Pt. A), 352-365.
[http://dx.doi.org/10.1016/j.envpol.2019.05.072] [PMID: 31158664]
[18]
Errais, E.; Duplay, J.; Elhabiri, M.; Khodja, M.; Ocampo, R.; Baltenweck-Guyot, R.; Darragi, F. Anionic RR120 dye adsorption onto raw clay: Surface properties and adsorption mechanism. Colloids Surf. A Physicochem. Eng. Asp., 2012, 403(6), 69-78.
[http://dx.doi.org/10.1016/j.colsurfa.2012.03.057]
[19]
Crini, G.; Peindy, H. Adsorption of C.I. Basic Blue 9 on cyclodextrin-based material containing carboxylic groups. Dyes Pigments, 2006, 70(3), 204-211.
[http://dx.doi.org/10.1016/j.dyepig.2005.05.004]
[20]
Netpradit, S.; Thiravetyan, P.; Towprayoon, S. Application of ‘waste’ metal hydroxide sludge for adsorption of azo reactive dyes. Water Res., 2003, 37(4), 763-772.
[http://dx.doi.org/10.1016/S0043-1354(02)00375-5] [PMID: 12531258]
[21]
Janoš, P.; Buchtová, H.; Rýznarová, M. Sorption of dyes from aqueous solutions onto fly ash. Water Res., 2003, 37(20), 4938-4944.
[http://dx.doi.org/10.1016/j.watres.2003.08.011] [PMID: 14604640]
[22]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[23]
Modi, S.; Yadav, V.K.; Gacem, A.; Ali, I.H.; Dave, D.; Khan, S.H.; Yadav, K.K.; Rather, S.; Ahn, Y.; Son, C.T.; Jeon, B.H. Recent and emerging trends in remediation of methylene blue dye from wastewater by using zinc oxide nanoparticles. Water, 2022, 14(11), 1749-1775.
[http://dx.doi.org/10.3390/w14111749]
[24]
Chavali, M.S.; Nikolova, M.P. Metal oxide nanoparticles and their applications in nanotechnology. SN Appl. Sci., 2019, 1(6), 607-637.
[http://dx.doi.org/10.1007/s42452-019-0592-3]
[25]
Guo, L.; Wang, H.; Wang, Y.; Liu, F.; Feng, L. Organic polymer nanoparticles with primary ammonium salt as potent antibacterial nanomaterials. ACS Appl. Mater. Interfaces, 2020, 12(19), 21254-21262.
[http://dx.doi.org/10.1021/acsami.9b19921] [PMID: 31909588]
[26]
Ghodke, S.A.; Sonawane, S.H.; Bhanvase, B.A.; Potoroko, I. Advanced engineered nanomaterials for the treatment of wastewater.Handbook of Nanomaterials for Industrial Applications; Elsevier, 2018, pp. 959-970.
[http://dx.doi.org/10.1016/B978-0-12-813351-4.00055-9]
[27]
Sadegh, H.; Ali, G.A.M.; Gupta, V.K.; Makhlouf, A.S.H.; Shahryari-ghoshekandi, R.; Nadagouda, M.N.; Sillanpää, M.; Megiel, E. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostruct. Chem., 2017, 7(1), 1-14.
[http://dx.doi.org/10.1007/s40097-017-0219-4]
[28]
Singh, S.; Kumar, V.; Romero, R.; Sharma, K.; Singh, J. Applications of nanoparticles in wastewater treatment.Nanotechnology in the Life Sciences; Springer Science and Business Media B.V., 2019, pp. 395-418.
[http://dx.doi.org/10.1007/978-3-030-17061-5_17]
[29]
Gupta, A.K.; Gupta, M. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials, 2005, 26(18), 3995-4021.
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012] [PMID: 15626447]
[30]
Aphesteguy, J.C.; Jacobo, S.E.; Schegoleva, N.N.; Kurlyandskaya, G.V. Characterization of nanosized spinel ferrite powders synthesized by coprecipitation and autocombustion method. J. Alloys Compd., 2010, 495(2), 509-512.
[http://dx.doi.org/10.1016/j.jallcom.2009.10.037]
[31]
Blyakhman, F.A.; Safronov, A.P.; Makarova, E.B.; Fadeyev, F.A.; Shklyar, T.F.; Shabadrov, P.A.; Armas, S.F.; Kurlyandskaya, G.V. Magnetic properties of iron oxide nanoparticles do not essentially contribute to ferrogel biocompatibility. Nanomaterials, 2021, 11(4), 1041.
[http://dx.doi.org/10.3390/nano11041041] [PMID: 33921648]
[32]
Aphesteguy, J.; Jacobo, S.; Lezama, L.; Kurlyandskaya, G.; Schegoleva, N. Microwave resonant and zero-field absorption study of doped magnetite prepared by a co-precipitation method. Molecules, 2014, 19(6), 8387-8401.
[http://dx.doi.org/10.3390/molecules19068387] [PMID: 24950442]
[33]
Liu, P.; Feng, J.; Zhang, X.; Lin, Y.; Evans, D.G.; Li, D. Preparation of high purity spherical γ-alumina using a reduction-magnetic separation process. J. Phys. Chem. Solids, 2008, 69(4), 799-804.
[http://dx.doi.org/10.1016/j.jpcs.2007.09.005]
[34]
Kim, H.J.; Kim, T.G.; Kim, J.J.; Park, S.S.; Hong, S.S.; Lee, G.D. Influences of precursor and additive on the morphology of nanocrystalline α-alumina. J. Phys. Chem. Solids, 2008, 69(5-6), 1521-1524.
[http://dx.doi.org/10.1016/j.jpcs.2007.10.024] [PMID: 20622979]
[35]
Sridhara, V.; Satapathy, L.N. Al2O3-based nanofluids: A review. Nanoscale Res. Lett., 2011, 6(1), 456-472.
[http://dx.doi.org/10.1186/1556-276X-6-456] [PMID: 21762528]
[36]
Din, S.H.; Shah, M.A.; Sheikh, N.A.; Butt, M.M. Nano-composites and their applications. Rev. Can., 2020, 3(1), 40-48.
[http://dx.doi.org/10.24294/can.v3il.875]
[37]
Mallakpour, S.; Sirous, F.; Hussain, C.M. Green synthesis of nano-Al2O3, recent functionalization, and fabrication of synthetic or natural polymer nanocomposites: Various technological applications. New J. Chem., 2021, 45(11), 4885-4920.
[http://dx.doi.org/10.1039/D0NJ05578F]
[38]
Yu, J.; Wang, J.; Li, Z.; Li, L.; Liu, Q.; Zhang, M.; Liu, L. Assembly of γ-alumina nanorods via supercritical technology. Cryst. Growth Des., 2012, 12(6), 2872-2876.
[http://dx.doi.org/10.1021/cg300063p]
[39]
Selim, M.S.; Mo, P.J.; Zhang, Y.P.; Hao, Z.; Wen, H. Controlled-surfactant-directed solvothermal synthesis of γ-Al2O3 nanorods through a boehmite precursor route. Ceram. Int., 2020, 46(7), 9289-9296.
[http://dx.doi.org/10.1016/j.ceramint.2019.12.183]
[40]
Wang, X.; Zhan, C.; Kong, B.; Zhu, X.; Liu, J.; Xu, W.; Cai, W.; Wang, H. Self-curled coral-like γ-Al2O3 nanoplates for use as an adsorbent. J. Colloid Interface Sci., 2015, 453(9), 244-251.
[http://dx.doi.org/10.1016/j.jcis.2015.03.065] [PMID: 25989055]
[41]
Wang, T.; Liu, S. Green synthesis and photoluminescence property of AlOOH nanoflakes. Powder Technol., 2016, 294(6), 280-283.
[http://dx.doi.org/10.1016/j.powtec.2016.02.046]
[42]
Valcárcel, V.; Pérez, A.; Cyrklaff, M.; Guitián, F. Novel ribbon-shaped α-Al2O3 fibers. Adv. Mater., 1998, 10(16), 1370-1373.
[http://dx.doi.org/10.1002/(SICI)1521-4095(199811)10:16<1370:AID-ADMA1370>3.0.CO;2-A]
[43]
Zhu, H.Y. Riches, J.D.; Barry, J.C. γ-Alumina nanofibers prepared from aluminum hydrate with poly(ethylene oxide) Surfactant. Chem. Mater., 2002, 14(5), 2086-2093.
[http://dx.doi.org/10.1021/cm010736a]
[44]
Qu, L.; He, C.; Yang, Y.; He, Y.; Liu, Z. Hydrothermal synthesis of alumina nanotubes templated by anionic surfactant. Mater. Lett., 2005, 59(29-30), 4034-4037.
[http://dx.doi.org/10.1016/j.matlet.2005.07.059]
[45]
Hou, H.; Xie, Y.; Yang, Q.; Guo, Q.; Tan, C. Preparation and characterization of γ-AlOOH nanotubes and nanorods. Nanotechnology, 2005, 16(6), 741-745.
[http://dx.doi.org/10.1088/0957-4484/16/6/019]
[46]
Al-Salihi, S.; Jasim, A.M.; Fidalgo, M.M.; Xing, Y. Removal of Congo red dyes from aqueous solutions by porous γ-alumina nanoshells. Chemosphere, 2022, 286(Pt. 2), 131769-131778.
[http://dx.doi.org/10.1016/j.chemosphere.2021.131769] [PMID: 34365171]
[47]
Tian, J.; Tian, P.; Pang, H.; Ning, G.; Bogale, R.F.; Cheng, H.; Shen, S. Fabrication synthesis of porous Al2O3 hollow microspheres and its superior adsorption performance for organic dye. Microporous Mesoporous Mater., 2016, 223(3), 27-34.
[http://dx.doi.org/10.1016/j.micromeso.2015.09.055]
[48]
Ma, M.; Liu, H.; Cao, J.; Hou, P.; Huang, J.; Xu, X.; Yue, H.; Tian, G.; Feng, S. A highly efficient Cu/AlOOH catalyst obtained by in situ reduction: Catalytic transfer hydrogenation of ML into γ-GVL. Molecular Catalysis, 2019, 467(4), 52-60.
[http://dx.doi.org/10.1016/j.mcat.2019.01.033]
[49]
Liu, Z.; Niu, J.; Long, W.; Cui, B.; Song, K.; Dong, F.; Xu, D. Highly efficient MnO2/AlOOH composite catalyst for indoor low-concentration formaldehyde removal at room temperature. Inorg. Chem., 2020, 59(10), 7335-7343.
[http://dx.doi.org/10.1021/acs.inorgchem.0c00852] [PMID: 32356983]
[50]
Li, J.; Yan, R.; Xiao, B.; Liang, D.T.; Du, L. Development of nano-niO/Al2O3 catalyst to be used for tar removal in biomass gasification. Environ. Sci. Technol., 2008, 42(16), 6224-6229.
[http://dx.doi.org/10.1021/es800138r] [PMID: 18767691]
[51]
Mahdavi, M.; Abedini, E.; Darabi, A. Biodiesel synthesis from oleic acid by nano-catalyst (ZrO2/Al2O3) under high voltage conditions. RSC Adv, 2015, 5(68), 55027-55032.
[http://dx.doi.org/10.1039/C5RA07081C]
[52]
Bamoniri, A.; Fatemeh Mirjalili, B.B.; Saleh, S. Nano-γ-Al2O3/SbCl5: An efficient catalyst for the synthesis of 2,3-dihydroperimidines. RSC Advances, 2018, 8(11), 6178-6182.
[http://dx.doi.org/10.1039/C7RA13593A] [PMID: 35539619]
[53]
Jing, X.U.; Jin-Feng, Q.I.A.N.G.; Rui-Juan, W.A.N.G.; Wen-Jun, N.I.U.; Ming, S.H.E.N. Controllable preparation of rambutan-shape AlOOH/Al2O3 nanomaterials with a composite soft template. Wuli Huaxue Xuebao, 2013, 29(10), 2286-2294.
[http://dx.doi.org/10.3866/PKU.WHXB201307151]
[54]
Abebe, B.; Murthy, H.C.A.; Amare, E. Summary on adsorption and photocatalysis for pollutant remediation: Mini review. J. encapsulation adsorp., 2018, 8(4), 225-255.
[http://dx.doi.org/10.4236/jeas.2018.84012]
[55]
Loskyll, S.; Ulrich, S.; Sterk, V.; Rathgeber, S. Investigation of the sedimentation behaviour of micron-sized particles in aqueous suspension for high velocity suspension flame spraying. Surf. Coat. Tech., 2020, 404, 126453.
[http://dx.doi.org/10.1016/j.surfcoat.2020.126453]
[56]
Pires, M.J.R.G.R.; Ferra, M.I.A.; Marques, A.M.M. Ionization of methyl orange in aqueous sodium chloride solutions. J. Chem. Thermodyn., 2012, 53(10), 93-99.
[http://dx.doi.org/10.1016/j.jct.2012.04.023]
[57]
Darwish, A.A.A.; Rashad, M. AL-Aoh, H.A. Methyl orange adsorption comparison on nanoparticles: Isotherm, kinetics, and thermodynamic studies. Dyes Pigments, 2019, 160, 563-571.
[http://dx.doi.org/10.1016/j.dyepig.2018.08.045]
[58]
Wang, T.; Sun, Y.; Wang, S.; Li, X.; Yue, Y.; Gao, Q. Effective adsorption of methyl orange on organo-silica nanoparticles functionalized by a multi-hydroxyl-containing gemini surfactant: A joint experimental and theoretical study. ACS Omega, 2021, 6(28), 18014-18023.
[http://dx.doi.org/10.1021/acsomega.1c01788] [PMID: 34308036]
[59]
Tajizadegan, H.; Torabi, O.; Heidary, A.; Golabgir, M.H.; Jamshidi, A. Study of methyl orange adsorption properties on ZnO-Al2O3 nanocomposite adsorbent particles. Desalination Water Treat., 2016, 57(26), 12324-12334.
[http://dx.doi.org/10.1080/19443994.2015.1049558]
[60]
Chen, B.; Chen, S.; Zhao, H.; Liu, Y.; Long, F.; Pan, X. A versatile β-cyclodextrin and polyethyleneimine bi-functionalized magnetic nanoadsorbent for simultaneous capture of methyl orange and Pb(II) from complex wastewater. Chemosphere, 2019, 216, 605-616.
[http://dx.doi.org/10.1016/j.chemosphere.2018.10.157] [PMID: 30390591]
[61]
Bhowmik, M.; Debnath, A.; Saha, B. Fabrication of mixed phase calcium ferrite and zirconia nanocomposite for abatement of methyl orange dye from aqua matrix: Optimization of process parameters. Appl. Organomet. Chem., 2018, 32(12), e4607.
[http://dx.doi.org/10.1002/aoc.4607]
[62]
Yang, Q.; Ren, S.; Zhao, Q.; Lu, R.; Hang, C.; Chen, Z.; Zheng, H. Selective separation of methyl orange from water using magnetic ZIF-67 composites. Chem. Eng. J., 2018, 333, 49-57.
[http://dx.doi.org/10.1016/j.cej.2017.09.099]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy