Abstract
Aim: The aim of this study is to explore and evaluate the possibility of rambutan-shaped micro-nanostructured γ-Al2O3 material’s usage as an adsorbent in industrial wastewater processing.
Background: Every year, more than 7 million tons of dyestuff-containing wastewater are produced in the industry. Although there are many adsorbents like fly ash and clays, the shortages limit their actual applications. It is still necessary to find a new cheaper adsorbent.
Objective: The paper aimed to investigate the adsorption capacity and decolorization ability of rambutan- shaped γ-Al2O3 material synthesized via a composite soft template method.
Methods: The rambutan-shaped γ-Al2O3 material was prepared and characterized via XRD, TEM, FE-SEM, and FT-IR (See our group’s published article in “Ming Shen*, et al., Acta Phys.-Chim. Sin. 2013, 29 (10), 2286-2294”). The methyl orange aqueous solution was selected as the model of industrial wastewater. The methyl orange solution (15.0 mg·L-1) with different pH (2~9) was exposed to a series of amounts of γ-Al2O3 powder ranging from 10.0 to 70.0 mg. Different concentrations of methyl orange solution, ranging from 5.0 to 200.0 mg·L-1 were also tested with the same amount of γ-Al2O3 powder (50.0 mg). The adsorption-calcination cycle analysis was performed with methyl orange solution (50.0 mg·L-1) and 500.0 mg of γ-Al2O3 powder at pH=3.
Results: The γ-Al2O3 material exhibits excellent adsorption capacity (114.10 mg·g-1) towards acidic methyl orange aqueous solution. At the same time, the decolorization rate of the γ-Al2O3 material reaches about 88%. This material still keeps a 50% decolorization rate after 6 repeats of the adsorption- calcination cycle. Moreover, the excellent self-sedimentation ability of this material also provides an easy separation for future industrial applications.
Conclusion: The γ-Al2O3 material with rambutan-like micro-nanostructure presents excellent adsorption capacity/decolorization ability and self-sedimentation ability. It can be used as a new type of adsorbent for wastewater processing. The rambutan-shaped micro-nanostructure plays an important role in maintaining the adsorption ability of the γ-Al2O3 material.
Graphical Abstract
[http://dx.doi.org/10.1016/j.ibiod.2008.09.007]
[http://dx.doi.org/10.1016/B978-0-12-815647-6.00004-2]
[http://dx.doi.org/10.1021/tx300132k] [PMID: 22531028]
[http://dx.doi.org/10.1016/0165-1110(92)90044-A] [PMID: 1381050]
[http://dx.doi.org/10.1016/j.bcab.2019.101044]
[http://dx.doi.org/10.4028/www.scientific.net/AMR.554-556.498]
[http://dx.doi.org/10.11862/CJIC.2019.061]
[http://dx.doi.org/10.1039/C4RA05343E]
[http://dx.doi.org/10.1007/s10876-019-01508-9]
[http://dx.doi.org/10.1016/S0043-1354(99)00200-6]
[http://dx.doi.org/10.1016/j.jece.2018.06.060]
[http://dx.doi.org/10.3390/molecules26040870] [PMID: 33562176]
[http://dx.doi.org/10.3390/w13243480]
[http://dx.doi.org/10.5740/jaoacint.18-0051] [PMID: 29669626]
[http://dx.doi.org/10.1007/698_2009_47]
[http://dx.doi.org/10.1016/j.applthermaleng.2021.117958]
[http://dx.doi.org/10.1016/j.envpol.2019.05.072] [PMID: 31158664]
[http://dx.doi.org/10.1016/j.colsurfa.2012.03.057]
[http://dx.doi.org/10.1016/j.dyepig.2005.05.004]
[http://dx.doi.org/10.1016/S0043-1354(02)00375-5] [PMID: 12531258]
[http://dx.doi.org/10.1016/j.watres.2003.08.011] [PMID: 14604640]
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[http://dx.doi.org/10.3390/w14111749]
[http://dx.doi.org/10.1007/s42452-019-0592-3]
[http://dx.doi.org/10.1021/acsami.9b19921] [PMID: 31909588]
[http://dx.doi.org/10.1016/B978-0-12-813351-4.00055-9]
[http://dx.doi.org/10.1007/s40097-017-0219-4]
[http://dx.doi.org/10.1007/978-3-030-17061-5_17]
[http://dx.doi.org/10.1016/j.biomaterials.2004.10.012] [PMID: 15626447]
[http://dx.doi.org/10.1016/j.jallcom.2009.10.037]
[http://dx.doi.org/10.3390/nano11041041] [PMID: 33921648]
[http://dx.doi.org/10.3390/molecules19068387] [PMID: 24950442]
[http://dx.doi.org/10.1016/j.jpcs.2007.09.005]
[http://dx.doi.org/10.1016/j.jpcs.2007.10.024] [PMID: 20622979]
[http://dx.doi.org/10.1186/1556-276X-6-456] [PMID: 21762528]
[http://dx.doi.org/10.24294/can.v3il.875]
[http://dx.doi.org/10.1039/D0NJ05578F]
[http://dx.doi.org/10.1021/cg300063p]
[http://dx.doi.org/10.1016/j.ceramint.2019.12.183]
[http://dx.doi.org/10.1016/j.jcis.2015.03.065] [PMID: 25989055]
[http://dx.doi.org/10.1016/j.powtec.2016.02.046]
[http://dx.doi.org/10.1002/(SICI)1521-4095(199811)10:16<1370:AID-ADMA1370>3.0.CO;2-A]
[http://dx.doi.org/10.1021/cm010736a]
[http://dx.doi.org/10.1016/j.matlet.2005.07.059]
[http://dx.doi.org/10.1088/0957-4484/16/6/019]
[http://dx.doi.org/10.1016/j.chemosphere.2021.131769] [PMID: 34365171]
[http://dx.doi.org/10.1016/j.micromeso.2015.09.055]
[http://dx.doi.org/10.1016/j.mcat.2019.01.033]
[http://dx.doi.org/10.1021/acs.inorgchem.0c00852] [PMID: 32356983]
[http://dx.doi.org/10.1021/es800138r] [PMID: 18767691]
[http://dx.doi.org/10.1039/C5RA07081C]
[http://dx.doi.org/10.1039/C7RA13593A] [PMID: 35539619]
[http://dx.doi.org/10.3866/PKU.WHXB201307151]
[http://dx.doi.org/10.4236/jeas.2018.84012]
[http://dx.doi.org/10.1016/j.surfcoat.2020.126453]
[http://dx.doi.org/10.1016/j.jct.2012.04.023]
[http://dx.doi.org/10.1016/j.dyepig.2018.08.045]
[http://dx.doi.org/10.1021/acsomega.1c01788] [PMID: 34308036]
[http://dx.doi.org/10.1080/19443994.2015.1049558]
[http://dx.doi.org/10.1016/j.chemosphere.2018.10.157] [PMID: 30390591]
[http://dx.doi.org/10.1002/aoc.4607]
[http://dx.doi.org/10.1016/j.cej.2017.09.099]