Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Pharmacokinetic Drug-Drug Interactions Involving Antiretroviral Agents: An Update

Author(s): Xin Yu, Lifeng Zhao, Zheng Yuan* and Yingfei Li*

Volume 24, Issue 7, 2023

Published on: 18 May, 2023

Page: [493 - 524] Pages: 32

DOI: 10.2174/1389200224666230418093139

Price: $65

Abstract

Antiretroviral therapy is the recognized treatment for human immunodeficiency virus (HIV) infection involving several antiviral agents. Even though highly active antiretroviral therapy has been proven to be very effective in suppressing HIV replication, the antiretroviral drugs, belonging to different pharmacological classes, present quite complex pharmacokinetic properties such as extensive drug metabolism and transport by membrane-associated drug carriers. Moreover, due to uncomplications or complications in HIV-infected populations, an antiretroviralbased multiple-drug coadministration therapy strategy is usually applied for treatment effect, thus raising the possibility of drug-drug interactions between antiretroviral drugs and common drugs such as opioids, stains, and hormonal contraceptives. Herein, thirteen classical antiretroviral drugs approved by US Food and Drug Administration were summarized. Besides, relative drug metabolism enzymes and transporters known to interact with those antiretroviral drugs were detailed and described. Furthermore, one after the summarized antiretroviral drugs, the drug-drug interactions between two antiretroviral drugs or antiretroviral drug - conventional medical drugs of the past decade were discussed and summarized. This review is intended to deepen the pharmacological understanding of antiretroviral drugs and promote more secure clinical applications for antiretroviral drugs to treat HIV.

Graphical Abstract

[1]
Cunha, B.M.; Mota, L.M.H.; Pileggi, G.S.; Safe, I.P.; Lacerda, M.V.G. HIV/AIDS and Rheumatoid arthritis. Autoimmun. Rev., 2015, 14(5), 396-400.
[http://dx.doi.org/10.1016/j.autrev.2015.01.001] [PMID: 25578483]
[2]
Hernández-Ramírez, R.U.; Shiels, M.S.; Dubrow, R.; Engels, E.A. Cancer risk in HIV-infected people in the USA from 1996 to 2012: A population-based, registry-linkage study. Lancet HIV, 2017, 4(11), e495-e504.
[http://dx.doi.org/10.1016/S2352-3018(17)30125-X] [PMID: 28803888]
[3]
Limper, A.H.; Adenis, A.; Le, T.; Harrison, T.S. Fungal infections in HIV/AIDS. Lancet Infect. Dis., 2017, 17(11), e334-e343.
[http://dx.doi.org/10.1016/S1473-3099(17)30303-1] [PMID: 28774701]
[4]
Dybul, M.; Attoye, T.; Baptiste, S.; Cherutich, P.; Dabis, F.; Deeks, S.G.; Dieffenbach, C.; Doehle, B.; Goodenow, M.M.; Jiang, A.; Kemps, D.; Lewin, S.R.; Lumpkin, M.M.; Mathae, L.; McCune, J.M.; Ndung’u, T.; Nsubuga, M.; Peay, H.L.; Pottage, J.; Warren, M.; Sikazwe, I. The case for an HIV cure and how to get there. Lancet HIV, 2021, 8(1), e51-e58.
[http://dx.doi.org/10.1016/S2352-3018(20)30232-0] [PMID: 33271124]
[5]
Barbier, F.; Mer, M.; Szychowiak, P.; Miller, R.F.; Mariotte, É.; Galicier, L.; Bouadma, L.; Tattevin, P.; Azoulay, É. Management of HIV-infected patients in the intensive care unit. Intensive Care Med., 2020, 46(2), 329-342.
[http://dx.doi.org/10.1007/s00134-020-05945-3] [PMID: 32016535]
[6]
Luo, Y.; Chen, W.; Yang, G.; Zou, C.; Huang, J.; Kuang, Y.; Shen, K.; Zhang, B.; Yang, S.; Xiang, H.; Li, Z.; Pei, Q. Study on pharmacokinetic interactions between hs-10234 and emtricitabine in healthy subjects: An open-label, two-sequence, self-controlled phase I trial. Infect. Dis. Ther., 2022, 11(1), 175-186.
[http://dx.doi.org/10.1007/s40121-021-00555-y] [PMID: 34727366]
[7]
Sheykhhasan, M.; Foroutan, A.; Manoochehri, H.; Khoei, S.G.; Poondla, N.; Saidijam, M. Could gene therapy cure HIV? Life Sci., 2021, 277, 119451.
[http://dx.doi.org/10.1016/j.lfs.2021.119451] [PMID: 33811896]
[8]
Cheney, L.; Barbaro, J.M.; Berman, J.W. Antiretroviral drugs impact autophagy with toxic outcomes. Cells, 2021, 10(4), 909.
[http://dx.doi.org/10.3390/cells10040909] [PMID: 33920955]
[9]
Deeks, E.D. Bictegravir/Emtricitabine/Tenofovir Alafenamide: A Review in HIV-1 Infection. Drugs, 2018, 78(17), 1817-1828.
[http://dx.doi.org/10.1007/s40265-018-1010-7] [PMID: 30460547]
[10]
Nanda, K.; Stuart, G.S.; Robinson, J.; Gray, A.L.; Tepper, N.K.; Gaffield, M.E. Drug interactions between hormonal contraceptives and antiretrovirals. AIDS, 2017, 31(7), 917-952.
[http://dx.doi.org/10.1097/QAD.0000000000001392] [PMID: 28060009]
[11]
Yu, Z.J.; Mosher, E.P.; Bumpus, N.N. Pharmacogenomics of antiretroviral drug metabolism and transport. Annu. Rev. Pharmacol. Toxicol., 2021, 61(1), 565-585.
[http://dx.doi.org/10.1146/annurev-pharmtox-021320-111248] [PMID: 32960701]
[12]
Meintjes, G.; Brust, J.C.M.; Nuttall, J.; Maartens, G. Management of active tuberculosis in adults with HIV. Lancet HIV, 2019, 6(7), e463-e474.
[http://dx.doi.org/10.1016/S2352-3018(19)30154-7] [PMID: 31272663]
[13]
Stader, F.; Kinvig, H.; Battegay, M.; Khoo, S.; Owen, A.; Siccardi, M.; Marzolini, C. Analysis of clinical drug-drug interaction data to predict magnitudes of uncharacterized interactions between antiretroviral drugs and comedications. Antimicrob. Agents Chemother., 2018, 62(7), e00717-e00718.
[http://dx.doi.org/10.1128/AAC.00717-18] [PMID: 29686151]
[14]
Vourvahis, M.; Davis, J.; Langdon, G.; Layton, G.; Fang, J.; Choo, H.W.; Hansson, A.G.; Tawadrous, M. Pharmacokinetic interactions between lersivirine and zidovudine, tenofovir disoproxil fumarate/emtricitabine and abacavir/lamivudine. Antivir. Ther., 2013, 18(6), 745-754.
[http://dx.doi.org/10.3851/IMP2566] [PMID: 23558061]
[15]
Wonganan, P.; Limpanasithikul, W.; Jianmongkol, S.; Kerr, S.J.; Ruxrungtham, K. Pharmacokinetics of nucleoside/nucleotide reverse transcriptase inhibitors for the treatment and prevention of HIV infection. Expert Opin. Drug Metab. Toxicol., 2020, 16(7), 551-564.
[http://dx.doi.org/10.1080/17425255.2020.1772755] [PMID: 32508203]
[16]
Dumond, J.B.; Nicol, M.R.; Kendrick, R.N.; Garonzik, S.M.; Patterson, K.B.; Cohen, M.S.; Forrest, A.; Kashuba, A.D.M. Pharmacokinetic modelling of efavirenz, atazanavir, lamivudine and tenofovir in the female genital tract of HIV-infected pre-menopausal women. Clin. Pharmacokinet., 2012, 51(12), 809-822.
[http://dx.doi.org/10.1007/s40262-012-0012-y] [PMID: 23044523]
[17]
Semvua, H.H.; Mtabho, C.M.; Fillekes, Q.; Van Den Boogaard, J.; Kisonga, R.M.; Mleoh, L.; Ndaro, A.; Kisanga, E.R.; Van Der Ven, A.; Aarnoutse, R.E.; Kibiki, G.S.; Boeree, M.J.; Burger, D.M. Efavirenz, tenofovir and emtricitabine combined with first-line tuberculosis treatment in tuberculosis-HIV-coinfected Tanzanian patients: A pharmacokinetic and safety study. Antivir. Ther., 2013, 18(1), 105-113.
[http://dx.doi.org/10.3851/IMP2413] [PMID: 23043067]
[18]
Mukherjee, A.; Singla, M.; Velpandian, T.; Sirohiwal, A.; Vajpayee, M.; Singh, R.; Kabra, S.K.; Lodha, R. Pharmacokinetics of nevirapine, stavudine and lamivudine in Indian HIV-infected children receiving generic fixed dose combinations. Indian Pediatr., 2014, 51(3), 191-197.
[http://dx.doi.org/10.1007/s13312-014-0382-3] [PMID: 24736906]
[19]
Bunupuradah, T.; Punyahotra, P.; Cressey, T.R.; Srimuan, A.; Thammajaruk, N.; Sophonphan, J.; Sriheara, C.; Burger, D.M.; Puthanakit, T.; Ananworanich, J. Plasma pharmacokinetics of once-daily abacavir- and lamivudine-containing regimens and week 96 efficacy in HIV-infected Thai children. J. Virus Erad., 2015, 1(3), 185-191.
[http://dx.doi.org/10.1016/S2055-6640(20)30503-3] [PMID: 27482411]
[20]
Abhyankar, D.; Shedage, A.; Gole, M.; Raut, P. Pharmacokinetics of fixed-dose combination of tenofovir disoproxil fumarate, lamivudine, and efavirenz: results of a randomized, crossover, bioequivalence study. Int. J. STD AIDS, 2017, 28(5), 491-498.
[http://dx.doi.org/10.1177/0956462416655955] [PMID: 27317878]
[21]
Dubrocq, G.; Rakhmanina, N. The pharmacokinetics, pharmacodynamics, and clinical role of fixed dose combination of tenofovir disoproxil fumarate, lamivudine and reduced dose efavirenz (TLE-400) in treating HIV-1 infection. Expert Opin. Drug Metab. Toxicol., 2018, 14(8), 773-779.
[http://dx.doi.org/10.1080/17425255.2018.1498840] [PMID: 29985071]
[22]
Allavena, C.; Volteau, C.; André-Garnier, E.; Guimard, T.; Hall, N.; Khatchatourian, L.; Morrier, M.; Billaud, E.; Rodallec, A.; Reliquet, V.; Jovelin, T.; Le Guen, L.; Perré, P.; Grégoire, M.; Raffi, F. Switching from abacavir/lamivudine plus nevirapine to ab-acavir/lamivudine/dolutegravir in virologically controlled HIV-infected adults (SWAD study). Med. Mal. Infect., 2019, 49(7), 505-510.
[http://dx.doi.org/10.1016/j.medmal.2018.11.012] [PMID: 30583867]
[23]
Archary, M.; Mcllleron, H.; Bobat, R.; LaRussa, P.; Sibaya, T.; Wiesner, L.; Hennig, S. Population pharmacokinetics of abacavir and lamivudine in severely malnourished human immunodeficiency virus‐infected children in relation to treatment outcomes. Br. J. Clin. Pharmacol., 2019, 85(9), 2066-2075.
[http://dx.doi.org/10.1111/bcp.13998] [PMID: 31141195]
[24]
Singh, R.P.; Adkison, K.; Wolstenholme, A.; Hopking, J.; Wynne, B. Pharmacokinetics, safety, and tolerability of a single oral dose of abacavir/dolutegravir/lamivudine combination tablets in healthy Japanese study participants. Clin. Pharmacol. Drug Dev., 2021, 10(9), 985-993.
[http://dx.doi.org/10.1002/cpdd.996] [PMID: 34265164]
[25]
van der Laan, L.E.; Garcia-Prats, A.J.; Schaaf, H.S.; Winckler, J.L.; Draper, H.; Norman, J.; Wiesner, L.; McIlleron, H.; Denti, P.; Hes-seling, A.C. Pharmacokinetics and drug-drug interactions of abacavir and lamuvudine co-administered with antituberculosis drugs in HIV-positive children treated for multidrug-resistant tuberculosis. Front. Pharmacol., 2021, 12, 722204.
[http://dx.doi.org/10.3389/fphar.2021.722204] [PMID: 34690765]
[26]
Bekker, A.; Rabie, H.; Salvadori, N.; du Toit, S.; Than-in-at, K.; Groenewald, M.; Andrieux-Meyer, I.; Kumar, M.; Cressey, R.; Nielsen, J.; Capparelli, E.; Lallemant, M.; Cotton, M.F.; Cressey, T.R. Pharmacokinetics and safety of the abacavir/Lamivudine/Lopinavir/Ritonavir Fixed-Dose Granule Formulation (4-in-1) in neonates: PETITE study. J. Acquir. Immune Defic. Syndr., 2022, 89(3), 324-331.
[http://dx.doi.org/10.1097/QAI.0000000000002871] [PMID: 34855626]
[27]
Kis, O.; Robillard, K.; Chan, G.N.Y.; Bendayan, R. The complexities of antiretroviral drug-drug interactions: Role of ABC and SLC transporters. Trends Pharmacol. Sci., 2010, 31(1), 22-35.
[http://dx.doi.org/10.1016/j.tips.2009.10.001] [PMID: 20004485]
[28]
Kasirye, P.; Kendall, L.; Adkison, K.K.; Tumusiime, C.; Ssenyonga, M.; Bakeera-Kitaka, S.; Nahirya-Ntege, P.; Mhute, T.; Kekitiinwa, A.; Snowden, W.; Burger, D.M.; Gibb, D.M.; Walker, A.S.; Team, A.T. Pharmacokinetics of antiretroviral drug varies with formulation in the target population of children with HIV-1. Clin. Pharmacol. Ther., 2012, 91(2), 272-280.
[http://dx.doi.org/10.1038/clpt.2011.225] [PMID: 22190066]
[29]
Reznicek, J.; Ceckova, M.; Ptackova, Z.; Martinec, O.; Tupova, L.; Cerveny, L.; Staud, F. MDR1 and BCRP transporter-mediated drug-drug interaction between rilpivirine and abacavir and effect on intestinal absorption. Antimicrob. Agents Chemother., 2017, 61(9), e00837-e17.
[http://dx.doi.org/10.1128/AAC.00837-17] [PMID: 28696229]
[30]
Kosloski, M.P.; Oberoi, R.; Wang, S.; Viani, R.M.; Asatryan, A.; Hu, B.; Ding, B.; Qi, X.; Kim, E.J.; Mensa, F.; Kort, J.; Liu, W. Drug-drug interactions of glecaprevir and pibrentasvir coadministered with human immunodeficiency virus antiretrovirals. J. Infect. Dis., 2020, 221(2), 223-231.
[http://dx.doi.org/10.1093/infdis/jiz439] [PMID: 31504702]
[31]
Begley, R.; Das, M.; Zhong, L.; Ling, J.; Kearney, B.P.; Custodio, J.M. Pharmacokinetics of tenofovir alafenamide when coadministered with other HIV antiretrovirals. J. Acquir. Immune Defic. Syndr., 2018, 78(4), 465-472.
[http://dx.doi.org/10.1097/QAI.0000000000001699] [PMID: 29649076]
[32]
Imaoka, T.; Kusuhara, H.; Adachi, M.; Schuetz, J.D.; Takeuchi, K.; Sugiyama, Y. Functional involvement of multidrug resistance-associated protein 4 (MRP4/ABCC4) in the renal elimination of the antiviral drugs adefovir and tenofovir. Mol. Pharmacol., 2007, 71(2), 619-627.
[http://dx.doi.org/10.1124/mol.106.028233] [PMID: 17110501]
[33]
Kohler, J.J.; Hosseini, S.H.; Green, E.; Abuin, A.; Ludaway, T.; Russ, R.; Santoianni, R.; Lewis, W. Tenofovir renal proximal tubular toxicity is regulated By OAT1 and MRP4 transporters. Lab. Invest., 2011, 91(6), 852-858.
[http://dx.doi.org/10.1038/labinvest.2011.48] [PMID: 21403643]
[34]
Mills, A.; Arribas, J.R.; Andrade-Villanueva, J.; DiPerri, G.; Van Lunzen, J.; Koenig, E.; Elion, R.; Cavassini, M.; Madruga, J.V.; Brunetta, J.; Shamblaw, D.; DeJesus, E.; Orkin, C.; Wohl, D.A.; Brar, I.; Stephens, J.L.; Girard, P.M.; Huhn, G.; Plummer, A.; Liu, Y.P.; Cheng, A.K.; McCallister, S. Switching from tenofovir disoproxil fumarate to tenofovir alafenamide in antiretroviral regimens for virologically suppressed adults with HIV-1 infection: a randomised, active-controlled, multicentre, open-label, phase 3, non-inferiority study. Lancet Infect. Dis., 2016, 16(1), 43-52.
[http://dx.doi.org/10.1016/S1473-3099(15)00348-5] [PMID: 26538525]
[35]
Mulligan, N.; Salama, E.; Momper, J.D.; Capparelli, E.V.; Stek, A.; Chakhtoura, N.; Mirochnick, M.; Best, B.M. Lopinavir and tenofovir interaction observed in non‐pregnant adults altered during pregnancy. J. Clin. Pharm. Ther., 2021, 46(5), 1459-1464.
[http://dx.doi.org/10.1111/jcpt.13477] [PMID: 34254323]
[36]
Nirogi, R.; Bhyrapuneni, G.; Kandikere, V.; Muddana, N.; Saralaya, R.; Komarneni, P.; Mudigonda, K.; Mukkanti, K. Pharmacokinetic profiling of efavirenz-emtricitabine-tenofovir fixed dose combination in pregnant and non-pregnant rats. Biopharm. Drug Dispos., 2012, 33(5), 265-277.
[http://dx.doi.org/10.1002/bdd.1794] [PMID: 22610784]
[37]
Pozniak, A.; Arribas, J.R.; Gathe, J.; Gupta, S.K.; Post, F.A.; Bloch, M.; Avihingsanon, A.; Crofoot, G.; Benson, P.; Lichtenstein, K.; Ramgopal, M.; Chetchotisakd, P.; Custodio, J.M.; Abram, M.E.; Wei, X.; Cheng, A.; McCallister, S.; SenGupta, D.; Fordyce, M.W. Switching to tenofovir alafenamide, coformulated with elvitegravir, cobicistat, and emtricitabine, in HIV-infected patients with renal impairment: 48-week results from a single-arm, multicenter,open-label phase 3 study. Journal of acquired immune deficiency syndromes (1999), 2016, 71(5), 530-537.
[38]
Ray, A.S.; Cihlar, T.; Robinson, K.L.; Tong, L.; Vela, J.E.; Fuller, M.D.; Wieman, L.M.; Eisenberg, E.J.; Rhodes, G.R. Mechanism of active renal tubular efflux of tenofovir. Antimicrob. Agents Chemother., 2006, 50(10), 3297-3304.
[http://dx.doi.org/10.1128/AAC.00251-06] [PMID: 17005808]
[39]
Custodio, J.M.; Chuck, S.K.; Chu, H.; Cao, H.; Ma, G.; Flaherty, J.; Ling, J.; Kearney, B.P. Lack of clinically important PK interaction between coformulated ledipasvir/sofosbuvir and rilpivirine/emtricitabine/tenofovir alafenamide. Pharmacol. Res. Perspect., 2017, 5(5), e00353.
[http://dx.doi.org/10.1002/prp2.353] [PMID: 28971607]
[40]
Squillace, N.; Bozzi, G.; Colella, E.; Gori, A.; Bandera, A. Darunavir-cobicistat-emtricitabine-tenofovir alafenamide: safety and efficacy of a protease inhibitor in the modern era. Drug Des. Devel. Ther., 2018, 12, 3635-3643.
[http://dx.doi.org/10.2147/DDDT.S147493] [PMID: 30464395]
[41]
Mogalian, E.; Stamm, L.M.; Osinusi, A.; Brainard, D.M.; Shen, G.; Ling, K.H.J.; Mathias, A. Drug-drug interaction studies between hepatitis C Virus Antivirals Sofosbuvir/Velpatasvir and boosted and unboosted human immunodeficiency virus antiretroviral regimens in healthy volunteers. Clin. Infect. Dis., 2018, 67(6), 934-940.
[http://dx.doi.org/10.1093/cid/ciy201] [PMID: 29522076]
[42]
Al-Majed, A.A.; Bakheit, A.H.H.; Al-Qahtani, B.M.; Al-Kahtani, H.M.; Abdelhameed, A.S. Emtricitabine. Profiles Drug Subst. Excip. Relat. Methodol., 2020, 45, 55-91.
[http://dx.doi.org/10.1016/bs.podrm.2019.10.003] [PMID: 32164970]
[43]
Dumond, J.B.; Adams, J.L.; Prince, H.M.A.; Kendrick, R.L.; Wang, R.; Jennings, S.H.; Malone, S.; White, N.; Sykes, C.; Corbett, A.H.; Patterson, K.B.; Forrest, A.; Kashuba, A.D.M. Pharmacokinetics of two common antiretroviral regimens in older HIV-infected patients: A pilot study. HIV Med., 2013, 14(7), 401-409.
[http://dx.doi.org/10.1111/hiv.12017] [PMID: 23433482]
[44]
Bhatt, N.B.; Barau, C.; Amin, A.; Baudin, E.; Meggi, B.; Silva, C.; Furlan, V.; Grinsztejn, B.; Barrail-Tran, A.; Bonnet, M.; Taburet, A.M.; Group, A.C.S. Pharmacokinetics of rifampin and isoniazid in tuberculosis-HIV-coinfected patients receiving nevirapine- or efavirenz-based antiretroviral treatment. Antimicrob. Agents Chemother., 2014, 58(6), 3182-3190.
[http://dx.doi.org/10.1128/AAC.02379-13] [PMID: 24663014]
[45]
Ramanathan, S.; Custodio, J.M.; Wei, X.; Wang, H.; Fordyce, M.; Dave, A.; Ling, K.H.J.; Szwarcberg, J.; Kearney, B.P. Pharmacokinetics of co-formulated elvitegravir/cobicistat/emtricitabine/] tenofovir disoproxil fumarate after switch from efavirenz/emtricitabine/tenofovir disoproxil fumarate in healthy subjects. J. Acquir. Immune Defic. Syndr., 2016, 72(3), 281-288.
[http://dx.doi.org/10.1097/QAI.0000000000000959] [PMID: 26885802]
[46]
Havenith, T.; Burger, D.; Visschers, M.J.; Schippers, J.; Oude Lashof, A. Acute kidney injury after efavirenz/tenofovir disoproxil fumarate/emtricitabine (Atripla) overdose. Ther. Drug Monit., 2017, 39(2), 91-92.
[http://dx.doi.org/10.1097/FTD.0000000000000386] [PMID: 28230617]
[47]
King, J.R.; Menon, R.M. Ombitasvir/Paritaprevir/Ritonavir and Dasabuvir: Drug interactions with antiretroviral agents and drugs for sub-stance abuse. Clin. Pharmacol. Drug Dev., 2017, 6(2), 201-205.
[http://dx.doi.org/10.1002/cpdd.327] [PMID: 28263457]
[48]
Seden, K.; Gibbons, S.; Marzolini, C.; Schapiro, J.M.; Burger, D.M.; Back, D.J.; Khoo, S.H. Development of an evidence evaluation and synthesis system for drug-drug interactions, and its application to a systematic review of HIV and malaria co-infection. PLoS One, 2017, 12(3), e0173509.
[http://dx.doi.org/10.1371/journal.pone.0173509] [PMID: 28334018]
[49]
Li, M.; Sopeyin, A.; Paintsil, E. Combination of tenofovir and emtricitabine with efavirenz does not moderate inhibitory effect of efavirenz on mitochondrial function and cholesterol biosynthesis in human t lymphoblastoid cell line. Antimicrob. Agents Chemother., 2018, 62(9), e00691-e18.
[http://dx.doi.org/10.1128/AAC.00691-18] [PMID: 30012753]
[50]
Decloedt, E.H.; Sinxadi, P.Z.; van Zyl, G.U.; Wiesner, L.; Khoo, S.; Joska, J.A.; Haas, D.W.; Maartens, G. Pharmacogenetics and pharma-cokinetics of CNS penetration of efavirenz and its metabolites. J. Antimicrob. Chemother., 2019, 74(3), 699-709.
[http://dx.doi.org/10.1093/jac/dky481] [PMID: 30535366]
[51]
Fillekes, Q.; Mulenga, V.; Kabamba, D.; Kankasa, C.; Thomason, M.J.; Cook, A.; Ferrier, A.; Chintu, C.; Walker, A.S.; Gibb, D.M.; Burger, D.M. Pharmacokinetics of nevirapine in HIV-infected infants weighing 3 kg to less than 6 kg taking paediatric fixed dose combination tablets. AIDS, 2012, 26(14), 1795-1800.
[http://dx.doi.org/10.1097/QAD.0b013e32835705fd] [PMID: 22739394]
[52]
Scarsi, K.K.; Fehintola, F.A.; Ma, Q.; Aweeka, F.T.; Darin, K.M.; Morse, G.D.; Akinola, I.T.; Adedeji, W.A.; Lindegardh, N.; Tarning, J.; Ojengbede, O.; Adewole, I.F.; Taiwo, B.; Murphy, R.L.; Akinyinka, O.O.; Parikh, S. Disposition of amodiaquine and desethylamodiaquine in HIV-infected Nigerian subjects on nevirapine-containing antiretroviral therapy. J. Antimicrob. Chemother., 2014, 69(5), 1370-1376.
[http://dx.doi.org/10.1093/jac/dkt513] [PMID: 24446424]
[53]
Maganda, B.A.; Ngaimisi, E.; Kamuhabwa, A.A.R.; Aklillu, E.; Minzi, O.M.S. The influence of nevirapine and efavirenz-based anti-retroviral therapy on the pharmacokinetics of lumefantrine and anti-malarial dose recommendation in HIV-malaria co-treatment. Malar. J., 2015, 14(1), 179.
[http://dx.doi.org/10.1186/s12936-015-0695-2] [PMID: 25906774]
[54]
Prathipati, P.K.; Mandal, S.; Destache, C.J. Simultaneous quantification of tenofovir, emtricitabine, rilpivirine, elvitegravir and dolutegravir in mouse biological matrices by LC-MS/MS and its application to a pharmacokinetic study. J. Pharm. Biomed. Anal., 2016, 129, 473-481.
[http://dx.doi.org/10.1016/j.jpba.2016.07.040] [PMID: 27497648]
[55]
Crauwels, H.M.; van Heeswijk, R.P.G.; Vandevoorde, A.; Buelens, A.; Stevens, M.; Hoetelmans, R.M.W. The effect of rilpivirine on the pharmacokinetics of methadone in HIV-negative volunteers. J. Clin. Pharmacol., 2014, 54(2), 133-140.
[http://dx.doi.org/10.1002/jcph.222] [PMID: 24203510]
[56]
Calcagno, A.; Tettoni, M.C.; Simiele, M.; Trentini, L.; Montrucchio, C.; D’Avolio, A.; Di Perri, G.; Bonora, S. Pharmacokinetics of 400 mg of raltegravir once daily in combination with atazanavir/ritonavir plus two nucleoside/nucleotide reverse transcriptase inhibitors. J. Antimicrob. Chemother., 2013, 68(2), 482-484.
[http://dx.doi.org/10.1093/jac/dks413] [PMID: 23085776]
[57]
Kreitchmann, R.; Best, B.M.; Wang, J.; Stek, A.; Caparelli, E.; Watts, D.H.; Smith, E.; Shapiro, D.E.; Rossi, S.; Burchett, S.K.; Hawkins, E.; Byroads, M.; Cressey, T.R.; Mirochnick, M. Pharmacokinetics of an increased atazanavir dose with and without tenofovir during the third trimester of pregnancy. J. Acquir. Immune Defic. Syndr., 2013, 63(1), 59-66.
[http://dx.doi.org/10.1097/QAI.0b013e318289b4d2] [PMID: 23392467]
[58]
Bunupuradah, T.; Techasaensiri, C.; Keadpudsa, S.; Thammajaruk, N.; Srimuan, A.; Sahakijpicharn, T.; Prasitsuebsai, W.; Ananworanich, J.; Puthanakit, T. Pharmacokinetics of atazanavir/ritonavir among HIV-infected Thai children concomitantly taking tenofovir disoproxil fumarate. Pediatr. Infect. Dis. J., 2014, 33(12), e316-e319.
[http://dx.doi.org/10.1097/INF.0000000000000469] [PMID: 24983717]
[59]
Gutierrez-Valencia, A.; Ruiz-Valderas, R.; Torres-Cornejo, A.; Viciana, P.; Espinosa, N.; Castillo-Ferrando, J.R.; Lopez-Cortes, L.F. Role of ritonavir in the drug interactions between telaprevir and ritonavir-boosted atazanavir. Clin. Infect. Dis., 2014, 58(2), 268-273.
[http://dx.doi.org/10.1093/cid/cit693] [PMID: 24145880]
[60]
Orrell, C.; Felizarta, F.; Nell, A.; Kakuda, T.N.; Lavreys, L.; Nijs, S.; Tambuyzer, L.; Van Solingen-Ristea, R.; Tomaka, F.L. Pharmacoki-netics of etravirine combined with atazanavir/ritonavir and a nucleoside reverse transcriptase inhibitor in antiretroviral treatment-experienced, HIV-1-infected patients. Aids Res. Treat., 2015, 2015, 1-11.
[http://dx.doi.org/10.1155/2015/938628] [PMID: 25664185]
[61]
Moltó, J.; Estévez, J.A.; Miranda, C.; Cedeño, S.; Clotet, B.; Valle, M. Population pharmacokinetic modelling of the changes in atazanavir plasma clearance caused by ritonavir plasma concentrations in HIV-1 infected patients. Br. J. Clin. Pharmacol., 2016, 82(6), 1528-1538.
[http://dx.doi.org/10.1111/bcp.13072] [PMID: 27447851]
[62]
Punyawudho, B.; Thammajaruk, N.; Ruxrungtham, K.; Avihingsanon, A. Population pharmacokinetics and dose optimisation of ritonavir-boosted atazanavir in Thai HIV-infected patients. Int. J. Antimicrob. Agents, 2017, 49(3), 327-332.
[http://dx.doi.org/10.1016/j.ijantimicag.2016.11.019] [PMID: 28109702]
[63]
Zhu, L.; Brüggemann, R.J.; Uy, J.; Colbers, A.; Hruska, M.W.; Chung, E.; Sims, K.; Vakkalagadda, B.; Xu, X.; van Schaik, R.H.N.; Burger, D.M.; Bertz, R.J. CYP2C19 genotype-dependent pharmacokinetic drug interaction between Voriconazole and Ritonavir-Boosted atazanavir in healthy subjects. J. Clin. Pharmacol., 2017, 57(2), 235-246.
[http://dx.doi.org/10.1002/jcph.798] [PMID: 27432796]
[64]
Bertz, R.J.; Persson, A.; Chung, E.; Zhu, L.; Zhang, J.; McGrath, D.; Grasela, D. Pharmacokinetics and pharmacodynamics of atazanavir-containing antiretroviral regimens, with or without ritonavir, in patients who are HIV-positive and treatment-naïve. Pharmacotherapy, 2013, 33(3), 284-294.
[http://dx.doi.org/10.1002/phar.1205] [PMID: 23456732]
[65]
Flynn, P.; Komar, S.; Blanche, S.; Giaquinto, C.; Noguera-Julian, A.; Welch, S.; Lathouwers, E.; Van de Casteele, T.; Kakuda, T.N.; Op-somer, M. Efficacy and safety of darunavir/ritonavir at 48 weeks in treatment-naïve, HIV-1-infected adolescents: results from a phase 2 open-label trial (DIONE). Pediatr. Infect. Dis. J., 2014, 33(9), 940-945.
[http://dx.doi.org/10.1097/INF.0000000000000308] [PMID: 25361024]
[66]
Cerveny, L.; Ptackova, Z.; Durisova, M.; Staud, F. Interactions of protease inhibitors atazanavir and ritonavir with ABCB1, ABCG2, and ABCC2 transporters: Effect on transplacental disposition in rats. Reprod. Toxicol., 2018, 79, 57-65.
[http://dx.doi.org/10.1016/j.reprotox.2018.05.008] [PMID: 29859254]
[67]
Sevinsky, H.; Zaru, L.; Wang, R.; Xu, X.; Pikora, C.; Correll, T.A.; Eley, T. Pharmacokinetics and pharmacodynamics of atazanavir in HIV-1-infected children treated with atazanavir powder and ritonavir. Pediatr. Infect. Dis. J., 2018, 37(6), e157-e165.
[http://dx.doi.org/10.1097/INF.0000000000001855] [PMID: 29206748]
[68]
DeJesus, E.; Saleh, S.; Cheng, S.; Mey, D.; Becker, C.; Frey, R.; Unger, S.; Mueck, W. Pharmacokinetic interaction of riociguat and an-tiretroviral combination regimens in HIV‐1‐infected adults. Pulm. Circ., 2019, 9(2), 1-10.
[http://dx.doi.org/10.1177/2045894019848644] [PMID: 30997864]
[69]
Hodge, D.; Marra, F.; Marzolini, C.; Boyle, A.; Gibbons, S.; Siccardi, M.; Burger, D.; Back, D.; Khoo, S. Drug interactions: A review of the unseen danger of experimental COVID-19 therapies. J. Antimicrob. Chemother., 2020, 75(12), 3417-3424.
[http://dx.doi.org/10.1093/jac/dkaa340] [PMID: 32750131]
[70]
Aquilante, C.L.; Kiser, J.J.; Anderson, P.L.; Christians, U.; Kosmiski, L.A.; Daily, E.B.; Hoffman, K.L.; Hopley, C.W.; Predhomme, J.A.; Schniedewind, B.; Sidhom, M.S. Influence of SLCO1B1 polymorphisms on the drug-drug interaction between darunavir/ritonavir and pravastatin. J. Clin. Pharmacol., 2012, 52(11), 1725-1738.
[http://dx.doi.org/10.1177/0091270011427907] [PMID: 22174437]
[71]
Brooks, K.M.; Garrett, K.L.; Kuriakose, S.S.; George, J.M.; Balba, G.; Bailey, B.; Anderson, M.; Lane, H.C.; Maldarelli, F.; Pau, A.K. De-creased absorption of dolutegravir and tenofovir disoproxil fumarate, but not emtricitabine, in an HIV-Infected patient following oral and jejunostomy-tube administration. Pharmacotherapy, 2017, 37(8), e82-e89.
[http://dx.doi.org/10.1002/phar.1960] [PMID: 28556353]
[72]
Rimawi, B.H.; Johnson, E.; Rajakumar, A.; Tao, S.; Jiang, Y.; Gillespie, S.; Schinazi, R.F.; Mirochnick, M.; Badell, M.L.; Chakraborty, R. Pharmacokinetics and placental transfer of elvitegravir, dolutegravir, and other antiretrovirals during pregnancy. Antimicrob. Agents Chemother., 2017, 61(6), e02213-e02216.
[http://dx.doi.org/10.1128/AAC.02213-16] [PMID: 28348149]
[73]
Veal, G.J.; Back, D.J. Metabolism of zidovudine. Gen. Pharmacol., 1995, 26(7), 1469-1475.
[http://dx.doi.org/10.1016/0306-3623(95)00047-X] [PMID: 8690233]
[74]
Court, M.H. Isoform-selective probe substrates for in vitro studies of human UDP-glucuronosyltransferases. Methods Enzymol., 2005, 400, 104-116.
[http://dx.doi.org/10.1016/S0076-6879(05)00007-8] [PMID: 16399346]
[75]
Flynn, P.M.; Rodman, J.; Lindsey, J.C.; Robbins, B.; Capparelli, E.; Knapp, K.M.; Rodriguez, J.F.; McNamara, J.; Serchuck, L.; Heckman, B.; Martinez, J.; Team, P.P. Intracellular pharmacokinetics of once versus twice daily zidovudine and lamivudine in adolescents. Antimicrob. Agents Chemother., 2007, 51(10), 3516-3522.
[http://dx.doi.org/10.1128/AAC.01626-06] [PMID: 17664328]
[76]
Sun, H.; Zhang, T.; Wu, Z.; Wu, B. Warfarin is an effective modifier of multiple UDP-glucuronosyltransferase enzymes: Evaluation of its potential to alter the pharmacokinetics of zidovudine. J. Pharm. Sci., 2015, 104(1), 244-256.
[http://dx.doi.org/10.1002/jps.24250] [PMID: 25393417]
[77]
Hedaya, M.A.; Elmquist, W.F.; Sawchuk, R.J. Probenecid inhibits the metabolic and renal clearances of zidovudine (AZT) in human vol-unteers. Pharm. Res., 1990, 7(4), 411-417.
[http://dx.doi.org/10.1023/A:1015835826114] [PMID: 2362917]
[78]
Barry, M.; Howe, J.; Back, D.; Breckenridge, A.; Brettle, R.; Mitchell, R.; Beeching, N.J.; Nye, F.J. The effects of indomethacin and naproxen on zidovudine pharmacokinetics. Br. J. Clin. Pharmacol., 1993, 36(1), 82-85.
[http://dx.doi.org/10.1111/j.1365-2125.1993.tb05898.x] [PMID: 8373716]
[79]
Uchaipichat, V.; Winner, L.K.; Mackenzie, P.I.; Elliot, D.J.; Williams, J.A.; Miners, J.O. Quantitative prediction of in vivo inhibitory inter-actions involving glucuronidated drugs from in vitro data: The effect of fluconazole on zidovudine glucuronidation. Br. J. Clin. Pharmacol., 2006, 61(4), 427-439.
[http://dx.doi.org/10.1111/j.1365-2125.2006.02588.x] [PMID: 16542204]
[80]
Bélanger, A.S.; Caron, P.; Harvey, M.; Zimmerman, P.A.; Mehlotra, R.K.; Guillemette, C. Glucuronidation of the antiretroviral drug efavi-renz by UGT2B7 and an in vitro investigation of drug-drug interaction with zidovudine. Drug Metab. Dispos., 2009, 37(9), 1793-1796.
[http://dx.doi.org/10.1124/dmd.109.027706] [PMID: 19487252]
[81]
Vourvahis, M.; Gleave, M.; Nedderman, A.N.; Hyland, R.; Gardner, I.; Howard, M.; Kempshall, S.; Collins, C.; LaBadie, R. Excretion and metabolism of lersivirine (5-{[3,5-diethyl-1-(2-hydroxyethyl)(3,5-14C2)-1H-pyrazol-4-yl]oxy}benzene-1,3-dic arbonitrile), a next-generation non-nucleoside reverse transcriptase inhibitor, after administration of [14C]Lersivirine to healthy volunteers. Drug Metab. Dispos., 2010, 38(5), 789-800.
[http://dx.doi.org/10.1124/dmd.109.031252] [PMID: 20124396]
[82]
Fätkenheuer, G.; Staszewski, S.; Plettenburg, A.; Hackman, F.; Layton, G.; McFadyen, L.; Davis, J.; Jenkins, T.M. Activity, pharmacoki-netics and safety of lersivirine (UK-453,061), a next-generation nonnucleoside reverse transcriptase inhibitor, during 7-day monotherapy in HIV-1-infected patients. AIDS, 2009, 23(16), 2115-2122.
[http://dx.doi.org/10.1097/QAD.0b013e32832fef5b] [PMID: 19779321]
[83]
Hoggard, P.G.; Sales, S.D.; Kewn, S.; Sunderland, D.; Khoo, S.H.; Hart, C.A.; Back, D.J. Correlation between intracellular pharmacological activation of nucleoside analogues and HIV suppression in vitro. Antivir. Chem. Chemother., 2000, 11(6), 353-358.
[http://dx.doi.org/10.1177/095632020001100601] [PMID: 11227992]
[84]
Jacobson, M.A.; Owen, W.; Campbell, J.; Brosgart, C.; Abrams, D.I. Tolerability of combined ganciclovir and didanosine for the treatment of cytomegalovirus disease associated with AIDS. Clin. Infect. Dis., 1993, 16(Suppl. 1), S69-S73.
[http://dx.doi.org/10.1093/clinids/16.Supplement_1.S69] [PMID: 8381032]
[85]
Millar, A.B.; Miller, R.F.; Patou, G.; Mindel, A.; Marsh, R.; Semple, S.J. Treatment of cytomegalovirus retinitis with zidovudine and ganciclovir in patients with AIDS: outcome and toxicity. Sex. Transm. Infect., 1990, 66(3), 156-158.
[http://dx.doi.org/10.1136/sti.66.3.156] [PMID: 2164492]
[86]
Gallicchio, V.; Scott, K.W.J.; Hughes, N.K.; Tse, K-F.; Gaines, H.; Kirk, P.R.; Birch, N.J. Increased hematopoietic toxicity following ad-ministration of interferon-å with combination dideoxynucleoside therapy (zidovudine plus DDI) administered in normal mice. Life Sci., 1995, 56(3), PL71-PL81.
[http://dx.doi.org/10.1016/0024-3205(94)00439-Y] [PMID: 7823768]
[87]
Fuster, D.; Huertas, J.A.; Gómez, G.; Solà, R.; García, J.G.; Vilaró, J.; Pedrol, E.; Force, L.; Tor, J.; Sirera, G.; Videla, S.; Planas, R.; Clotet, B.; Tural, C.; Fuster, D.; Tor, J.; Sirera, G.; Videla, S.; Planas, R.; Clotet, B.; Tural, C.; Huertas, J.A.; Gómez, G.; Solà, R.; García, J.G.; Vi-laró, J.; Pedrol, E.; Force, L.; Cervantes, M.; García, I.; Roget, M. Short communication. Baseline factors associated with haematological toxicity that leads to a dosage reduction of pegylated interferon-α2a and ribavirin in HIV- and HCV-coinfected patients on HCV antiviral therapy. Antivir. Ther., 2005, 10(7), 841-847.
[http://dx.doi.org/10.1177/135965350501000710] [PMID: 16312180]
[88]
Mira, J.A.; López-Cortés, L.F.; Merino, D.; Arizcorreta-Yarza, A.; Rivero, A.; Collado, A.; Ríos-Villegas, M.J.; González-Serrano, M.; Torres-Tortosa, M.; Macías, J.; Valera-Bestard, B.; Fernández-Fuertes, E.; Girón-González, J.A.; Lozano, F.; Pineda, J.A. Predictors of se-vere haematological toxicity secondary to pegylated interferon plus ribavirin treatment in HIV-HCV-coinfected patients. Antivir. Ther., 2007, 12(8), 1225-1236.
[http://dx.doi.org/10.1177/135965350701200805] [PMID: 18240862]
[89]
Kumar, P.; Lakshmi, Y.S. C, B.; Golla, K.; Kondapi, A.K. Improved safety, bioavailability and pharmacokinetics of zidovudine through lactoferrin nanoparticles during oral administration in rats. PLoS One, 2015, 10(10), e0140399.
[http://dx.doi.org/10.1371/journal.pone.0140399]
[90]
Ramanathan, R.; Sivanesan, K. Investigations on the influence of zidovudine in the pharmacokinetics of isoniazid and its hepatotoxic me-tabolites in rats. J. Pharm. Pract., 2019, 32(1), 9-18.
[http://dx.doi.org/10.1177/0897190017735424] [PMID: 29017426]
[91]
Adkison, K.; Wolstenholme, A.; Lou, Y.; Zhang, Z.; Eld, A.; Perger, T.; Vangerow, H.; Hayward, K.; Shaefer, M.; McCoig, C. Effect of sorbitol on the pharmacokinetic profile of lamivudine oral solution in adults: An open-label, randomized study. Clin. Pharmacol. Ther., 2018, 103(3), 402-408.
[http://dx.doi.org/10.1002/cpt.943] [PMID: 29150845]
[92]
Johnson, M.A.; Moore, K.H.P.; Yuen, G.J.; Bye, A.; Pakes, G.E. Clinical pharmacokinetics of lamivudine. Clin. Pharmacokinet., 1999, 36(1), 41-66.
[http://dx.doi.org/10.2165/00003088-199936010-00004] [PMID: 9989342]
[93]
Nies, A.T.; Koepsell, H.; Damme, K.; Schwab, M. Organic cation transporters (OCTs, MATEs), in vitro and in vivo evidence for the im-portance in drug therapy. Handb. Exp. Pharmacol., 2011, 201(201), 105-167.
[http://dx.doi.org/10.1007/978-3-642-14541-4_3] [PMID: 21103969]
[94]
Müller, F.; König, J.; Hoier, E.; Mandery, K.; Fromm, M.F. Role of organic cation transporter OCT2 and multidrug and toxin extrusion proteins MATE1 and MATE2-K for transport and drug interactions of the antiviral lamivudine. Biochem. Pharmacol., 2013, 86(6), 808-815.
[http://dx.doi.org/10.1016/j.bcp.2013.07.008] [PMID: 23876341]
[95]
de Souza, J.; Benet, L.Z.; Huang, Y.; Storpirtis, S. Comparison of bidirectional lamivudine and zidovudine transport using MDCK, MDCK-MDR1, and Caco-2 cell monolayers. J. Pharm. Sci., 2009, 98(11), 4413-4419.
[http://dx.doi.org/10.1002/jps.21744] [PMID: 19472342]
[96]
Li, Q.; Ye, Z.; Zhu, P.; Guo, D.; Yang, H.; Huang, J.; Zhang, W.; Polli, J.E.; Shu, Y. Indinavir Alters the Pharmacokinetics of Lamivudine Partially via Inhibition of Multidrug and Toxin Extrusion Protein 1 (MATE1). Pharm. Res., 2018, 35(1), 14.
[http://dx.doi.org/10.1007/s11095-017-2290-4] [PMID: 29302757]
[97]
Ceckova, M.; Reznicek, J.; Deutsch, B.; Fromm, M.F.; Staud, F. Efavirenz reduces renal excretion of lamivudine in rats by inhibiting or-ganic cation transporters (OCT, Oct) and multidrug and toxin extrusion proteins (MATE, Mate). PLoS One, 2018, 13(8), e0202706.
[http://dx.doi.org/10.1371/journal.pone.0202706] [PMID: 30114293]
[98]
Shapiro, R.L.; Hughes, M.D.; Ogwu, A.; Kitch, D.; Lockman, S.; Moffat, C.; Makhema, J.; Moyo, S.; Thior, I.; McIntosh, K.; van Widen-felt, E.; Leidner, J.; Powis, K.; Asmelash, A.; Tumbare, E.; Zwerski, S.; Sharma, U.; Handelsman, E.; Mburu, K.; Jayeoba, O.; Moko, E.; Souda, S.; Lubega, E.; Akhtar, M.; Wester, C.; Tuomola, R.; Snowden, W.; Martinez-Tristani, M.; Mazhani, L.; Essex, M. Antiretroviral regimens in pregnancy and breast-feeding in Botswana. N. Engl. J. Med., 2010, 362(24), 2282-2294.
[http://dx.doi.org/10.1056/NEJMoa0907736] [PMID: 20554983]
[99]
Neumanova, Z.; Cerveny, L.; Greenwood, S.L.; Ceckova, M.; Staud, F. Effect of drug efflux transporters on placental transport of antiretroviral agent abacavir. Reprod. Toxicol., 2015, 57, 176-182.
[http://dx.doi.org/10.1016/j.reprotox.2015.07.070] [PMID: 26169552]
[100]
Pharmacokinetic study of once-daily versus twice-daily abacavir and lamivudine in HIV type-1-infected children aged 3-<36 months. Antivir. Ther., 2010, 15(3), 297-305.
[http://dx.doi.org/10.3851/IMP1532] [PMID: 20516550]
[101]
Abacavir tablet film coated https://www.accessdata.fda.gov/drugsatfda_docs/pepfar/077844PI.pdf (Accessed on: 2019-10-23)
[102]
Sleasman, J.W.; Robbins, B.L.; Cross, S.J.; Lindsey, J.C.; Kraimer, J.M.; Heckman, B.E.; Sprenger, H.L.; Tustin, N.B.; Rose, C.H.; Poston, P.A.; Neal, E.F.; Pakes, G.E.; Nikanjam, M.; Capparelli, E.V. Abacavir pharmacokinetics during chronic therapy in HIV-1-infected adolescents and young adults. Clin. Pharmacol. Ther., 2009, 85(4), 394-401.
[http://dx.doi.org/10.1038/clpt.2008.236] [PMID: 19118380]
[103]
Neumanova, Z.; Cerveny, L.; Ceckova, M.; Staud, F. Interactions of tenofovir and tenofovir disoproxil fumarate with drug efflux trans-porters ABCB1, ABCG2, and ABCC2; role in transport across the placenta. AIDS, 2014, 28(1), 9-17.
[http://dx.doi.org/10.1097/QAD.0000000000000112] [PMID: 24413260]
[104]
Bednasz, C.J.; Venuto, C.S.; Ma, Q.; Daar, E.S.; Sax, P.E.; Fischl, M.A.; Collier, A.C.; Smith, K.Y.; Tierney, C.; Acosta, E.P.; Mager, D.E.; Morse, G.D.; Bolivar, H.H.; Navarro, S.; Koletar, S.L.; Gochnour, D.; Seefried, E.; Hoffman, J.; Feinberg, J.; Saemann, M.; Patterson, K.; Pittard, D.; Currin, D.; Upton, K.; Saag, M.; Ray, G.; Johnson, S.; Santos, B.; Funk, C.A.; Morgan, M.; Jackson, B.; Tebas, P.; Thomas, A.; Kim, G-Y.; Klebert, M.K.; Santana, J.L.; Marrero, S.; Norris, J.; Valle, S.; Cox, G.M.; Silberman, M.; Shaik, S.; Lopez, R.; Vasquez, M.; Daskalakis, D.; Megill, C.; Stroberg, T.; Shore, J.; Taiwo, B.; Goldman, M.; Boston, M.; Lennox, J.; del Rio, C.; Lane, T.W.; Epperson, K.; Luetkemeyer, A.; Payne, M.; Gripshover, B.; Antosh, D.; Reid, J.; Adams, M.; Storey, S.S.; Dunaway, S.B.; Gallant, J.; Wiggins, I.; Smith, K.Y.; Swiatek, J.A.; Timpone, J.; Kumar, P.; Moe, A.; Palmer, M.; Gothing, J.; Delaney, J.; Whitely, K.; Anderson, A.M.; Hammer, S.M.; Yin, M.T.; Jain, M.; Petersen, T.; Corales, R.; Hurley, C.; Henry, K.; Bordenave, B.; Youmans, A.; Albrecht, M.; Pollard, R.B.; Olusanya, A.; Skolnik, P.R.; Adams, B.; Tashima, K.T.; Patterson, H.; Ukwu, M.; Rogers, L.; Balfour, H.H., Jr; Fox, K.A.; Swindells, S.; Van Meter, F.; Robbins, G.; Burgett-Yandow, N.; Davis, C.E., Jr; Boyce, C.; O’Brien, W.A.; Casey, G.; Morse, G.D.; Hsaio, C-B.; Meier, J.L.; Staple-ton, J.T.; Mildvan, D.; Revuelta, M.; Currin, D.; El Sadr, W.; Loquere, A.; El-Daher, N.; Johnson, T.; Gross, R.; Maffei, K.; Hughes, V.; Sturge, G.; McMahon, D.; Rutecki, B.; Wulfsohn, M.; Cheng, A.; Bischofberger, N.; Dix, L.; Liao, Q. Race/Ethnicity and protease inhibitor use influence plasma tenofovir exposure in adults living with HIV-1 in AIDS clinical trials group study A5202. Antimicrob. Agents Chemother., 2019, 63(4), e01638-e18.
[http://dx.doi.org/10.1128/AAC.01638-18] [PMID: 30642925]
[105]
MacBrayne, C.E.; Marks, K.M.; Fierer, D.S.; Naggie, S.; Chung, R.T.; Hughes, M.D.; Kim, A.Y.; Peters, M.G.; Brainard, D.M.; Seifert, S.M.; Castillo-Mancilla, J.R.; Bushman, L.R.; Anderson, P.L.; Kiser, J.J. Effects of sofosbuvir-based hepatitis C treatment on the pharma-cokinetics of tenofovir in HIV/HCV-coinfected individuals receiving tenofovir disoproxil fumarate. J. Antimicrob. Chemother., 2018, 73(8), 2112-2119.
[http://dx.doi.org/10.1093/jac/dky146] [PMID: 29746648]
[106]
Parvez, M.M.; Kalkisim, S.; Nguyen, P.T.T.; Jung, J.A.; Park, J.K.; Ghim, J.L.; Kim, E.Y.; Cho, Y.S.; Babaoglu, M.O.; Shin, J.G. Para‐aminosalicylic acid significantly reduced tenofovir exposure in human subjects: Mismatched findings from in vitro to in vivo translational research. Br. J. Clin. Pharmacol., 2022, 88(3), 1159-1169.
[http://dx.doi.org/10.1111/bcp.15056] [PMID: 34432302]
[107]
Moss, D.M.; Neary, M.; Owen, A. The role of drug transporters in the kidney: Lessons from tenofovir. Front. Pharmacol., 2014, 5, 248.
[http://dx.doi.org/10.3389/fphar.2014.00248] [PMID: 25426075]
[108]
Blank, A.; Eidam, A.; Haag, M.; Hohmann, N.; Burhenne, J.; Schwab, M.; van de Graaf, S.F.J.; Meyer, M.R.; Maurer, H.H.; Meier, K.; Weiss, J.; Bruckner, T.; Alexandrov, A.; Urban, S.; Mikus, G.; Haefeli, W.E. The NTCP-inhibitor Myrcludex B: Effects on bile acid dispo-sition and tenofovir pharmacokinetics. Clin. Pharmacol. Ther., 2018, 103(2), 341-348.
[http://dx.doi.org/10.1002/cpt.744] [PMID: 28543042]
[109]
Kearney, B.P.; Flaherty, J.F.; Shah, J. Tenofovir disoproxil fumarate: Clinical pharmacology and pharmacokinetics. Clin. Pharmacokinet., 2004, 43(9), 595-612.
[http://dx.doi.org/10.2165/00003088-200443090-00003] [PMID: 15217303]
[110]
Cerrone, M.; Alfarisi, O.; Neary, M.; Marzinke, M.A.; Parsons, T.L.; Owen, A.; Maartens, G.; Pozniak, A.; Flexner, C.; Boffito, M. Rifam-picin effect on intracellular and plasma pharmacokinetics of tenofovir alafenamide. J. Antimicrob. Chemother., 2019, 74(6), 1670-1678.
[http://dx.doi.org/10.1093/jac/dkz068] [PMID: 30815689]
[111]
TENOFOVIR DISOPROXIL FUMARATE tablets, for oral use. https://www.accessdata.fda.gov/drugsatfda_docs/pepfar/078800PI.pdf (Accessed on: 2017-10)
[112]
Gupta, A.; Zhang, Y.; Unadkat, J.D.; Mao, Q. HIV protease inhibitors are inhibitors but not substrates of the human breast cancer re-sistance protein (BCRP/ABCG2). J. Pharmacol. Exp. Ther., 2004, 310(1), 334-341.
[http://dx.doi.org/10.1124/jpet.104.065342] [PMID: 15007102]
[113]
Perloff, E.S.; Duan, S.X.; Skolnik, P.R.; Greenblatt, D.J.; von Moltke, L.L. Atazanavir: Effects on P-glycoprotein transport and CYP3A metabolism in vitro. Drug Metab. Dispos., 2005, 33(6), 764-770.
[http://dx.doi.org/10.1124/dmd.104.002931] [PMID: 15764714]
[114]
Foisy, M.M.; Yakiwchuk, E.M.; Hughes, C.A. Induction effects of ritonavir: Implications for drug interactions. Ann. Pharmacother., 2008, 42(7-8), 1048-1059.
[http://dx.doi.org/10.1345/aph.1K615] [PMID: 18577765]
[115]
Wyen, C.; Fuhr, U.; Frank, D.; Aarnoutse, R.E.; Klaassen, T.; Lazar, A.; Seeringer, A.; Doroshyenko, O.; Kirchheiner, J.C.; Abdulrazik, F.; Schmeisser, N.; Lehmann, C.; Hein, W.; Schömig, E.; Burger, D.M.; Fätkenheuer, G.; Jetter, A. Effect of an antiretroviral regimen contain-ing ritonavir boosted lopinavir on intestinal and hepatic CYP3A, CYP2D6 and P-glycoprotein in HIV-infected patients. Clin. Pharmacol. Ther., 2008, 84(1), 75-82.
[http://dx.doi.org/10.1038/sj.clpt.6100452] [PMID: 18183034]
[116]
Hill, A.; Khoo, S.; Back, D.; Pozniak, A.; Boffito, M. Should the dose of tenofovir be reduced to 200-250 mg/day, when combined with protease inhibitors? J. Int. AIDS Soc., 2014, 17(4)(Suppl. 3), 19583.
[http://dx.doi.org/10.7448/IAS.17.4.19583] [PMID: 25394089]
[117]
Thurman, A.R.; Schwartz, J.L.; Brache, V.; Chen, B.A.; Chandra, N.; Kashuba, A.D.M.; Weiner, D.H.; Mauck, C.; Doncel, G.F. Effect of hormonal contraception on pharmacokinetics of vaginal tenofovir in healthy women: Increased tenofovir diphosphate in injectable depot medroxyprogesterone acetate users. J. Acquir. Immune Defic. Syndr., 2019, 80(1), 79-88.
[http://dx.doi.org/10.1097/QAI.0000000000001864] [PMID: 30212395]
[118]
Wu, G.; Tang, W.; Lv, D.; Wu, L.; Zhou, H.; Yang, X.; Zheng, Y.; Zhai, Y.; Shentu, J. Effects of tenofovir on the single-dose pharmacoki-netics of intravenous morinidazole in healthy chinese subjects. Antimicrob. Agents Chemother., 2020, 64(5), e02067-e19.
[http://dx.doi.org/10.1128/AAC.02067-19] [PMID: 32152080]
[119]
Grant, R.M.; Pellegrini, M.; Defechereux, P.A.; Anderson, P.L.; Yu, M.; Glidden, D.V.; O’Neal, J.; Yager, J.; Bhasin, S.; Sevelius, J.; Deutsch, M.B. Sex hormone therapy and tenofovir diphosphate concentration in dried blood spots: Primary results of the interactions be-tween antiretrovirals and transgender hormones study. Clin. Infect. Dis., 2021, 73(7), e2117-e2123.
[http://dx.doi.org/10.1093/cid/ciaa1160] [PMID: 32766890]
[120]
Pene Dumitrescu, T.; Joshi, S.R.; Xu, J.; Zhan, J.; Johnson, M.; Butcher, L.; Zimmerman, E.; Webster, L.; Davidson, A.M.; Lataillade, M.; Min, S. A phase I evaluation of the pharmacokinetics and tolerability of the HIV-1 maturation inhibitor GSK3640254 and tenofovir ala-fenamide/emtricitabine in healthy participants. Antimicrob. Agents Chemother., 2021, 65(6), e02173-e20.
[http://dx.doi.org/10.1128/AAC.02173-20] [PMID: 33753329]
[121]
Ruane, P.J.; DeJesus, E.; Berger, D.; Markowitz, M.; Bredeek, U.F.; Callebaut, C.; Zhong, L.; Ramanathan, S.; Rhee, M.S.; Fordyce, M.W.; Yale, K. Antiviral activity, safety, and pharmacokinetics/pharmacodynamics of Tenofovir Alafenamide as 10-day monotherapy in HIV-1-positive adults. J. Acqu. Imm. Defic. Synd. (1999), 2013, 63(4), 449-455.
[122]
Joshi, A.; Kiesel, B.F.; Chaphekar, N.; Jones, R.; Guo, J.; Kunos, C.A.; Taylor, S.; Chu, E.; Venkataramanan, R.; Beumer, J.H. In vitro evaluation of the metabolic enzymes and drug interaction potential of triapine. Cancer Chemother. Pharmacol., 2020, 86(5), 633-640.
[http://dx.doi.org/10.1007/s00280-020-04154-5] [PMID: 32989483]
[123]
Marzolini, C.; Rajoli, R.; Battegay, M.; Elzi, L.; Back, D.; Siccardi, M. Physiologically based pharmacokinetic modeling to predict drug-drug interactions with efavirenz involving simultaneous inducing and inhibitory effects on cytochromes. Clin. Pharmacokinet., 2017, 56(4), 409-420.
[http://dx.doi.org/10.1007/s40262-016-0447-7] [PMID: 27599706]
[124]
Sundell, J.; Bienvenu, E.; Äbelö, A.; Ashton, M. Effect of efavirenz-based ART on the pharmacokinetics of rifampicin and its primary metabolite in patients coinfected with TB and HIV. J. Antimicrob. Chemother., 2021, 76(11), 2950-2957.
[http://dx.doi.org/10.1093/jac/dkab258] [PMID: 34337654]
[125]
EFAVIRENZ tablets, for oral use. https://www.accessdata.fda.gov/drugsatfda_docs/pepfar/077673PI.pdf (Accessed on: 2019-12).
[126]
Bertrand, J.; Verstuyft, C.; Chou, M.; Borand, L.; Chea, P.; Nay, K.H.; Blanc, F.X.; Mentré, F.; Taburet, A.M.; Sok, T.; Goldfeld, A.E.; Blanc, F-X.; Laureillard, D.; Marcy, O.; Fernandez, M.; Chan, S.; Nerrienet, E.; Vong, S.; Madec, Y.; Rekacewicz, C.; Saman, M.; Leng, C.; Ay, S.S.; Pheng, P.; Chan, L.H.; Suom, S.; Men, N.R.; Phon, K.; Kun, S.; Chea, S.; Toeung, P.; Yoeun, Y.; Dy, K.K.; Kry, P.; Meardey, K.; Guillard, B.; Srey, C.; Keo, C.; Ngin, S.; Sar, B.; Nouhin, J.; Ken, S.; Chea, K.; Kong, K.; Tun, S.; Say, L.; Sok, K.E.; Lim, H.K. Depend-ence of efavirenz- and rifampicin-isoniazid-based antituberculosis treatment drug-drug interaction on CYP2B6 and NAT2 genetic poly-morphisms: ANRS 12154 study in Cambodia. J. Infect. Dis., 2014, 209(3), 399-408.
[http://dx.doi.org/10.1093/infdis/jit466] [PMID: 23990572]
[127]
Mutiti, C.S.; Kapungu, N.N.; Kanji, C.R.; Stadler, N.; Stingl, J.; Nhachi, C.; Hakim, J.; Masimirembwa, C.; Thelingwani, R.S. Clinically rele-vant enantiomer specific R‐ and S‐praziquantel pharmacokinetic drug‐drug interactions with efavirenz and ritonavir. Pharmacol. Res. Perspect., 2021, 9(3), e00769.
[http://dx.doi.org/10.1002/prp2.769] [PMID: 33929078]
[128]
Iwamoto, M.; Wenning, L.A.; Petry, A.S.; Laethem, M.; De Smet, M.; Kost, J.T.; Breidinger, S.A.; Mangin, E.C.; Azrolan, N.; Greenberg, H.E.; Haazen, W.; Stone, J.A.; Gottesdiener, K.M.; Wagner, J.A. Minimal effects of ritonavir and efavirenz on the pharmacokinetics of ral-tegravir. Antimicrob. Agents Chemother., 2008, 52(12), 4338-4343.
[http://dx.doi.org/10.1128/AAC.01543-07] [PMID: 18838589]
[129]
Bertagnolio, S.; Hermans, L.; Jordan, M.R.; Avila-Rios, S.; Iwuji, C.; Derache, A.; Delaporte, E.; Wensing, A.; Aves, T.; Borhan, A.S.M.; Leenus, A.; Parkin, N.; Doherty, M.; Inzaule, S.; Mbuagbaw, L. Clinical impact of pretreatment human immunodeficiency virus drug re-sistance in people initiating nonnucleoside reverse transcriptase inhibitor-containing antiretroviral therapy: A systematic review and meta-analysis. J. Infect. Dis., 2021, 224(3), 377-388.
[http://dx.doi.org/10.1093/infdis/jiaa683] [PMID: 33202025]
[130]
Robertson, S.M.; Maldarelli, F.; Natarajan, V.; Formentini, E.; Alfaro, R.M.; Penzak, S.R. Efavirenz induces CYP2B6-mediated hydroxyla-tion of bupropion in healthy subjects. J. Acquir. Immune Defic. Syndr., 2008, 49(5), 513-519.
[http://dx.doi.org/10.1097/QAI.0b013e318183a425] [PMID: 18989234]
[131]
Marc, W.; Benator, D.; Peloquin, C.A.; Burman, W.; Vernon, A.; Engle, M.; Khan, A.; Zhao, Z.; Consortium, T.T. Evaluation of the drug interaction between rifabutin and efavirenz in patients with HIV infection and tuberculosis. Clin. Infect. Dis., 2005, 41(9), 1343-1349.
[http://dx.doi.org/10.1086/496980] [PMID: 16206114]
[132]
Dooley, K.E.; Park, J.G.; Swindells, S.; Allen, R.; Haas, D.W.; Cramer, Y.; Aweeka, F.; Wiggins, I.; Gupta, A.; Lizak, P.; Qasba, S.; van Heeswijk, R.; Flexner, C.; Team, A.S. Safety, tolerability, and pharmacokinetic interactions of the antituberculous agent TMC207 (bedaq-uiline) with efavirenz in healthy volunteers: AIDS Clinical Trials Group Study A5267. J. Acquir. Immune Defic. Syndr., 2012, 59(5), 455-462.
[http://dx.doi.org/10.1097/QAI.0b013e3182410503] [PMID: 22126739]
[133]
Oswald, S.; Meyer zu Schwabedissen, H.E.; Nassif, A.; Modess, C.; Desta, Z.; Ogburn, E.T.; Mostertz, J.; Keiser, M.; Jia, J.; Hubeny, A.; Ulrich, A.; Runge, D.; Marinova, M.; Lütjohann, D.; Kroemer, H.K.; Siegmund, W. Impact of efavirenz on intestinal metabolism and transport: Insights from an interaction study with ezetimibe in healthy volunteers. Clin. Pharmacol. Ther., 2012, 91(3), 506-513.
[http://dx.doi.org/10.1038/clpt.2011.255] [PMID: 22297387]
[134]
Scarsi, K.; Lamorde, M.; Darin, K.; Dilly Penchala, S.; Else, L.; Nakalema, S.; Byakika-Kibwika, P.; Khoo, S.; Cohn, S.; Merry, C.; Back, D. Efavirenz- but not nevirapine-based antiretroviral therapy decreases exposure to the levonorgestrel released from a sub-dermal contra-ceptive implant. J. Int. AIDS Soc., 2014, 17(4)(Suppl. 3), 19484.
[http://dx.doi.org/10.7448/IAS.17.4.19484] [PMID: 25393993]
[135]
Naidoo, A.; Chirehwa, M.; McIlleron, H.; Naidoo, K.; Essack, S.; Yende-Zuma, N.; Kimba-Phongi, E.; Adamson, J.; Govender, K.; Pa-dayatchi, N.; Denti, P. Effect of rifampicin and efavirenz on moxifloxacin concentrations when co-administered in patients with drug-susceptible TB. J. Antimicrob. Chemother., 2017, 72(5), 1441-1449.
[http://dx.doi.org/10.1093/jac/dkx004] [PMID: 28175315]
[136]
Chirehwa, M.T.; McIlleron, H.; Wiesner, L.; Affolabi, D.; Bah-Sow, O.; Merle, C.; Denti, P. Effect of efavirenz-based antiretroviral therapy and high-dose rifampicin on the pharmacokinetics of isoniazid and acetyl-isoniazid. J. Antimicrob. Chemother., 2019, 74(1), 139-148.
[PMID: 30239829]
[137]
Neary, M.; Chappell, C.A.; Scarsi, K.K.; Nakalema, S.; Matovu, J.; Achilles, S.L.; Chen, B.A.; Siccardi, M.; Owen, A.; Lamorde, M. Effect of patient genetics on etonogestrel pharmacokinetics when combined with efavirenz or nevirapine ART. J. Antimicrob. Chemother., 2019, 74(10), 3003-3010.
[http://dx.doi.org/10.1093/jac/dkz298] [PMID: 31299074]
[138]
Wang, J.; Zhang, Z.Y.; Lu, S.; Powers, D.; Kansra, V.; Wang, X. Effects of rolapitant administered orally on the pharmacokinetics of dex-tromethorphan (CYP2D6), tolbutamide (CYP2C9), omeprazole (CYP2C19), efavirenz (CYP2B6), and repaglinide (CYP2C8) in healthy subjects. Support. Care Cancer, 2019, 27(3), 819-827.
[http://dx.doi.org/10.1007/s00520-018-4331-x] [PMID: 30084103]
[139]
Atwine, D.; Baudin, E.; Gelé, T.; Muyindike, W.; Mworozi, K.; Kyohairwe, R.; Kananura, K.; Orikiriza, P.; Nyehangane, D.K.T.; Nanjebe, D.; Furlan, V.; Verstuyft, C.; Barrail-Tran, A.; Taburet, A.M.; Bonnet, M. Effect of high-dose rifampicin on efavirenz pharmacokinetics: Drug-drug interaction randomized trial. J. Antimicrob. Chemother., 2020, 75(5), 1250-1258.
[http://dx.doi.org/10.1093/jac/dkz557] [PMID: 31999314]
[140]
Kaewpoowat, Q.; Chaiwarith, R.; Yasri, S.; Worasilchai, N.; Chindamporn, A.; Sirisanthana, T.; Cressey, T.R. Drug-drug interaction be-tween itraconazole capsule and efavirenz in adults with HIV for talaromycosis treatment. J. Antimicrob. Chemother., 2021, 76(4), 1041-1045.
[http://dx.doi.org/10.1093/jac/dkaa521] [PMID: 33349869]
[141]
McCance-Katz, E.F.; Gruber, V.A.; Beatty, G.; Lum, P.; Ma, Q.; DiFrancesco, R.; Hochreiter, J.; Wallace, P.K.; Faiman, M.D.; Morse, G.D. Interaction of disulfiram with antiretroviral medications: Efavirenz increases while atazanavir decreases disulfiram effect on enzymes of alcohol metabolism. Am. J. Addict., 2014, 23(2), 137-144.
[http://dx.doi.org/10.1111/j.1521-0391.2013.12081.x] [PMID: 24118434]
[142]
Khatri, A.; Dutta, S.; Dunbar, M.; Podsadecki, T.; Trinh, R.; Awni, W.; Menon, R. Evaluation of drug-drug interactions between direct-acting anti-hepatitis C virus combination regimens and the HIV-1 antiretroviral agents raltegravir, tenofovir, emtricitabine, efavirenz, and rilpivirine. Antimicrob. Agents Chemother., 2016, 60(5), 2965-2971.
[http://dx.doi.org/10.1128/AAC.02605-15] [PMID: 26953200]
[143]
Podany, A.T.; Leon-Cruz, J.; Hakim, J.; Supparatpinyo, K.; Omoz-Oarhe, A.; Langat, D.; Mwelase, N.; Kanyama, C.; Gupta, A.; Benson, C.A.; Chaisson, R.E.; Swindells, S.; Fletcher, C.V.; Kim, P.; Johnson, D.; Moran, L.; Andersen, J.; Bao, Y.; Wu, S.; Blanchard-Horan, C.; Walawander, A.; Shin, K.; Ebiasah, R.; Holland, D. JeanJuste, M.A.; Nuermberger, E.; Pillay, S.; Sanne, I.; Nicotera, J.; Shugarts, D.; Shali, A.; Tutko, J.; Demers, B.; Maroni, M.; Sanchez, J.L.; Iglesias, D.; Lama, J.; Matoga, M.; do Amaral Calvet, G.; Tonui, R.K.; Modise, T.; Kasaro, M.; Naidoo, K.; Kadam, D.; Burman, W. Nevirapine pharmacokinetics in HIV-infected persons receiving rifapentine and isoniazid for TB prevention. J. Antimicrob. Chemother., 2021, 76(3), 718-721.
[http://dx.doi.org/10.1093/jac/dkaa470] [PMID: 33241266]
[144]
Raffi, F.; Reliquet, V.; Ferré, V.; Arvieux, C.; Hascoet, C.; Bellein, V.; Besnier, J.M.; Breux, J.P.; Garré, M.; May, T.; Molina, J.M.; Perré, P.; Raguin, G.; Rozenbaum, W.; Zucman, D. The VIRGO study: Nevirapine, didanosine and stavudine combination therapy in antiretrovi-ral-naive HIV-1-infected adults. Antivir. Ther., 2000, 5(4), 267-272.
[http://dx.doi.org/10.1177/135965350000500405] [PMID: 11142621]
[145]
Montaner, J.S.G.; Reiss, P.; Cooper, D.; Vella, S.; Harris, M.; Conway, B.; Wainberg, M.A.; Smith, D.; Robinson, P.; Hall, D.; Myers, M.; Lange, J.M.A. A randomized, double-blind trial comparing combinations of nevirapine, didanosine, and zidovudine for HIV-infected pa-tients: the INCAS Trial. Italy, The Netherlands, Canada and Australia Study. JAMA, 1998, 279(12), 930-937.
[http://dx.doi.org/10.1001/jama.279.12.930] [PMID: 9544767]
[146]
Medrano, J.; Barreiro, P.; Tuma, P.; Vispo, E.; Labarga, P.; Blanco, F.; Soriano, V. Risk for immune-mediated liver reactions by nevirapine revisited. AIDS Rev., 2008, 10(2), 110-115.
[PMID: 18615121]
[147]
Abdullahi, S.T.; Olagunju, A.; Soyinka, J.O.; Bolarinwa, R.A.; Olarewaju, O.J.; Bakare-Odunola, M.T.; Owen, A.; Khoo, S. Pharmacogenet-ics of artemether‐lumefantrine influence on nevirapine disposition: Clinically significant drug-drug interaction? Br. J. Clin. Pharmacol., 2019, 85(3), 540-550.
[http://dx.doi.org/10.1111/bcp.13821] [PMID: 30471138]
[148]
Usach, I.; Melis, V.; Gandía, P.; Peris, J.E. Pharmacokinetic interaction between nevirapine and nortriptyline in rats: inhibition of nevirap-ine metabolism by nortriptyline. Antimicrob. Agents Chemother., 2014, 58(12), 7041-7048.
[http://dx.doi.org/10.1128/AAC.03312-14] [PMID: 25224004]
[149]
Droste, J.A.H.; Kearney, B.P.; Hekster, Y.A.; Burger, D.M. Assessment of drug-drug interactions betweentenofovir disoproxil fumarate and the nonnucleoside reverse transcriptase inhibitors nevirapine and efavirenz in HIV-infected patients. J. Acquired Immune Deficien. Syndrom. (1999), 2006, 41(1), 37-43.
[150]
NEVIRAPINE Tablets USP 200 mg, for oral use. https://www.accessdata.fda.gov/drugsatfda_docs/pepfar/077956PI.pdf (Accessed on: 2014-06)
[151]
Decloedt, E.H.; Mwansa-Kambafwile, J.; van der Walt, J-S.; McIlleron, H.; Denti, P.; Smith, P.; Wiesner, L.; Rangaka, M.; Wilkinson, R.J.; Maartens, G. The pharmacokinetics of nevirapine when given with isoniazid in South African HIV-infected individuals [Short communication]. Int. J. Tuberc. Lung Dis., 2013, 17(3), 333-335.
[http://dx.doi.org/10.5588/ijtld.12.0427] [PMID: 23407222]
[152]
Fillekes, Q.; Muro, E.P.; Chunda, C.; Aitken, S.; Kisanga, E.R.; Kankasa, C.; Thomason, M.J.; Gibb, D.M.; Walker, A.S.; Burger, D.M. Effect of 7 days of phenytoin on the pharmacokinetics of and the development of resistance to single-dose nevirapine for perinatal HIV prevention: A randomized pilot trial. J. Antimicrob. Chemother., 2013, 68(11), 2609-2615.
[http://dx.doi.org/10.1093/jac/dkt246] [PMID: 23864647]
[153]
Kakuda, T.N.; Leopold, L.; Nijs, S.; Vandevoorde, A.; Crauwels, H.M.; Bertelsen, K.M.; Stevens, M.; Witek, J.; van Delft, Y.; Tomaka, F.; Hoetelmans, R.M.W. Pharmacokinetic interaction between etravirine or rilpivirine and telaprevir in healthy volunteers: A randomized, two-way crossover trial. J. Clin. Pharmacol., 2014, 54(5), 563-573.
[http://dx.doi.org/10.1002/jcph.245] [PMID: 25975423]
[154]
Rilpivirine Tablets 25 mg for oral use. https://www.accessdata.fda.gov/drugsatfda_docs/pepfar/205302PI.pdf (Accessed on: 2015-09)
[155]
Ma, Q.; Gelbard, H.A.; Maggirwar, S.B.; Dewhurst, S.; Gendelman, H.E.; Peterson, D.R.; DiFrancesco, R.; Hochreiter, J.S.; Morse, G.D.; Schifitto, G. Pharmacokinetic interactions of CEP-1347 and atazanavir in HIV-infected patients. J. Neurovirol., 2013, 19(3), 254-260.
[http://dx.doi.org/10.1007/s13365-013-0172-z] [PMID: 23737347]
[156]
Lozano, R.; Domeque, N.; Apesteguia, A.F. Atazanavir-bilirubin interaction: A pharmacokinetic-pharmacodynamic model. Clin. Pharmacol., 2013, 5, 153-159.
[http://dx.doi.org/10.2147/CPAA.S48377] [PMID: 24106429]
[157]
Kis, O.; Zastre, J.A.; Hoque, M.T.; Walmsley, S.L.; Bendayan, R. Role of drug efflux and uptake transporters in atazanavir intestinal per-meability and drug-drug interactions. Pharm. Res., 2013, 30(4), 1050-1064.
[http://dx.doi.org/10.1007/s11095-012-0942-y] [PMID: 23224979]
[158]
Manosuthi, W.; Ongwandee, S.; Bhakeecheep, S.; Leechawengwongs, M.; Ruxrungtham, K.; Phanuphak, P.; Hiransuthikul, N.; Ratanasu-wan, W.; Chetchotisakd, P.; Tantisiriwat, W.; Kiertiburanakul, S.; Avihingsanon, A.; Sukkul, A.; Anekthananon, T. Guidelines for an-tiretroviral therapy in HIV-1 infected adults and adolescents 2014, Thailand. AIDS Res. Ther., 2015, 12(1), 12.
[http://dx.doi.org/10.1186/s12981-015-0053-z]
[159]
ATAZANAVIR capsules, for oral use.https://www.accessdata. fda.gov/drugsatfda_docs/pepfar/200196PI.pdf Accessed on: 2018-04).
[160]
Calcagno, A.; Baietto, L.; Pagani, N.; Simiele, M.; Audagnotto, S.; D’Avolio, A.; De Rosa, F.G.; Perri, G.D.; Bonora, S. Voriconazole and atazanavir: A CYP2C19-dependent manageable drug-drug interaction. Pharmacogenomics, 2014, 15(10), 1281-1286.
[http://dx.doi.org/10.2217/pgs.14.92] [PMID: 25155930]
[161]
DuBois, B.N.; Atrio, J.; Stanczyk, F.Z.; Cherala, G. Increased exposure of norethindrone in HIV+ women treated with ritonavir-boosted atazanavir therapy. Contraception, 2015, 91(1), 71-75.
[http://dx.doi.org/10.1016/j.contraception.2014.08.009] [PMID: 25245190]
[162]
Mendonza, A.; Hanna, I.; Meyers, D.; Koo, P.; Neelakantham, S.; Zhu, B.; Majumdar, T.; Rebello, S.; Sunkara, G.; Chen, J. Assessment of pharmacokinetic drug-drug interaction between pradigastat and atazanavir or probenecid. J. Clin. Pharmacol., 2016, 56(3), 355-364.
[http://dx.doi.org/10.1002/jcph.595] [PMID: 26189431]
[163]
Mey, D.; Gerisch, M.; Jungmann, N.A.; Kaiser, A.; Yoshikawa, K.; Schulz, S.; Radtke, M.; Lentini, S. Drug‐drug interaction of atazanavir on UGT1A1‐mediated glucuronidation of molidustat in human. Basic Clin. Pharmacol. Toxicol., 2021, 128(3), 511-524.
[http://dx.doi.org/10.1111/bcpt.13538] [PMID: 33232579]
[164]
Morris, C.A.; Lopez-Lazaro, L.; Jung, D.; Methaneethorn, J.; Duparc, S.; Borghini-Fuhrer, I.; Pokorny, R.; Shin, C.S.; Fleckenstein, L. Drug-drug interaction analysis of pyronaridine/artesunate and ritonavir in healthy volunteers. Am. J. Trop. Med. Hyg., 2012, 86(3), 489-495.
[http://dx.doi.org/10.4269/ajtmh.2012.11-0558] [PMID: 22403324]
[165]
Nyunt, M.M.; Lu, Y.; Yu, Q.; El-Gasim, M.; Parsons, T.L.; Petty, B.G.; Hendrix, C.W. Effects of ritonavir-boosted lopinavir on the phar-macokinetics of quinine. Clin. Pharmacol. Ther., 2012, 91(5), 889-895.
[http://dx.doi.org/10.1038/clpt.2011.326] [PMID: 22472986]
[166]
Ancrenaz, V.; Déglon, J.; Samer, C.; Staub, C.; Dayer, P.; Daali, Y.; Desmeules, J. Pharmacokinetic interaction between prasugrel and ri-tonavir in healthy volunteers. Basic Clin. Pharmacol. Toxicol., 2013, 112(2), 132-137.
[http://dx.doi.org/10.1111/j.1742-7843.2012.00932.x] [PMID: 22900583]
[167]
Morgan, R.E.; Campbell, S.E.; Suehira, K.; Sponseller, C.A.; Yu, C.Y.; Medlock, M.M. Effects of steady-state lopinavir/ritonavir on the pharmacokinetics of pitavastatin in healthy adult volunteers. J. Acquir. Immune Defic. Syndr., 2012, 60(2), 158-164.
[http://dx.doi.org/10.1097/QAI.0b013e318251addb]
[168]
Stader, F.; Khoo, S.; Stoeckle, M.; Back, D.; Hirsch, H.H.; Battegay, M.; Marzolini, C. Stopping lopinavir/ritonavir in COVID-19 patients: duration of the drug interacting effect. J. Antimicrob. Chemother., 2020, 75(10), 3084-3086.
[http://dx.doi.org/10.1093/jac/dkaa253] [PMID: 32556272]
[169]
Waters, L.; Marra, F.; Pozniak, A.; Cockburn, J.; Boffito, M. Ritonavir and COVID-19: pragmatic guidance is important. Lancet, 2022, 399(10334), 1464-1465.
[http://dx.doi.org/10.1016/S0140-6736(22)00280-X] [PMID: 35334211]
[170]
RITONAVIR Tablets USP. 100 mg, for oral use. https://www.accessdata.fda.gov/drugsatfda_docs/pepfar/203759PI.pdf
[171]
Kaplan, S.S.; Hicks, C.B. Lopinavir/ritonavir in the treatment of human immunodeficiency virus infection. Expert Opin. Pharmacother., 2005, 6(9), 1573-1585.
[http://dx.doi.org/10.1517/14656566.6.9.1573] [PMID: 16086645]
[172]
Kirby, B.J.; Collier, A.C.; Kharasch, E.D.; Whittington, D.; Thummel, K.E.; Unadkat, J.D. Complex drug interactions of HIV protease in-hibitors 1: Inactivation, induction, and inhibition of cytochrome P450 3A by ritonavir or nelfinavir. Drug Metab. Dispos., 2011, 39(6), 1070-1078.
[http://dx.doi.org/10.1124/dmd.110.037523] [PMID: 21406602]
[173]
Itkonen, M.K.; Tornio, A.; Lapatto-Reiniluoto, O.; Neuvonen, M.; Neuvonen, P.J.; Niemi, M.; Backman, J.T. Clopidogrel increases da-sabuvir exposure with or without ritonavir, and ritonavir inhibits the bioactivation of clopidogrel. Clin. Pharmacol. Ther., 2019, 105(1), 219-228.
[http://dx.doi.org/10.1002/cpt.1099] [PMID: 29696643]
[174]
Niu, W.; Li, S.; Jin, S.; Lin, X.; Zhang, M.; Cai, W.; Jiao, Z.; Xiang, X. Investigating the interaction between nifedipine‐ and ritonavir‐containing antiviral regimens: A physiologically based pharmacokinetic/pharmacodynamic analysis. Br. J. Clin. Pharmacol., 2021, 87(7), 2790-2806.
[http://dx.doi.org/10.1111/bcp.14684] [PMID: 33269470]
[175]
Reddy, M.B.; Chen, Y.; Haznedar, J.Ö.; Fretland, J.; Blotner, S.; Smith, P.; Tran, J.Q. Impact of low-dose ritonavir on danoprevir pharma-cokinetics. Clin. Pharmacokinet., 2012, 51(7), 457-465.
[http://dx.doi.org/10.2165/11599700-000000000-00000]
[176]
Gruber, V.A.; Rainey, P.M.; Moody, D.E.; Morse, G.D.; Ma, Q.; Prathikanti, S.; Pade, P.A.; Alvanzo, A.A.H.; McCance-Katz, E.F. Interac-tions between buprenorphine and the protease inhibitors darunavir-ritonavir and fosamprenavir-ritonavir. Clin. Infect. Dis., 2012, 54(3), 414-423.
[http://dx.doi.org/10.1093/cid/cir799] [PMID: 22100576]
[177]
Samineni, D.; Desai, P.B.; Sallans, L.; Fichtenbaum, C.J. Steady-state pharmacokinetic interactions of darunavir/ritonavir with lipid-lowering agent rosuvastatin. J. Clin. Pharmacol., 2012, 52(6), 922-931.
[http://dx.doi.org/10.1177/0091270011407494] [PMID: 21712498]
[178]
Boyd, S.D.; Hadigan, C.; Mcmanus, M.; Chairez, C.; Nieman, L.K.; Pau, A.K.; Alfaro, R.M.; Kovacs, J.A.; Calderon, M.M.; Penzak, S.R. Influence of low-dose ritonavir with and without darunavir on the pharmacokinetics and pharmacodynamics of inhaled beclomethasone. J. Acquir. Immune Defic. Syndr., 2013, 63(3), 355-361.
[http://dx.doi.org/10.1097/QAI.0b013e31829260d6] [PMID: 23535292]
[179]
Brennan, B.J.; Moreira, S.A.; Morcos, P.N.; Navarro, M.T.; Asthappan, J.; Goelzer, P.; Weigl, P.; Smith, P.F. Pharmacokinetics of a three-way drug interaction between danoprevir, ritonavir and the organic anion transporting polypeptide (OATP) inhibitor ciclosporin. Clin. Pharmacokinet., 2013, 52(9), 805-813.
[http://dx.doi.org/10.1007/s40262-013-0077-2] [PMID: 23712757]
[180]
Kakuda, T.N.; DeMasi, R.; van Delft, Y.; Mohammed, P. Pharmacokinetic interaction between etravirine or darunavir/ritonavir and arteme-ther/lumefantrine in healthy volunteers: A two-panel, two-way, two-period, randomized trial. HIV Med., 2013, 14(7), 421-429.
[http://dx.doi.org/10.1111/hiv.12019] [PMID: 23441978]
[181]
Morcos, P.N.; Chang, L.; Kulkarni, R.; Giraudon, M.; Shulman, N.; Brennan, B.J.; Smith, P.F.; Tran, J.Q. A randomised study of the effect of danoprevir/ritonavir or ritonavir on substrates of cytochrome P450 (CYP) 3A and 2C9 in chronic hepatitis C patients using a drug cocktail. Eur. J. Clin. Pharmacol., 2013, 69(11), 1939-1949.
[http://dx.doi.org/10.1007/s00228-013-1556-y] [PMID: 23872824]
[182]
Jacobs, B.S.; Colbers, A.P.H.; Velthoven-Graafland, K.; Schouwenberg, B.J.J.W.; Burger, D.M. Effect of fosamprenavir/ritonavir on the pharmacokinetics of single-dose olanzapine in healthy volunteers. Int. J. Antimicrob. Agents, 2014, 44(2), 173-177.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.03.014] [PMID: 24929949]
[183]
Moreira, S.A.; Morcos, P.N.; Navarro, M.T.; Bech, N.; Smith, P.F.; Brennan, B.J. Effect of ritonavir-boosted danoprevir, a potent hepatitis C virus protease inhibitor, on the pharmacokinetics of methadone in healthy subjects undergoing methadone maintenance therapy. Pharmacotherapy, 2014, 34(3), 220-226.
[http://dx.doi.org/10.1002/phar.1341] [PMID: 23946152]
[184]
Svensson, E.M.; Dooley, K.E.; Karlsson, M.O. Impact of lopinavir-ritonavir or nevirapine on bedaquiline exposures and potential impli-cations for patients with tuberculosis-HIV coinfection. Antimicrob. Agents Chemother., 2014, 58(11), 6406-6412.
[http://dx.doi.org/10.1128/AAC.03246-14] [PMID: 25114140]
[185]
Wind, S.; Giessmann, T.; Jungnik, A.; Brand, T.; Marzin, K.; Bertulis, J.; Hocke, J.; Gansser, D.; Stopfer, P. Pharmacokinetic drug interac-tions of afatinib with rifampicin and ritonavir. Clin. Drug Investig., 2014, 34(3), 173-182.
[http://dx.doi.org/10.1007/s40261-013-0161-2] [PMID: 24399452]
[186]
Decloedt, E.H.; van der Walt, J.S.; McIlleron, H.; Wiesner, L.; Maartens, G. The pharmacokinetics of lopinavir/ritonavir when given with isoniazid in South African HIV-infected individuals. Int. J. Tuberc. Lung Dis., 2015, 19(10), 1194-1196.
[http://dx.doi.org/10.5588/ijtld.15.0044] [PMID: 26459532]
[187]
Goud, T.; Maddi, S.; Nayakanti, D.; Thatipamula, R.P. Altered pharmacokinetics and pharmacodynamics of repaglinide by ritonavir in rats with healthy, diabetic and impaired hepatic function. Drug Metab. Pers. Ther., 2016, 31(2), 123-130.
[http://dx.doi.org/10.1515/dmpt-2015-0046] [PMID: 27166727]
[188]
King, J.R.; Dutta, S.; Cohen, D.; Podsadecki, T.J.; Ding, B.; Awni, W.M.; Menon, R.M. Drug-drug interactions between sofosbuvir and ombitasvir-paritaprevir-ritonavir with or without dasabuvir. Antimicrob. Agents Chemother., 2016, 60(2), 855-861.
[http://dx.doi.org/10.1128/AAC.01913-15] [PMID: 26596948]
[189]
Liang, G.; Li, N.; Ma, L.; Qian, Z.; Sun, Y.; Shi, L.; Zhao, L. Effect of quercetin on the transport of ritonavir to the central nervous system in vitro and in vivo. Acta Pharm., 2016, 66(1), 97-107.
[http://dx.doi.org/10.1515/acph-2016-0009] [PMID: 26959546]
[190]
Yamazaki, T.; Desai, A.; Han, D.; Kato, K.; Kowalski, D.; Akhtar, S.; Lademacher, C.; Kovanda, L.; Townsend, R. Pharmacokinetic inter-action between isavuconazole and a fixed-dose combination of Lopinavir 400 mg/ritonavir 100 mg in healthy subjects. Clin. Pharmacol. Drug Dev., 2017, 6(1), 93-101.
[http://dx.doi.org/10.1002/cpdd.282] [PMID: 27273248]
[191]
Freise, K.J.; Hu, B.; Salem, A.H. Impact of ritonavir dose and schedule on CYP3A inhibition and venetoclax clinical pharmacokinetics. Eur. J. Clin. Pharmacol., 2018, 74(4), 413-421.
[http://dx.doi.org/10.1007/s00228-017-2403-3] [PMID: 29302721]
[192]
Barcellos, T.; Natavio, M.; Stanczyk, F.Z.; Luo, D.; Jusko, W.J.; Bender, N.M. Effects of ritonavir-boosted protease inhibitors on com-bined oral contraceptive pharmacokinetics and pharmacodynamics in HIV-positive women. Contraception, 2019, 100(4), 283-287.
[http://dx.doi.org/10.1016/j.contraception.2019.06.002] [PMID: 31194965]
[193]
Venuto, C.S.; Cramer, Y.S.; Rosenkranz, S.L.; Sulkowski, M.; Wyles, D.L.; Cohen, D.E.; Schmidt, J.; Alston-Smith, B.L.; Morse, G.D. Raltegravir pharmacokinetics before and during treatment with ombitasvir, paritaprevir/ritonavir plus dasabuvir in adults with human im-munodeficiency virus‐1 and hepatitis C virus coinfection: AIDS Clinical Trials Group sub‐study A5334s. Br. J. Clin. Pharmacol., 2020, 86(1), 132-142.
[http://dx.doi.org/10.1111/bcp.14148] [PMID: 31656054]
[194]
Takahashi, S.; Karayama, M.; Takahashi, M.; Watanabe, J.; Minami, H.; Yamamoto, N.; Kinoshita, I.; Lin, C.C.; Im, Y.H.; Achiwa, I.; Kamiyama, E.; Okuda, Y.; Lee, C.; Bang, Y.J. Pharmacokinetics, safety, and efficacy of trastuzumab deruxtecan with concomitant ri-tonavir or itraconazole in patients with HER2-expressing advanced solid tumors. Clin. Cancer Res., 2021, 27(21), 5771-5780.
[http://dx.doi.org/10.1158/1078-0432.CCR-21-1560] [PMID: 34426442]
[195]
Colbers, A.; Greupink, R.; Litjens, C.; Burger, D.; Russel, F.G.M. Physiologically based modelling of darunavir/ritonavir pharmacokinetics during pregnancy. Clin. Pharmacokinet., 2016, 55(3), 381-396.
[http://dx.doi.org/10.1007/s40262-015-0325-8] [PMID: 26369773]
[196]
Curran, A.; Guiu, J.M.; Ribera, E.; Crespo, M. Darunavir and telaprevir drug interaction: Total and unbound plasma concentrations in HIV/HCV-coinfected patients with cirrhosis. J. Antimicrob. Chemother., 2014, 69(5), 1434-1436.
[http://dx.doi.org/10.1093/jac/dkt509] [PMID: 24363317]
[197]
Ruela Corrêa, J.C.; D’Arcy, D.M.; dos Reis Serra, C.H.; Nunes Salgado, H.R. Darunavir: A critical review of its properties, use and drug interactions. Pharmacology, 2012, 90(1-2), 102-109.
[http://dx.doi.org/10.1159/000339862] [PMID: 22797653]
[198]
Darwish, I.A.; Al-Majed, A.A.; Alsaif, N.A.; Bakheit, A.H.; Herqash, R.N.; Alzaid, A. Darunavir: A comprehensive profile. Profiles Drug Subst. Excip. Relat. Methodol., 2021, 46, 1-50.
[http://dx.doi.org/10.1016/bs.podrm.2020.07.001] [PMID: 33461696]
[199]
Kakuda, T.N.; Schöller-Gyüre, M.; Hoetelmans, R.M.W. Pharmacokinetic interactions between etravirine and non-antiretroviral drugs. Clin. Pharmacokinet., 2011, 50(1), 25-39.
[http://dx.doi.org/10.2165/11534740-000000000-00000] [PMID: 21142266]
[200]
Boffito, M.; Winston, A.; Jackson, A.; Fletcher, C.; Pozniak, A.; Nelson, M.; Moyle, G.; Tolowinska, I.; Hoetelmans, R.; Miralles, D.; Gaz-zard, B. Pharmacokinetics and antiretroviral response to darunavir/ritonavir and etravirine combination in patients with high-level viral re-sistance. AIDS, 2007, 21(11), 1449-1455.
[http://dx.doi.org/10.1097/QAD.0b013e3282170ab1] [PMID: 17589191]
[201]
DeJesus, E.; Lalezari, J.P.; Osiyemi, O.O.; Ruane, P.J.; Ryan, R.; Kakuda, T.N.; Witek, J. Pharmacokinetics of once-daily etravirine without and with once-daily darunavir/ritonavir in antiretroviral-naive HIV type-1-infected adults. Antivir. Ther., 2010, 15(5), 711-720.
[http://dx.doi.org/10.3851/IMP1562] [PMID: 20710052]
[202]
Larson, K.B.; Cressey, T.R.; Yogev, R.; Wiznia, A.; Hazra, R.; Jean-Philippe, P.; Graham, B.; Gonzalez, A.; Britto, P.; Carey, V.J.; Acosta, E.P. Pharmacokinetics of once-daily darunavir/ritonavir with and without etravirine in human immunodeficiency virus-infected children, adolescents, and young adults. J. Pediatric Infect. Dis. Soc., 2016, 5(2), 131-137.
[http://dx.doi.org/10.1093/jpids/piu142] [PMID: 27199469]
[203]
Wang, L.; Zhao, J.; Zhang, R.; Mi, L.; Shen, X.; Zhou, N.; Feng, T.; Jing, J.; Liu, X.; Zhang, S. Drug-drug interactions between PA-824 and darunavir based on pharmacokinetics in rats by LC-MS-MS. J. Chromatogr. Sci., 2018, 56(4), 327-335.
[http://dx.doi.org/10.1093/chromsci/bmy002] [PMID: 29373758]
[204]
Yu, C.Y.; Campbell, S.E.; Sponseller, C.A.; Small, D.S.; Medlock, M.M.; Morgan, R.E. Steady-state pharmacokinetics of da-runavir/ritonavir and pitavastatin when co-administered to healthy adult volunteers. Clin. Drug Investig., 2014, 34(7), 475-482.
[http://dx.doi.org/10.1007/s40261-014-0198-x] [PMID: 24825411]
[205]
Reese, M.J.; Savina, P.M.; Generaux, G.T.; Tracey, H.; Humphreys, J.E.; Kanaoka, E.; Webster, L.O.; Harmon, K.A.; Clarke, J.D.; Polli, J.W. In vitro investigations into the roles of drug transporters and metabolizing enzymes in the disposition and drug interactions of dolute-gravir, a HIV integrase inhibitor. Drug Metab. Dispos., 2013, 41(2), 353-361.
[http://dx.doi.org/10.1124/dmd.112.048918] [PMID: 23132334]
[206]
Song, I.; Borland, J.; Chen, S.; Peppercorn, A.; Wajima, T.; Piscitelli, S.C. Effect of fosamprenavir-ritonavir on the pharmacokinetics of dolutegravir in healthy subjects. Antimicrob. Agents Chemother., 2014, 58(11), 6696-6700.
[http://dx.doi.org/10.1128/AAC.03282-14] [PMID: 25155604]
[207]
DOLUTEGRAVIR tablets, for oral use. https://www.accessdata.fda.gov/drugsatfda_docs/pepfar/208355PI.pdf (Accessed on: 2019-08-12)
[208]
Zong, J.; Borland, J.; Jerva, F.; Wynne, B.; Choukour, M.; Song, I. The effect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J. Int. AIDS Soc., 2014, 17(4)(Suppl. 3), 19584.
[http://dx.doi.org/10.7448/IAS.17.4.19584] [PMID: 25394090]
[209]
Song, I.H.; Zong, J.; Borland, J.; Jerva, F.; Wynne, B.; Zamek-Gliszczynski, M.J.; Humphreys, J.E.; Bowers, G.D.; Choukour, M. The ef-fect of dolutegravir on the pharmacokinetics of metformin in healthy subjects. J. Acquir. Immune Defic. Syndr., 2016, 72(4), 400-407.
[http://dx.doi.org/10.1097/QAI.0000000000000983] [PMID: 26974526]
[210]
Song, I.; Weller, S.; Patel, J.; Borland, J.; Wynne, B.; Choukour, M.; Jerva, F.; Piscitelli, S. Effect of carbamazepine on dolutegravir phar-macokinetics and dosing recommendation. Eur. J. Clin. Pharmacol., 2016, 72(6), 665-670.
[http://dx.doi.org/10.1007/s00228-016-2020-6] [PMID: 26898568]
[211]
Enoki, Y.; Kishi, N.; Sakamoto, K.; Uchiyama, E.; Hayashi, Y.; Suzuki, N.; Ito, M.; Taguchi, K.; Yokoyama, Y.; Kizu, J.; Matsumoto, K. Multivalent cation and polycation polymer preparations influence pharmacokinetics of dolutegravir via chelation-type drug interactions. Drug Metab. Pharmacokinet., 2021, 37, 100371.
[http://dx.doi.org/10.1016/j.dmpk.2020.11.006] [PMID: 33556698]
[212]
Song, I.; Mark, S.; Chen, S.; Savina, P.; Wajima, T.; Peppercorn, A.; Bala, U.; Geoffroy, P.; Piscitelli, S. Dolutegravir does not affect meth-adone pharmacokinetics in opioid-dependent, HIV-seronegative subjects. Drug Alcohol Depend., 2013, 133(2), 781-784.
[http://dx.doi.org/10.1016/j.drugalcdep.2013.08.009] [PMID: 24018316]
[213]
Song, I.H.; Borland, J.; Chen, S.; Savina, P.; Peppercorn, A.F.; Piscitelli, S. Effect of prednisone on the pharmacokinetics of the integrase inhibitor dolutegravir. Antimicrob. Agents Chemother., 2013, 57(9), 4394-4397.
[http://dx.doi.org/10.1128/AAC.00728-13] [PMID: 23817375]
[214]
Johnson, M.; Borland, J.; Chen, S.; Savina, P.; Wynne, B.; Piscitelli, S. Effects of boceprevir and telaprevir on the pharmacokinetics of dolutegravir. Br. J. Clin. Pharmacol., 2014, 78(5), 1043-1049.
[http://dx.doi.org/10.1111/bcp.12428] [PMID: 24838177]
[215]
Song, I.H.; Borland, J.; Chen, S.; Wajima, T.; Peppercorn, A.F.; Piscitelli, S.C. Dolutegravir has no effect on the pharmacokinetics of oral contraceptives with norgestimate and ethinyl estradiol. Ann. Pharmacother., 2015, 49(7), 784-789.
[http://dx.doi.org/10.1177/1060028015580637] [PMID: 25862012]
[216]
Ross, L.L.; Song, I.H.; Arya, N.; Choukour, M.; Zong, J.; Huang, S.P.; Eley, T.; Wynne, B.; Buchanan, A.M. No clinically significant pharmacokinetic interactions between dolutegravir and daclatasvir in healthy adult subjects. BMC Infect. Dis., 2016, 16(1), 347.
[http://dx.doi.org/10.1186/s12879-016-1629-5] [PMID: 27450277]
[217]
Khatri, A.; Trinh, R.; Zhao, W.; Podsadecki, T.; Menon, R. Drug-drug interaction between the direct-acting antiviral regimen of ombitasvir-paritaprevir-ritonavir plus dasabuvir and the HIV antiretroviral agent dolutegravir or abacavir plus lamivudine. Antimicrob. Agents Chemother., 2016, 60(10), 6244-6251.
[http://dx.doi.org/10.1128/AAC.00795-16] [PMID: 27503645]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy