Generic placeholder image

Current Drug Targets

Editor-in-Chief

ISSN (Print): 1389-4501
ISSN (Online): 1873-5592

Mini-Review Article

An Update on Autophagy as a Target in the Treatment of Alzheimer’s Disease

Author(s): Parnika Mohan Sose, Gaurav Mahesh Doshi and Pravin Popatrao Kale*

Volume 24, Issue 7, 2023

Published on: 22 May, 2023

Page: [547 - 567] Pages: 21

DOI: 10.2174/1389450124666230417104325

Price: $65

conference banner
Abstract

Proteostasis is crucial for the maintenance and proper operation of cells. Under typical circumstances, the ubiquitin-proteasome system (UPS) and the autophagy-lysosome pathway are used to clean out undesired, damaged, misfolded, or aggregated proteins. Any dysregulation in the above-mentioned pathways leads to neurodegeneration. One of the most renowned neurodegenerative disorders is AD. This condition is more prevalent in senior people and is frequently linked to dementia, progressive memory loss, and cognitive function decline, which further contributes to cholinergic neuron degradation and synaptic plasticity loss. Extracellular accumulation of amyloid beta plaques and the intraneuronal deposition of misfolded neurofibrillary tangles are two prime pathological reasons for AD. At present, there is no treatment for AD. All that remains available is the symptomatic treatment of this disease. Autophagy is the major mechanism by which the cells degrade the protein aggregates. Deposited immature autophagic vacuoles (AVs) in AD brains suggest interruption of a person's normal autophagy process. This review has briefly covered various forms and mechanisms of autophagy. Furthermore, the discussion in the article is supported by different ways and mechanisms via which autophagy can be stimulated in a beneficial way and can emerge as a novel target in the treatment of various metabolic CNS related disorders. In the current review article, the mTOR-dependent ones are PI3K/Akt/TSC/mTOR, AMPK/TSC/mTOR, and Rag/mTOR pathways and mTOR-independent ones which include Ca2+/calpain, inositol-dependent, cAMP/EPAC/PLC, and JNK1/Beclin-1/PI3K pathways have been discussed in details. The article sheds light on drugs which are validated with details in tabular form from recent updates in clinical trials.

Next »
Graphical Abstract

[1]
Uddin MS, Stachowiak A, Mamun AA, et al. Autophagy and Alzheimer’s Disease: From molecular mechanisms to therapeutic implications. Front Aging Neurosci 2018; 10: 04.
[http://dx.doi.org/10.3389/fnagi.2018.00004] [PMID: 29441009]
[2]
Aman Y, Schmauck-Medina T, Hansen M, et al. Autophagy in healthy aging and disease. Nature Aging 2021; 1(8): 634-50.
[http://dx.doi.org/10.1038/s43587-021-00098-4] [PMID: 34901876]
[3]
Glick D, Barth S, Macleod KF. Autophagy: Cellular and molecular mechanisms. J Pathol 2010; 221(1): 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[4]
Marzella L, Ahlberg J, Glaumann H. Autophagy, heterophagy, microautophagy and crinophagy as the means for intracellular degradation. Virchows Arch B Cell Pathol Incl Mol Pathol 1981; 36(1): 219-34.
[http://dx.doi.org/10.1007/BF02912068] [PMID: 6116336]
[5]
Kaushik S, Cuervo AM. Chaperone-mediated autophagy: A unique way to enter the lysosome world. Trends Cell Biol 2012; 22(8): 407-17.
[http://dx.doi.org/10.1016/j.tcb.2012.05.006] [PMID: 22748206]
[6]
Settembre C, Fraldi A, Medina DL, Ballabio A. Signals from the lysosome: A control centre for cellular clearance and energy metabolism. Nat Rev Mol Cell Biol 2013; 14(5): 283-96.
[http://dx.doi.org/10.1038/nrm3565] [PMID: 23609508]
[7]
Meléndez A, Neufeld TP. The cell biology of autophagy in metazoans: A developing story. Development 2008; 135(14): 2347-60.
[http://dx.doi.org/10.1242/dev.016105] [PMID: 18567846]
[8]
François A, Terro F, Janet T, Bilan AR, Paccalin M, Page G. Involvement of interleukin-1β in the autophagic process of microglia: Relevance to Alzheimer’s disease. J Neuroinflammation 2013; 10(1): 915.
[http://dx.doi.org/10.1186/1742-2094-10-151] [PMID: 24330807]
[9]
Onodera J, Ohsumi Y. Autophagy is required for maintenance of amino acid levels and protein synthesis under nitrogen starvation. J Biol Chem 2005; 280(36): 31582-6.
[http://dx.doi.org/10.1074/jbc.M506736200] [PMID: 16027116]
[10]
Meijer AJ, Lorin S, Blommaart EF, Codogno P. Regulation of autophagy by amino acids and MTOR-dependent signal transduction. Amino Acids 2015; 47(10): 2037-63.
[http://dx.doi.org/10.1007/s00726-014-1765-4] [PMID: 24880909]
[11]
Boland B, Kumar A, Lee S, et al. Autophagy induction and autophagosome clearance in neurons: Relationship to autophagic pathology in Alzheimer’s disease. J Neurosci 2008; 28(27): 6926-37.
[http://dx.doi.org/10.1523/JNEUROSCI.0800-08.2008] [PMID: 18596167]
[12]
Blobel G. Christian de Duve (1917–2013). Nature 2013; 498(7454): 300-0.
[http://dx.doi.org/10.1038/498300a] [PMID: 23783621]
[13]
Xu H, Ren D. Lysosomal physiology. Annu Rev Physiol 2015; 77(1): 57-80.
[http://dx.doi.org/10.1146/annurev-physiol-021014-071649] [PMID: 25668017]
[14]
Alberts B. Molecular Biology of the Cell. (4th ed.), New York: Garland Science 2002.
[15]
Huber LA, Teis D. Lysosomal signaling in control of degradation pathways. Curr Opin Cell Biol 2016; 39: 8-14.
[http://dx.doi.org/10.1016/j.ceb.2016.01.006] [PMID: 26827287]
[16]
Karigar CS, Murthy KRS. The Nobel Prize in Chemistry 2004. Resonance 2005; 10(1): 41-9.
[http://dx.doi.org/10.1007/BF02835891]
[17]
Tanaka K, Suzuki T, Hattori N, Mizuno Y. Ubiquitin, proteasome and parkin. Biochimica et Biophysica Acta (BBA) -. Molecular Cell Research 2004; 1695(1-3): 235-47.
[18]
Weissman AM. Themes and variations on ubiquitylation. Nat Rev Mol Cell Biol 2001; 2(3): 169-78.
[http://dx.doi.org/10.1038/35056563] [PMID: 11265246]
[19]
Ciechanover A, Schwartz AL. The ubiquitin-proteasome pathway: The complexity and myriad functions of proteins death. Proc Natl Acad Sci 1998; 95(6): 2727-30.
[http://dx.doi.org/10.1073/pnas.95.6.2727] [PMID: 9501156]
[20]
Klionsky DJ. Autophagy revisited: A conversation with Christian de Duve. Autophagy 2008; 4(6): 740-3.
[http://dx.doi.org/10.4161/auto.6398] [PMID: 18567941]
[21]
Hommen F, Bilican S, Vilchez D. Protein clearance strategies for disease intervention. J Neural Transm 2022; 129(2): 141-72.
[http://dx.doi.org/10.1007/s00702-021-02431-y] [PMID: 34689261]
[22]
Qu X, Zou Z, Sun Q, et al. Autophagy gene-dependent clearance of apoptotic cells during embryonic development. Cell 2007; 128(5): 931-46.
[http://dx.doi.org/10.1016/j.cell.2006.12.044] [PMID: 17350577]
[23]
Klionsky DJ. The molecular machinery of autophagy: Unanswered questions. J Cell Sci 2005; 118(1): 7-18.
[http://dx.doi.org/10.1242/jcs.01620] [PMID: 15615779]
[24]
Yang Y, Liang Z, Gu Z, Qin Z. Molecular mechanism and regulation of autophagy1. Acta Pharmacol Sin 2005; 26(12): 1421-34.
[http://dx.doi.org/10.1111/j.1745-7254.2005.00235.x] [PMID: 16297339]
[25]
Pierzynowska K, Gaffke L, Cyske Z, et al. Autophagy stimulation as a promising approach in treatment of neurodegenerative diseases. Metab Brain Dis 2018; 33(4): 989-1008.
[http://dx.doi.org/10.1007/s11011-018-0214-6] [PMID: 29542037]
[26]
Galluzzi L, Baehrecke EH, Ballabio A, et al. Molecular definitions of autophagy and related processes. EMBO J 2017; 36(13): 1811-36.
[http://dx.doi.org/10.15252/embj.201796697] [PMID: 28596378]
[27]
Sahu R, Kaushik S, Clement CC, et al. Microautophagy of cytosolic proteins by late endosomes. Dev Cell 2011; 20(1): 131-9.
[http://dx.doi.org/10.1016/j.devcel.2010.12.003] [PMID: 21238931]
[28]
Hatakeyama R, De Virgilio C. TORC1 specifically inhibits microautophagy through ESCRT-0. Curr Genet 2019; 65(5): 1243-9.
[http://dx.doi.org/10.1007/s00294-019-00982-y] [PMID: 31041524]
[29]
Schneider JL, Cuervo AM. Liver autophagy: Much more than just taking out the trash. Nat Rev Gastroenterol Hepatol 2014; 11(3): 187-200.
[http://dx.doi.org/10.1038/nrgastro.2013.211] [PMID: 24192609]
[30]
Bandyopadhyay U, Kaushik S, Varticovski L, Cuervo AM. The chaperone-mediated autophagy receptor organizes in dynamic protein complexes at the lysosomal membrane. Mol Cell Biol 2008; 28(18): 5747-63.
[http://dx.doi.org/10.1128/MCB.02070-07] [PMID: 18644871]
[31]
Wong ASL, Cheung ZH, Ip NY. Molecular machinery of macroautophagy and its deregulation in diseases. Biochim Biophys Acta Mol Basis Dis 2011; 1812(11): 1490-7.
[http://dx.doi.org/10.1016/j.bbadis.2011.07.005] [PMID: 21787863]
[32]
Tasdemir E, Maiuri MC, Tajeddine N, et al. Cell cycle-dependent induction of autophagy, mitophagy and reticulophagy. Cell Cycle 2007; 6(18): 2263-7.
[http://dx.doi.org/10.4161/cc.6.18.4681] [PMID: 17890908]
[33]
Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 2011; 12(1): 9-14.
[http://dx.doi.org/10.1038/nrm3028] [PMID: 21179058]
[34]
Ben-Sahra I, Manning BD. mTORC1 signaling and the metabolic control of cell growth. Curr Opin Cell Biol 2017; 45: 72-82.
[http://dx.doi.org/10.1016/j.ceb.2017.02.012] [PMID: 28411448]
[35]
Rabanal-Ruiz Y, Otten eg, Korolchuk VI. mTORC1 as the main gateway to autophagy. Essays Biochem 2017; 61(6): 565-84.
[http://dx.doi.org/10.1042/EBC20170027] [PMID: 29233869]
[36]
Blommaart EFC, Luiken JJFP, Blommaart PJE, van Woerkom GM, Meijer AJ. Phosphorylation of ribosomal protein S6 is inhibitory for autophagy in isolated rat hepatocytes. J Biol Chem 1995; 270(5): 2320-6.
[http://dx.doi.org/10.1074/jbc.270.5.2320] [PMID: 7836465]
[37]
Yu K, Toral-Barza L, Discafani C, et al. mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 2001; 8(3): 249-58.
[http://dx.doi.org/10.1677/erc.0.0080249] [PMID: 11566616]
[38]
Suzuki H, Osawa T, Fujioka Y, Noda NN. Structural biology of the core autophagy machinery. Curr Opin Struct Biol 2017; 43: 10-7.
[http://dx.doi.org/10.1016/j.sbi.2016.09.010] [PMID: 27723509]
[39]
Takahashi Y, He H, Tang Z, et al. An autophagy assay reveals the ESCRT-III component CHMP2A as a regulator of phagophore closure. Nat Commun 2018; 9(1): 2855.
[http://dx.doi.org/10.1038/s41467-018-05254-w] [PMID: 30030437]
[40]
Lemasters JJ. Selective mitochondrial autophagy, or mitophagy, as a targeted defense against oxidative stress, mitochondrial dysfunction, and aging. Rejuvenation Res 2005; 8(1): 3-5.
[http://dx.doi.org/10.1089/rej.2005.8.3] [PMID: 15798367]
[41]
Walker CL, Pomatto LCD, Tripathi DN, Davies KJA. Redox regulation of homeostasis and proteostasis in peroxisomes. Physiol Rev 2018; 98(1): 89-115.
[http://dx.doi.org/10.1152/physrev.00033.2016] [PMID: 29167332]
[42]
Zhong Q, Zhou B, Ann DK, et al. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: Effects of misfolded surfactant protein. Am J Respir Cell Mol Biol 2011; 45(3): 498-509.
[http://dx.doi.org/10.1165/rcmb.2010-0347OC] [PMID: 21169555]
[43]
Chung KKK, Dawson VL, Dawson TM. The role of the ubiquitin-proteasomal pathway in Parkinson’s disease and other neurodegenerative disorders. Trends Neurosci 2001; 24(S11): S7-S14.
[http://dx.doi.org/10.1016/S0166-2236(00)01998-6] [PMID: 11881748]
[44]
Fang EF, Xie C, Schenkel JA, et al. A research agenda for ageing in China in the 21st century (2nd edition): Focusing on basic and translational research, long-term care, policy and social networks. Ageing Res Rev 2020; 64: 101174.
[http://dx.doi.org/10.1016/j.arr.2020.101174] [PMID: 32971255]
[45]
Partridge L, Deelen J, Slagboom PE. Facing up to the global challenges of ageing. Nature 2018; 561(7721): 45-56.
[http://dx.doi.org/10.1038/s41586-018-0457-8] [PMID: 30185958]
[46]
Catterson JH, Khericha M, Dyson MC, et al. Short-Term, intermittent fasting induces long-lasting gut health and tor-independent lifespan extension. Curr Biol 2018; 28(11): 1714-1724.e4.
[http://dx.doi.org/10.1016/j.cub.2018.04.015] [PMID: 29779873]
[47]
Abolaji AO, Adedara AO, Adie MA, Vicente-Crespo M, Farombi EO. Resveratrol prolongs lifespan and improves 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-induced oxidative damage and behavioural deficits in Drosophila melanogaster. Biochem Biophys Res Commun 2018; 503(2): 1042-8.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.114] [PMID: 29935183]
[48]
Niraula P, Ghimire S, Lee H, Kim MS. Ilex paraguariensis extends lifespan and increases an ability to resist environmental stresses in drosophila. Rejuvenation Res 2018; 21(6): 497-505.
[http://dx.doi.org/10.1089/rej.2017.2023]
[49]
Lashmanova E, Proshkina E, Zhikrivetskaya S, et al. Fucoxanthin increases lifespan of Drosophila melanogaster and Caenorhabditis elegans. Pharmacol Res 2015; 100: 228-41.
[http://dx.doi.org/10.1016/j.phrs.2015.08.009] [PMID: 26292053]
[50]
Vellai T, Takacs-Vellai K, Zhang Y, Kovacs AL, Orosz L, Müller F. Influence of TOR kinase on lifespan in C. elegans. Nature 2003; 426: 6967.
[51]
Jia K, Chen D, Riddle DL. The TOR pathway interacts with the insulin signaling pathway to regulate C. elegans larval development, metabolism and life span. Development 2004; 131(16): 3897-906.
[http://dx.doi.org/10.1242/dev.01255] [PMID: 15253933]
[52]
Kapahi P, Zid BM, Harper T, Koslover D, Sapin V, Benzer S. Regulation of lifespan in Drosophila by modulation of genes in the TOR signaling pathway. Curr Biol 2004; 14(10): 885-90.
[http://dx.doi.org/10.1016/j.cub.2004.03.059] [PMID: 15186745]
[53]
Anisimov VN, Zabezhinski MA, Popovich IG, Piskunova TS. Rapamycin extends maximal lifespan in cancer-prone mice. Am J Pathol 2010; 176(5): 2092-7.
[http://dx.doi.org/10.2353/ajpath.2010.091050] [PMID: 20363920]
[54]
Miller RA, Harrison DE, Astle CM, et al. Rapamycin, but not resveratrol or simvastatin, extends life span of genetically heterogeneous mice. J Gerontol - Biol Sci 2011; 66A(2): 191-201.
[http://dx.doi.org/10.1093/gerona/glq178] [PMID: 20974732]
[55]
Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle CM, Flurkey K. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009; 460: 7253.
[http://dx.doi.org/10.1038/nature08221]
[56]
Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D. Induction of autophagy by spermidine promotes longevity. Nat Cell Biol 2009; 11(11): 1305-14.
[http://dx.doi.org/10.1038/ncb1975]
[57]
Doeppner TR, Coman C, Burdusel D, et al. Long-term treatment with chloroquine increases lifespan in middle-aged male mice possibly via autophagy modulation, proteasome inhibition and glycogen metabolism. Aging 2022; 14(10): 4195-210.
[http://dx.doi.org/10.18632/aging.204069] [PMID: 35609021]
[58]
Tooze SA, Schiavo G. Liaisons dangereuses: Autophagy, neuronal survival and neurodegeneration. Curr Opin Neurobiol 2008; 18(5): 504-15.
[http://dx.doi.org/10.1016/j.conb.2008.09.015] [PMID: 18840524]
[59]
Mariño G, Madeo F, Kroemer G. Autophagy for tissue homeostasis and neuroprotection. Curr Opin Cell Biol 2011; 23(2): 198-206.
[http://dx.doi.org/10.1016/j.ceb.2010.10.001] [PMID: 21030235]
[60]
Komatsu M, Wang QJ, Holstein GR, Friedrich VL. Essential role for autophagy protein Atg7 in the maintenance of axonal homeostasis and the prevention of axonal degeneration. Proceedings of the National Academy of Sciences. 14489-94.
[61]
Lee JA. Neuronal autophagy: A housekeeper or a fighter in neuronal cell survival? Exp Neurobiol 2012; 21(1): 1-8.
[http://dx.doi.org/10.5607/en.2012.21.1.1] [PMID: 22438673]
[62]
Ravikumar B, Vacher C, Berger Z, et al. Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004; 36(6): 585-95.
[http://dx.doi.org/10.1038/ng1362] [PMID: 15146184]
[63]
Menzies FM, Huebener J, Renna M, Bonin M, Riess O, Rubinsztein DC. Autophagy induction reduces mutant ataxin-3 levels and toxicity in a mouse model of spinocerebellar ataxia type 3. Brain 2010; 133(1): 93-104.
[http://dx.doi.org/10.1093/brain/awp292] [PMID: 20007218]
[64]
Ravikumar B, Duden R, Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum Mol Genet 2002; 11(9): 1107-17.
[http://dx.doi.org/10.1093/hmg/11.9.1107] [PMID: 11978769]
[65]
Berger Z, Ravikumar B, Menzies FM, et al. Rapamycin alleviates toxicity of different aggregate-prone proteins. Hum Mol Genet 2006; 15(3): 433-42.
[http://dx.doi.org/10.1093/hmg/ddi458] [PMID: 16368705]
[66]
Pandey UB, Nie Z, Batlevi Y, et al. HDAC6 rescues neurodegeneration and provides an essential link between autophagy and the UPS. Nature 2007; 447(7146): 860-4.
[http://dx.doi.org/10.1038/nature05853] [PMID: 17568747]
[67]
Wang T, Lao U, Edgar BA. TOR-mediated autophagy regulates cell death in Drosophila neurodegenerative disease. J Cell Biol 2009; 186(5): 703-11.
[http://dx.doi.org/10.1083/jcb.200904090] [PMID: 19720874]
[68]
Zheng Q, Huang T, Zhang L, et al. Dysregulation of ubiquitin-proteasome system in neurodegenerative diseases. Front Aging Neurosci 2016; 8: 303.
[http://dx.doi.org/10.3389/fnagi.2016.00303] [PMID: 28018215]
[69]
Suzuki K, Terry RD. Fine structural localization of acid phosphatase in senile plaques in Alzheimer’s presenile dementia. Acta Neuropathol 1967; 8(3): 276-84.
[http://dx.doi.org/10.1007/BF00688828] [PMID: 6039977]
[70]
Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neurol 2005; 64(2): 113-22.
[http://dx.doi.org/10.1093/jnen/64.2.113] [PMID: 15751225]
[71]
Yu WH, Cuervo AM, Kumar A, et al. Macroautophagy—a novel β-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol 2005; 171(1): 87-98.
[http://dx.doi.org/10.1083/jcb.200505082] [PMID: 16203860]
[72]
Tomiyama T, Matsuyama S, Iso H, et al. A mouse model of amyloid beta oligomers: Their contribution to synaptic alteration, abnormal tau phosphorylation, glial activation, and neuronal loss in vivo. J Neurosci 2010; 30(14): 4845-56.
[http://dx.doi.org/10.1523/JNEUROSCI.5825-09.2010] [PMID: 20371804]
[73]
Sanchez-Varo R, Trujillo-Estrada L, Sanchez-Mejias E, et al. Abnormal accumulation of autophagic vesicles correlates with axonal and synaptic pathology in young Alzheimer’s mice hippocampus. Acta Neuropathol 2012; 123(1): 53-70.
[http://dx.doi.org/10.1007/s00401-011-0896-x] [PMID: 22020633]
[74]
Cataldo AM, Peterhoff CM, Schmidt SD, et al. Presenilin mutations in familial Alzheimer disease and transgenic mouse models accelerate neuronal lysosomal pathology. J Neuropathol Exp Neurol 2004; 63(8): 821-30.
[http://dx.doi.org/10.1093/jnen/63.8.821] [PMID: 15330337]
[75]
Yang DS, Stavrides P, Mohan PS, et al. Reversal of autophagy dysfunction in the TgCRND8 mouse model of Alzheimer’s disease ameliorates amyloid pathologies and memory deficits. Brain 2011; 134(1): 258-77.
[http://dx.doi.org/10.1093/brain/awq341] [PMID: 21186265]
[76]
Wang Y, Mandelkow E. Degradation of tau protein by autophagy and proteasomal pathways. Biochem Soc Trans 2012; 40(4): 644-52.
[http://dx.doi.org/10.1042/BST20120071] [PMID: 22817709]
[77]
Ji C, Tang M, Johnson GVW. Assessing the degradation of tau in primary neurons: The role of autophagy. Methods Cell Biol 2017; 141: 229-44.
[http://dx.doi.org/10.1016/bs.mcb.2017.06.011] [PMID: 28882304]
[78]
Bakhoum MF, Bakhoum CY, Ding Z, Carlton SM, Campbell GA, Jackson GR. Evidence for autophagic gridlock in aging and neurodegeneration. Transl Res 2014; 164(1): 1-12.
[http://dx.doi.org/10.1016/j.trsl.2014.01.016] [PMID: 24561013]
[79]
Barnett A, Brewer GJ. Autophagy in aging and Alzheimer’s disease: pathologic or protective? J Alzheimers Dis 2011; 25(3): 385-94.
[http://dx.doi.org/10.3233/JAD-2011-101989] [PMID: 21422527]
[80]
Liang XH, Jackson S, Seaman M, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 1999; 402(6762): 672-6.
[http://dx.doi.org/10.1038/45257] [PMID: 10604474]
[81]
Pickford F, Masliah E, Britschgi M, et al. The autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and regulates amyloid β accumulation in mice. J Clin Invest 2008; 118(6): 2190-9.
[http://dx.doi.org/10.1172/JCI33585] [PMID: 18497889]
[82]
Rohn TT, Wirawan E, Brown RJ, Harris JR, Masliah E, Vandenabeele P. Depletion of Beclin-1 due to proteolytic cleavage by caspases in the Alzheimer’s disease brain. Neurobiol Dis 2011; 43(1): 68-78.
[http://dx.doi.org/10.1016/j.nbd.2010.11.003] [PMID: 21081164]
[83]
Nixon RA. Autophagy, amyloidogenesis and Alzheimer disease. J Cell Sci 2007; 120(23): 4081-91.
[http://dx.doi.org/10.1242/jcs.019265] [PMID: 18032783]
[84]
Nixon RA, Yang DS. Autophagy failure in Alzheimer’s disease—locating the primary defect. Neurobiol Dis 2011; 43(1): 38-45.
[http://dx.doi.org/10.1016/j.nbd.2011.01.021] [PMID: 21296668]
[85]
Binder LI, Frankfurter A, Rebhun LI. The distribution of tau in the mammalian central nervous system. J Cell Biol 1985; 101(4): 1371-8.
[http://dx.doi.org/10.1083/jcb.101.4.1371] [PMID: 3930508]
[86]
Caballero B, Wang Y, Diaz A, et al. Interplay of pathogenic forms of human tau with different autophagic pathways. Aging Cell 2018; 17(1): e12692.
[http://dx.doi.org/10.1111/acel.12692] [PMID: 29024336]
[87]
Hamano T, Gendron TF, Causevic E, et al. Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci 2008; 27(5): 1119-30.
[http://dx.doi.org/10.1111/j.1460-9568.2008.06084.x] [PMID: 18294209]
[88]
Xie Y, Zhou B, Lin MY, Sheng ZH. Progressive endolysosomal deficits impair autophagic clearance beginning at early asymptomatic stages in fALS mice. Autophagy 2015; 11(10): 1934-6.
[http://dx.doi.org/10.1080/15548627.2015.1084460] [PMID: 26290961]
[89]
Esselens C, Oorschot V, Baert V, et al. Presenilin 1 mediates the turnover of telencephalin in hippocampal neurons via an autophagic degradative pathway. J Cell Biol 2004; 166(7): 1041-54.
[http://dx.doi.org/10.1083/jcb.200406060] [PMID: 15452145]
[90]
Lee JH, Yu WH, Kumar A, et al. Lysosomal proteolysis and autophagy require presenilin 1 and are disrupted by Alzheimer-related PS1 mutations. Cell 2010; 141(7): 1146-58.
[http://dx.doi.org/10.1016/j.cell.2010.05.008] [PMID: 20541250]
[91]
Lee JH, McBrayer MK, Wolfe DM, et al. Presenilin 1 maintains lysosomal Ca2+ Homeostasis via TRPML1 by regulating vATPase-mediated lysosome acidification. Cell Rep 2015; 12(9): 1430-44.
[http://dx.doi.org/10.1016/j.celrep.2015.07.050] [PMID: 26299959]
[92]
Neely KM, Green KN, LaFerla FM. Presenilin is necessary for efficient proteolysis through the autophagy-lysosome system in a γ-secretase-independent manner. J Neurosci 2011; 31(8): 2781-91.
[http://dx.doi.org/10.1523/JNEUROSCI.5156-10.2010] [PMID: 21414900]
[93]
Coen K, Flannagan RS, Baron S, et al. Lysosomal calcium homeostasis defects, not proton pump defects, cause endo-lysosomal dysfunction in PSEN-deficient cells. J Cell Biol 2012; 198(1): 23-35.
[http://dx.doi.org/10.1083/jcb.201201076] [PMID: 22753898]
[94]
Zhang X, Garbett K, Veeraraghavalu K, et al. A role for presenilins in autophagy revisited: Normal acidification of lysosomes in cells lacking PSEN1 and PSEN2. J Neurosci 2012; 32(25): 8633-48.
[http://dx.doi.org/10.1523/JNEUROSCI.0556-12.2012] [PMID: 22723704]
[95]
Colacurcio DJ, Pensalfini A, Jiang Y, Nixon RA. Dysfunction of autophagy and endosomal-lysosomal pathways: Roles in pathogenesis of Down syndrome and Alzheimer’s Disease. Free Radic Biol Med 2018; 114: 40-51.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.10.001] [PMID: 28988799]
[96]
Yang DS, Stavrides P, Mohan PS, et al. Therapeutic effects of remediating autophagy failure in a mouse model of Alzheimer disease by enhancing lysosomal proteolysis. Autophagy 2011; 7(7): 788-9.
[http://dx.doi.org/10.4161/auto.7.7.15596] [PMID: 21464620]
[97]
Koike M, Nakanishi H, Saftig P, et al. Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci 2000; 20(18): 6898-906.
[http://dx.doi.org/10.1523/JNEUROSCI.20-18-06898.2000] [PMID: 10995834]
[98]
Liu J, Li L. targeting autophagy for the treatment of alzheimer’s disease: challenges and Opportunities. Front Mol Neurosci 2019; 12: 203.
[http://dx.doi.org/10.3389/fnmol.2019.00203] [PMID: 31507373]
[99]
Sarbassov DD, Ali SM, Sabatini DM. Growing roles for the mTOR pathway. Curr Opin Cell Biol 2005; 17(6): 596-603.
[http://dx.doi.org/10.1016/j.ceb.2005.09.009] [PMID: 16226444]
[100]
Massacesi C, Tomaso E, Fretault N, Hirawat S. Challenges in the clinical development of PI3K inhibitors. Ann N Y Acad Sci 2013; 1280(1): 19-23.
[http://dx.doi.org/10.1111/nyas.12060] [PMID: 23551097]
[101]
Sarkar S. Regulation of autophagy by mTOR-dependent and mTOR-independent pathways: autophagy dysfunction in neurodegenerative diseases and therapeutic application of autophagy enhancers. Biochem Soc Trans 2013; 41(5): 1103-30.
[http://dx.doi.org/10.1042/BST20130134] [PMID: 24059496]
[102]
Ravikumar B, Sarkar S, Davies JE, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev 2010; 90(4): 1383-435.
[http://dx.doi.org/10.1152/physrev.00030.2009] [PMID: 20959619]
[103]
Huang J, Manning BD. The TSC1–TSC2 complex: A molecular switchboard controlling cell growth. Biochem J 2008; 412(2): 179-90.
[http://dx.doi.org/10.1042/BJ20080281] [PMID: 18466115]
[104]
Stitt TN, Drujan D, Clarke BA, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 2004; 14(3): 395-403.
[http://dx.doi.org/10.1016/S1097-2765(04)00211-4] [PMID: 15125842]
[105]
Vodicka P, Chase K, Iuliano M, et al. Autophagy Activation by Transcription Factor EB (TFEB) in Striatum of HDQ175/Q7 Mice. J Huntingtons Dis 2016; 5(3): 249-60.
[http://dx.doi.org/10.3233/JHD-160211] [PMID: 27689619]
[106]
Roczniak-Ferguson A, Petit CS, Froehlich F, et al. The transcription factor TFEB links mTORC1 signaling to transcriptional control of lysosome homeostasis. Sci Signal 2012; 5(228): ra42.
[http://dx.doi.org/10.1126/scisignal.2002790] [PMID: 22692423]
[107]
Meijer AJ, Codogno P. AMP-activated protein kinase and autophagy. Autophagy 2007; 3(3): 238-40.
[http://dx.doi.org/10.4161/auto.3710] [PMID: 17224623]
[108]
Hardie DG. AMP-activated/SNF1 protein kinases: conserved guardians of cellular energy. Nat Rev Mol Cell Biol 2007; 8(10): 774-85.
[http://dx.doi.org/10.1038/nrm2249] [PMID: 17712357]
[109]
Shaw RJ, Bardeesy N, Manning BD, et al. The LKB1 tumor suppressor negatively regulates mTOR signaling. Cancer Cell 2004; 6(1): 91-9.
[http://dx.doi.org/10.1016/j.ccr.2004.06.007] [PMID: 15261145]
[110]
Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003; 115(5): 577-90.
[http://dx.doi.org/10.1016/S0092-8674(03)00929-2] [PMID: 14651849]
[111]
Inoki K, Ouyang H, Zhu T, et al. TSC2 integrates Wnt and energy signals via a coordinated phosphorylation by AMPK and GSK3 to regulate cell growth. Cell 2006; 126(5): 955-68.
[http://dx.doi.org/10.1016/j.cell.2006.06.055] [PMID: 16959574]
[112]
Nicklin P, Bergman P, Zhang B, et al. Bidirectional transport of amino acids regulates mTOR and autophagy. Cell 2009; 136(3): 521-34.
[http://dx.doi.org/10.1016/j.cell.2008.11.044] [PMID: 19203585]
[113]
Zoncu R, Bar-Peled L, Efeyan A, Wang S, Sancak Y, Sabatini DM. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H + -ATPase. Science 1979; 334(6056): 678-83.
[http://dx.doi.org/10.1126/science.1207056] [PMID: 22053050]
[114]
Kim J, Kim E. Rag GTPase in amino acid signaling. Amino Acids 2016; 48(4): 915-28.
[http://dx.doi.org/10.1007/s00726-016-2171-x] [PMID: 26781224]
[115]
Sancak Y, Peterson TR, Shaul YD, Lindquist RA, Thoreen CC, Bar-Peled L, et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 1979; 320(5882): 1496-501.
[116]
Hosokawa N, Hara T, Kaizuka T, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell 2009; 20(7): 1981-91.
[http://dx.doi.org/10.1091/mbc.e08-12-1248] [PMID: 19211835]
[117]
Goll D, Thompson VF, Li H, Wei W, Cong J. The calpain system. Physiol Rev 2003; 83(3): 731-801.
[http://dx.doi.org/10.1152/physrev.00029.2002] [PMID: 12843408]
[118]
Gordon PB, Holen I, Fosse M, Røtnes JS, Seglen PO. Dependence of hepatocytic autophagy on intracellularly sequestered calcium. J Biol Chem 1993; 268(35): 26107-12.
[http://dx.doi.org/10.1016/S0021-9258(19)74287-2] [PMID: 8253727]
[119]
Williams A, Sarkar S, Cuddon P, et al. Novel targets for Huntington’s disease in an mTOR-independent autophagy pathway. Nat Chem Biol 2008; 4(5): 295-305.
[http://dx.doi.org/10.1038/nchembio.79] [PMID: 18391949]
[120]
Ganley IG, Wong PM, Gammoh N, Jiang X. Distinct autophagosomal-lysosomal fusion mechanism revealed by thapsigargin-induced autophagy arrest. Mol Cell 2011; 42(6): 731-43.
[http://dx.doi.org/10.1016/j.molcel.2011.04.024] [PMID: 21700220]
[121]
Zhang L, Yu J, Pan H, et al. Small molecule regulators of autophagy identified by an image-based high-throughput screen. Proc Natl Acad Sci 2007; 104(48): 19023-8.
[http://dx.doi.org/10.1073/pnas.0709695104] [PMID: 18024584]
[122]
Sato-Kusubata K, Yajima Y, Kawashima S. Persistent activation of Gsα through limited proteolysis by calpain. Biochem J 2000; 347(3): 733-40.
[http://dx.doi.org/10.1042/bj3470733] [PMID: 10769177]
[123]
Berridge MJ. Inositol trisphosphate and calcium signalling. Nature 1993; 361(6410): 315-25.
[http://dx.doi.org/10.1038/361315a0] [PMID: 8381210]
[124]
Majerus PW. Inositol phosphate biochemistry. Annu Rev Biochem 1992; 61(1): 225-50.
[http://dx.doi.org/10.1146/annurev.bi.61.070192.001301] [PMID: 1323235]
[125]
Berridge MJ, Bootman MD, Roderick HL. Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 2003; 4(7): 517-29.
[http://dx.doi.org/10.1038/nrm1155] [PMID: 12838335]
[126]
Gloerich M, Bos JL. Epac: Defining a new mechanism for cAMP action. Annu Rev Pharmacol Toxicol 2010; 50(1): 355-75.
[http://dx.doi.org/10.1146/annurev.pharmtox.010909.105714] [PMID: 20055708]
[127]
Breckler M, Berthouze M, Laurent AC, Crozatier B, Morel E, Lezoualc’h F. Rap-linked cAMP signaling Epac proteins: Compartmentation, functioning and disease implications. Cell Signal 2011; 23(8): 1257-66.
[http://dx.doi.org/10.1016/j.cellsig.2011.03.007] [PMID: 21402149]
[128]
Sarkar S, Floto RA, Berger Z, et al. Lithium induces autophagy by inhibiting inositol monophosphatase. J Cell Biol 2005; 170(7): 1101-11.
[http://dx.doi.org/10.1083/jcb.200504035] [PMID: 16186256]
[129]
Pattingre S, Espert L, Biard-Piechaczyk M, Codogno P. Regulation of macroautophagy by mTOR and Beclin 1 complexes. Biochimie 2008; 90(2): 313-23.
[http://dx.doi.org/10.1016/j.biochi.2007.08.014] [PMID: 17928127]
[130]
Pattingre S, Tassa A, Qu X, et al. Bcl-2 antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell 2005; 122(6): 927-39.
[http://dx.doi.org/10.1016/j.cell.2005.07.002] [PMID: 16179260]
[131]
Wei Y, Pattingre S, Sinha S, Bassik M, Levine B. JNK1-mediated phosphorylation of Bcl-2 regulates starvation-induced autophagy. Mol Cell 2008; 30(6): 678-88.
[http://dx.doi.org/10.1016/j.molcel.2008.06.001] [PMID: 18570871]
[132]
Okuma T, Kishimoto A. A history of investigation on the mood stabilizing effect of carbamazepine in Japan. Psychiatry Clin Neurosci 1998; 52(1): 3-12.
[http://dx.doi.org/10.1111/j.1440-1819.1998.tb00966.x] [PMID: 9682927]
[133]
Xiao H, Su Y, Cao X, Sun S, Liang Z. A meta-analysis of mood stabilizers for Alzheimer’s disease. J Huazhong Univ Sci Technolog Med Sci 2010; 30(5): 652-8.
[http://dx.doi.org/10.1007/s11596-010-0559-5] [PMID: 21063851]
[134]
Li L, Zhang S, Zhang X, et al. Autophagy enhancer carbamazepine alleviates memory deficits and cerebral amyloid-β pathology in a mouse model of Alzheimer’s disease. Curr Alzheimer Res 2013; 10(4): 433-41.
[http://dx.doi.org/10.2174/1567205011310040008] [PMID: 23305067]
[135]
Zhang L, Wang L, Wang R, et al. Evaluating the effectiveness of GTM-1, rapamycin, and carbamazepine on autophagy and alzheimer disease. Med Sci Monit 2017; 23: 801-8.
[http://dx.doi.org/10.12659/MSM.898679] [PMID: 28193995]
[136]
Steele JW, Gandy S. Latrepirdine (Dimebon®), a potential Alzheimer therapeutic, regulates autophagy and neuropathology in an Alzheimer mouse model. Autophagy 2013; 9(4): 617-8.
[http://dx.doi.org/10.4161/auto.23487] [PMID: 23380933]
[137]
Chau S, Herrmann N, Ruthirakuhan MT, Chen JJ, Lanctôt KL. Latrepirdine for Alzheimer’s disease. Cochrane Database Syst Rev 2015; 2015(4): CD009524.
[PMID: 25897825]
[138]
Forlenza OV, de Paula VJ, Machado-Vieira R, Diniz BS, Gattaz WF. Does lithium prevent Alzheimerʼs Disease? Drugs Aging 2012; 29(5): 335-42.
[PMID: 22500970]
[139]
Matsunaga S, Kishi T, Annas P, Basun H, Hampel H, Iwata N. Lithium as a treatment for alzheimer’s disease: A systematic review and meta-analysis. J Alzheimers Dis 2015; 48(2): 403-10.
[http://dx.doi.org/10.3233/JAD-150437] [PMID: 26402004]
[140]
Matsunaga S, Kishi T, Iwata N. Memantine monotherapy for Alzheimer’s disease: A systematic review and meta-analysis. PLoS One 2015; 10(4): e0123289.
[http://dx.doi.org/10.1371/journal.pone.0123289] [PMID: 25860130]
[141]
Song G, Li Y, Lin L, Cao Y. Anti-autophagic and anti-apoptotic effects of memantine in a SH-SY5Y cell model of Alzheimer’s disease via mammalian target of rapamycin-dependent and -independent pathways. Mol Med Rep 2015; 12(5): 7615-22.
[http://dx.doi.org/10.3892/mmr.2015.4382] [PMID: 26459718]
[142]
Liu D, Pitta M, Jiang H, et al. Nicotinamide forestalls pathology and cognitive decline in Alzheimer mice: Evidence for improved neuronal bioenergetics and autophagy procession. Neurobiol Aging 2013; 34(6): 1564-80.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.11.020] [PMID: 23273573]
[143]
Gong B, Pan Y, Vempati P, et al. Nicotinamide riboside restores cognition through an upregulation of proliferator-activated receptor-γ coactivator 1α regulated β-secretase 1 degradation and mitochondrial gene expression in Alzheimer’s mouse models. Neurobiol Aging 2013; 34(6): 1581-8.
[http://dx.doi.org/10.1016/j.neurobiolaging.2012.12.005] [PMID: 23312803]
[144]
Phelan MJ, Phase II. Phase II clinical trial of nicotinamide for the treatment of mild to moderate alzheimer’s disease. J Geriatr Med Gerontol 2017; 3(1)
[http://dx.doi.org/10.23937/2469-5858/1510021]
[145]
Nicotinamide as an Early Alzheimer’s Disease Treatment. Patent NCT03061474, https://clinicaltrials.gov/ct2/show/NCT03061474
[146]
Kickstein E, Krauss S, Thornhill P, et al. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci 2010; 107(50): 21830-5.
[http://dx.doi.org/10.1073/pnas.0912793107] [PMID: 21098287]
[147]
Li J, Deng J, Sheng W, Zuo Z. Metformin attenuates Alzheimer’s disease-like neuropathology in obese, leptin-resistant mice. Pharmacol Biochem Behav 2012; 101(4): 564-74.
[http://dx.doi.org/10.1016/j.pbb.2012.03.002] [PMID: 22425595]
[148]
Iqbal K, Liu F, Gong CX, Grundke-Iqbal I. Tau in Alzheimer disease and related tauopathies. Curr Alzheimer Res 2010; 7(8): 656-64.
[http://dx.doi.org/10.2174/156720510793611592] [PMID: 20678074]
[149]
Caccamo A, Majumder S, Richardson A, Strong R, Oddo S. Molecular interplay between mammalian target of rapamycin (mTOR), amyloid-β, and Tau: effects on cognitive impairments. J Biol Chem 2010; 285(17): 13107-20.
[http://dx.doi.org/10.1074/jbc.M110.100420] [PMID: 20178983]
[150]
Spilman P, Podlutskaya N, Hart MJ, et al. Inhibition of mTOR by rapamycin abolishes cognitive deficits and reduces amyloid-β levels in a mouse model of Alzheimer’s disease. PLoS One 2010; 5(4): e9979.
[http://dx.doi.org/10.1371/journal.pone.0009979] [PMID: 20376313]
[151]
Xue Z, Zhang S, Huang L, He Y, Fang R, Fang Y. Upexpression of beclin-1-dependent autophagy protects against beta-amyloid-induced cell injury in pc12 cells. J Mol Neurosci 2013; 51(1): 180-6.
[http://dx.doi.org/10.1007/s12031-013-9974-y] [PMID: 23420039]
[152]
Jiang T, Yu JT, Zhu XC, et al. Temsirolimus promotes autophagic clearance of amyloid-β and provides protective effects in cellular and animal models of Alzheimer’s disease. Pharmacol Res 2014; 81: 54-63.
[http://dx.doi.org/10.1016/j.phrs.2014.02.008] [PMID: 24602800]
[153]
Frederick C, Ando K, Leroy K, et al. Rapamycin ester analog CCI-779/Temsirolimus alleviates tau pathology and improves motor deficit in mutant tau transgenic mice. J Alzheimers Dis 2015; 44(4): 1145-56.
[http://dx.doi.org/10.3233/JAD-142097] [PMID: 25408212]
[154]
Tian Y, Bustos V, Flajolet M, Greengard P. A small-molecule enhancer of autophagy decreases levels of Aβ and APP-CTFvia Atg5-dependent autophagy pathway>. FASEB J 2011; 25(6): 1934-42.
[http://dx.doi.org/10.1096/fj.10-175158] [PMID: 21368103]
[155]
Singh M, Jensen MD, Lerman A, et al. Effect of low-dose rapamycin on senescence markers and physical functioning in older adults with coronary artery disease: Results of a pilot study. J Frailty Aging 2016; 5(4): 204-7.
[PMID: 27883166]
[156]
Vingtdeux V, Giliberto L, Zhao H, et al. AMP-activated protein kinase signaling activation by resveratrol modulates amyloid-β peptide metabolism. J Biol Chem 2010; 285(12): 9100-13.
[http://dx.doi.org/10.1074/jbc.M109.060061] [PMID: 20080969]
[157]
Turner RS, Thomas RG, Craft S, et al. A randomized, double-blind, placebo-controlled trial of resveratrol for Alzheimer disease. Neurology 2015; 85(16): 1383-91.
[http://dx.doi.org/10.1212/WNL.0000000000002035] [PMID: 26362286]
[158]
Porquet D, Griñán-Ferré C, Ferrer I, et al. Neuroprotective role of trans-resveratrol in a murine model of familial Alzheimer’s disease. J Alzheimers Dis 2014; 42(4): 1209-20.
[http://dx.doi.org/10.3233/JAD-140444] [PMID: 25024312]
[159]
Zhu Z, Yan J, Jiang W, et al. Arctigenin effectively ameliorates memory impairment in Alzheimer’s disease model mice targeting both β-amyloid production and clearance. J Neurosci 2013; 33(32): 13138-49.
[http://dx.doi.org/10.1523/JNEUROSCI.4790-12.2013] [PMID: 23926267]
[160]
Deng M, Huang L, Ning B, et al. β-asarone improves learning and memory and reduces Acetyl Cholinesterase and Beta-amyloid 42 levels in APP/PS1 transgenic mice by regulating Beclin-1-dependent autophagy. Brain Res 2016; 1652: 188-94.
[http://dx.doi.org/10.1016/j.brainres.2016.10.008] [PMID: 27737765]
[161]
Liu S, Yang C, Zhang Y, et al. Neuroprotective effect of β-asarone against Alzheimer’s disease: regulation of synaptic plasticity by increased expression of SYP and GluR1. Drug Des Devel Ther 2016; 10(Apr): 1461-9.
[http://dx.doi.org/10.2147/DDDT.S93559] [PMID: 27143853]
[162]
Chu C, Zhang X, Ma W, et al. Induction of autophagy by a novel small molecule improves aβ pathology and ameliorates cognitive deficits. PLoS One 2013; 8(6): e65367.
[http://dx.doi.org/10.1371/journal.pone.0065367] [PMID: 23750258]
[163]
Grossi C, Rigacci S, Ambrosini S, et al. The polyphenol oleuropein aglycone protects TgCRND8 mice against Aß plaque pathology. PLoS One 2013; 8(8): e71702.
[http://dx.doi.org/10.1371/journal.pone.0071702] [PMID: 23951225]
[164]
Luccarini I, Grossi C, Rigacci S, et al. Oleuropein aglycone protects against pyroglutamylated-3 amyloid-ß toxicity: biochemical, epigenetic and functional correlates. Neurobiol Aging 2015; 36(2): 648-63.
[http://dx.doi.org/10.1016/j.neurobiolaging.2014.08.029] [PMID: 25293421]
[165]
Martorell M, Forman K, Castro N, Capó X, Tejada S, Sureda A. Potential therapeutic effects of oleuropein aglycone in alzheimer’s disease. Curr Pharm Biotechnol 2016; 17(11): 994-1001.
[http://dx.doi.org/10.2174/1389201017666160725120656] [PMID: 27455905]
[166]
Cerpa W, Hancke J, Morazzoni P, et al. The hyperforin derivative IDN5706 occludes spatial memory impairments and neuropathological changes in a double transgenic Alzheimer’s mouse model. Curr Alzheimer Res 2010; 7(2): 126-33.
[http://dx.doi.org/10.2174/156720510790691218] [PMID: 19939230]
[167]
Inestrosa NC, Tapia-Rojas C, Griffith TN, et al. Tetrahydrohyper-forin prevents cognitive deficit, Aβ deposition, tau phosphorylation and synaptotoxicity in the APPswe/PSEN1ΔE9 model of Alzheimer’s disease: A possible effect on APP processing. Transl Psychiatry 2011; 1(7): e20-0.
[http://dx.doi.org/10.1038/tp.2011.19] [PMID: 22832522]
[168]
Cavieres VA, González A, Muñoz VC, et al. Tetrahydrohyperforin inhibits the proteolytic processing of amyloid precursor protein and enhances its degradation by atg5-dependent autophagy. PLoS One 2015; 10(8): e0136313.
[http://dx.doi.org/10.1371/journal.pone.0136313] [PMID: 26308941]
[169]
Sarkar S, Davies JE, Huang Z, Tunnacliffe A, Rubinsztein DC. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and α-synuclein. J Biol Chem 2007; 282(8): 5641-52.
[http://dx.doi.org/10.1074/jbc.M609532200] [PMID: 17182613]
[170]
Liu R, Barkhordarian H, Emadi S, Park C, Sierks M. Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42. Neurobiol Dis 2005; 20(1): 74-81.
[http://dx.doi.org/10.1016/j.nbd.2005.02.003] [PMID: 16137568]
[171]
Krüger U, Wang Y, Kumar S, Mandelkow EM. Autophagic degradation of tau in primary neurons and its enhancement by trehalose. Neurobiol Aging 2012; 33(10): 2291-305.
[http://dx.doi.org/10.1016/j.neurobiolaging.2011.11.009] [PMID: 22169203]
[172]
Nakagaki T, Satoh K, Ishibashi D, et al. FK506 reduces abnormal prion protein through the activation of autolysosomal degradation and prolongs survival in prion-infected mice. Autophagy 2013; 9(9): 1386-94.
[http://dx.doi.org/10.4161/auto.25381] [PMID: 23800841]
[173]
Cassano T, Magini A, Giovagnoli S, et al. Early intrathecal infusion of everolimus restores cognitive function and mood in a murine model of Alzheimer’s disease. Exp Neurol 2019; 311: 88-105.
[http://dx.doi.org/10.1016/j.expneurol.2018.09.011] [PMID: 30243986]
[174]
Benjamin D, Colombi M, Moroni C, Hall MN. Rapamycin passes the torch: A new generation of mTOR inhibitors. Nat Rev Drug Discov 2011; 10(11): 868-80.
[http://dx.doi.org/10.1038/nrd3531]
[175]
Motoi Y, Shimada K, Ishiguro K, Hattori N. Lithium and autophagy. ACS Chem Neurosci 2014; 5(6): 434-42.
[http://dx.doi.org/10.1021/cn500056q] [PMID: 24738557]
[176]
Shimada K, Motoi Y, Ishiguro K, et al. Long-term oral lithium treatment attenuates motor disturbance in tauopathy model mice: Implications of autophagy promotion. Neurobiol Dis 2012; 46(1): 101-8.
[http://dx.doi.org/10.1016/j.nbd.2011.12.050] [PMID: 22249108]
[177]
Forlenza OV, Diniz BS, Radanovic M, Santos FS, Talib LL, Gattaz WF. Disease-modifying properties of long-term lithium treatment for amnestic mild cognitive impairment: Randomised controlled trial. Br J Psychiatry 2011; 198(5): 351-6.
[http://dx.doi.org/10.1192/bjp.bp.110.080044] [PMID: 21525519]
[178]
Williams RSB, Cheng L, Mudge AW, Harwood AJ. A common mechanism of action for three mood-stabilizing drugs. Nature 2002; 417(6886): 292-5.
[http://dx.doi.org/10.1038/417292a]
[179]
Ferretta A, Gaballo A, Tanzarella P, et al. Effect of resveratrol on mitochondrial function: Implications in parkin-associated familiar Parkinson’s disease. Biochim Biophys Acta Mol Basis Dis 2014; 1842(7): 902-15.
[http://dx.doi.org/10.1016/j.bbadis.2014.02.010] [PMID: 24582596]
[180]
Wang H, Jiang T, Li W, Gao N, Zhang T. Resveratrol attenuates oxidative damage through activating mitophagy in an in vitro model of Alzheimer’s disease. Toxicol Lett 2018; 282: 100-8.
[http://dx.doi.org/10.1016/j.toxlet.2017.10.021] [PMID: 29097221]
[181]
Zhang CS, Li M, Ma T, et al. Metformin Activates AMPK through the Lysosomal Pathway. Cell Metab 2016; 24(4): 521-2.
[http://dx.doi.org/10.1016/j.cmet.2016.09.003] [PMID: 27732831]
[182]
Wahlqvist ML, Lee MS, Hsu CC, Chuang SY, Lee JT, Tsai HN. Metformin-inclusive sulfonylurea therapy reduces the risk of Parkinson’s disease occurring with Type 2 diabetes in a Taiwanese population cohort. Parkinsonism Relat Disord 2012; 18(6): 753-8.
[http://dx.doi.org/10.1016/j.parkreldis.2012.03.010] [PMID: 22498320]
[183]
Aguib Y, Heiseke A, Gilch S, et al. Autophagy induction by trehalose counter-acts cellular prion-infection. Autophagy 2009; 5(3): 361-9.
[http://dx.doi.org/10.4161/auto.5.3.7662] [PMID: 19182537]
[184]
Mardones P, Rubinsztein DC, Hetz C. Mystery solved: Trehalose kickstarts autophagy by blocking glucose transport. Sci Signal 2016; 9(416): fs2.
[http://dx.doi.org/10.1126/scisignal.aaf1937] [PMID: 26905424]
[185]
DeBosch BJ, Heitmeier MR, Mayer AL, et al. Trehalose inhibits solute carrier 2A (SLC2A) proteins to induce autophagy and prevent hepatic steatosis. Sci Signal 2016; 9(416): ra21.
[http://dx.doi.org/10.1126/scisignal.aac5472] [PMID: 26905426]
[186]
Mizunoe Y, Kobayashi M, Sudo Y, et al. Trehalose protects against oxidative stress by regulating the Keap1–Nrf2 and autophagy pathways. Redox Biol 2018; 15: 115-24.
[http://dx.doi.org/10.1016/j.redox.2017.09.007] [PMID: 29241092]
[187]
Tang Q, Zheng G, Feng Z, et al. Trehalose ameliorates oxidative stress-mediated mitochondrial dysfunction and ER stress via selective autophagy stimulation and autophagic flux restoration in osteoarthritis development. Cell Death Dis 2017; 8(10): e3081.
[http://dx.doi.org/10.1038/cddis.2017.453] [PMID: 28981117]
[188]
Rusmini P, Cortese K, Crippa V, et al. Trehalose induces autophagy via lysosomal-mediated TFEB activation in models of motoneuron degeneration. Autophagy 2019; 15(4): 631-51.
[http://dx.doi.org/10.1080/15548627.2018.1535292] [PMID: 30335591]
[189]
Rodríguez-Navarro JA, Rodríguez L, Casarejos MJ, et al. Trehalose ameliorates dopaminergic and tau pathology in parkin deleted/tau overexpressing mice through autophagy activation. Neurobiol Dis 2010; 39(3): 423-38.
[http://dx.doi.org/10.1016/j.nbd.2010.05.014] [PMID: 20546895]
[190]
Castillo K, Nassif M, Valenzuela V, et al. Trehalose delays the progression of amyotrophic lateral sclerosis by enhancing autophagy in motoneurons. Autophagy 2013; 9(9): 1308-20.
[http://dx.doi.org/10.4161/auto.25188] [PMID: 23851366]
[191]
Casarejos MJ, Solano RM, Gómez A, Perucho J, de Yébenes JG, Mena MA. The accumulation of neurotoxic proteins, induced by proteasome inhibition, is reverted by trehalose, an enhancer of autophagy, in human neuroblastoma cells. Neurochem Int 2011; 58(4): 512-20.
[http://dx.doi.org/10.1016/j.neuint.2011.01.008] [PMID: 21232572]
[192]
Tanaka M, Machida Y, Niu S, et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat Med 2004; 10(2): 148-54.
[http://dx.doi.org/10.1038/nm985] [PMID: 14730359]
[193]
Sarkar S, Rubinsztein DC. Small molecule enhancers of autophagy for neurodegenerative diseases. Mol Biosyst 2008; 4(9): 895-901.
[http://dx.doi.org/10.1039/b804606a] [PMID: 18704227]
[194]
Bellozi PMQ, Lima IVA, Dória JG, et al. Neuroprotective effects of the anticancer drug NVP-BEZ235 (dactolisib) on amyloid-β 1–42 induced neurotoxicity and memory impairment. Sci Rep 2016; 6(1): 25226.
[http://dx.doi.org/10.1038/srep25226] [PMID: 27142962]
[195]
Mason JS, Wileman T, Chapman T. Lifespan extension without fertility reduction following dietary addition of the autophagy activator Torin1 in Drosophila melanogaster. PLoS One 2018; 13(1): e0190105.
[http://dx.doi.org/10.1371/journal.pone.0190105] [PMID: 29329306]
[196]
Thoreen CC, Kang SA, Chang JW, et al. An ATP-competitive mammalian target of rapamycin inhibitor reveals rapamycin-resistant functions of mTORC1. J Biol Chem 2009; 284(12): 8023-32.
[http://dx.doi.org/10.1074/jbc.M900301200] [PMID: 19150980]
[197]
Ohwada J, Ebiike H, Kawada H, et al. Discovery and biological activity of a novel class I PI3K inhibitor, CH5132799. Bioorg Med Chem Lett 2011; 21(6): 1767-72.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.065] [PMID: 21316229]
[198]
Wallin JJ, Edgar KA, Guan J, et al. GDC-0980 is a novel class I PI3K/mTOR kinase inhibitor with robust activity in cancer models driven by the PI3K pathway. Mol Cancer Ther 2011; 10(12): 2426-36.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0446] [PMID: 21998291]
[199]
Xia HG, Zhang L, Chen G, et al. Control of basal autophagy by calpain1 mediated cleavage of ATG5. Autophagy 2010; 6(1): 61-6.
[http://dx.doi.org/10.4161/auto.6.1.10326] [PMID: 19901552]
[200]
Shaw SY, Tran K, Castoreno AB, et al. Selective modulation of autophagy, innate immunity, and adaptive immunity by small molecules. ACS Chem Biol 2013; 8(12): 2724-33.
[http://dx.doi.org/10.1021/cb400352d] [PMID: 24168452]
[201]
Hochfeld WE, Lee S, Rubinsztein DC. Therapeutic induction of autophagy to modulate neurodegenerative disease progression. Acta Pharmacol Sin 2013; 34(5): 600-4.
[http://dx.doi.org/10.1038/aps.2012.189] [PMID: 23377551]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy