Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

Synthesis and Biological Activity of 2-pyridone Derivatives: A Mini Review

Author(s): Krishan Kumar Verma*, Sapna Kapoor, Vivek Kumar Kushwaha, Ashish Mishra and Anshul Upadhyay

Volume 21, Issue 10, 2024

Published on: 12 May, 2023

Page: [1617 - 1631] Pages: 15

DOI: 10.2174/1570180820666230417084456

Price: $65

Abstract

The 2-pyridone nucleus is an important scaffold present in various compounds with diverse pharmacological activity. Among the reported 2-pyridone analogs, the majority of the compounds either have a substituted ring system or a fused ring system. Till now, several derivatives have been reported by different researchers for their antimicrobial activity, anticancer activity, antiviral activity, antioxidant activity, anti-hepatitis virus activity, and anti-allodynia and anti-obesity activities. In this review, we have attempted to compile synthetic methods of 2-pyridone ring by ring cyclization along with pharmacological aspects related to various synthesized derivatives of the 2-pyridone nucleus.

[1]
Dua, R.; Shrivastava, S.; Sonwane, S.; Srivastava, S. Pharmacological significance of synthetic heterocycles scaffold: A review. Adv. Biol. Res., 2011, 5, 120-144.
[2]
Mitscher, L.A. Bacterial topoisomerase inhibitors: quinolone and pyridone antibacterial agents. Chem. Rev., 2005, 105(2), 559-592.
[http://dx.doi.org/10.1021/cr030101q] [PMID: 15700957]
[3]
Teresa Cocco, M.; Congiu, C.; Onnis, V.; Morelli, M.; Cauli, O. Synthesis of ibuprofen heterocyclic amides and investigation of their analgesic and toxicological properties. Eur. J. Med. Chem., 2003, 38(5), 513-518.
[http://dx.doi.org/10.1016/S0223-5234(03)00074-6] [PMID: 12767601]
[4]
Amr, A.G.E.; Abdulla, M.M. Anti-inflammatory profile of some synthesized heterocyclic pyridone and pyridine derivatives fused with steroidal structure. Bioorg. Med. Chem., 2006, 14(13), 4341-4352.
[http://dx.doi.org/10.1016/j.bmc.2006.02.045] [PMID: 16545570]
[5]
Magedov, I.V.; Manpadi, M.; Evdokimov, N.M.; Elias, E.M.; Rozhkova, E.; Ogasawara, M.A.; Bettale, J.D.; Przheval’skii, N.M.; Rogelj, S.; Kornienko, A. Antiproliferative and apoptosis inducing properties of pyrano[3,2-c]pyridones accessible by a one-step multicomponent synthesis. Bioorg. Med. Chem. Lett., 2007, 17(14), 3872-3876.
[http://dx.doi.org/10.1016/j.bmcl.2007.05.004] [PMID: 17512729]
[6]
Li, Q.; Mitscher, L.A.; Shen, L.L. The 2-pyridone antibacterial agents: bacterial topoisomerase inhibitors. Med. Res. Rev., 2000, 20(4), 231-293.
[http://dx.doi.org/10.1002/1098-1128(200007)20:4<231:AID-MED1>3.0.CO;2-N] [PMID: 10861727]
[7]
Medina-Franco, J.L.; Martínez-Mayorga, K.; Juárez-Gordiano, C.; Castillo, R. Pyridin-2(1H)-ones: a promising class of HIV-1 non-nucleoside reverse transcriptase inhibitors. ChemMedChem, 2007, 2(8), 1141-1147.
[http://dx.doi.org/10.1002/cmdc.200700054] [PMID: 17477343]
[8]
Hagar, M.; Chaieb, K.; Parveen, S.; Ahmed, H.A.; Alnoman, R.B. N-alkyl 2-pyridone versus O-alkyl 2-pyridol: Ultrasonic synthesis, DFT, docking studies and their antimicrobial evaluation. J. Mol. Struct., 2020, 1199, 126926.
[http://dx.doi.org/10.1016/j.molstruc.2019.126926]
[9]
Forlani, L.; Cristoni, G.; Boga, C.; Todesco, P.E.; Vecchio, E.D.; Selva, S.; Monari, M. Reinvestigation of the tautomerism of some substituted 2-hydroxypyridines. ARKIVOC, 2002, 2002(11), 198-215.
[http://dx.doi.org/10.3998/ark.5550190.0003.b18]
[10]
Chand, K.; Prasad, S.; Tiwari, R.K.; Shirazi, A.N.; Kumar, S.; Parang, K.; Sharma, S.K. Synthesis and evaluation of c-Src kinase inhibitory activity of pyridin-2(1H)-one derivatives. Bioorg. Chem., 2014, 53, 75-82.
[http://dx.doi.org/10.1016/j.bioorg.2014.02.001] [PMID: 24632506]
[11]
Seifi, M.; Rabori, M.K.; Sheibani, H. Highly efficient method for synthesis of N-amino-2-pyridone derivatives in the presence of catalysts such as magnesium oxide (MgO) and bismuth(III) nitrate pentahydrate (Bi(NO3)3·5H2O). Mod Res Catal., 2013, 2, 8-12.
[http://dx.doi.org/10.4236/mrc.2013.22A002]
[12]
Jessen, H.J.; Gademann, K. 4-Hydroxy-2-pyridone alkaloids: Structures and synthetic approaches. Nat. Prod. Rep., 2010, 27(8), 1168-1185.
[http://dx.doi.org/10.1039/b911516c] [PMID: 20532354]
[13]
Tuson, R.V. XXII.—Note on an alkaloïd contained in the seeds of the Ricinus communis, or castor-oil plant. J. Chem. Soc., 1864, 17(0), 195-197.
[http://dx.doi.org/10.1039/JS8641700195]
[14]
Mcinnes, A.G.; Smith, D.G.; Wat, C.K.; Vining, L.C.; Wright, J.L.C. Tenellin and bassianin, metabolites of Beauveria species. Structure elucidation with 15N- and doubly 13C-enriched compounds using 13C nuclear magnetic resonance spectroscopy. J. Chem. Soc. Chem. Commun., 1974, 8(8), 281-282.
[http://dx.doi.org/10.1039/c39740000281]
[15]
Casinovi, C.G.; Grandolini, G.; Mercantini, R.; Oddo, N.; Olivieri, R.; Tonolo, A. A new antibiotic produced by a strain of aspergillus flavipes. Tetrahedron Lett., 1968, 9(27), 3175-3178.
[http://dx.doi.org/10.1016/S0040-4039(00)89581-7] [PMID: 5651015]
[16]
Ando, K.; Suzuki, S.; Saeki, T.; Tamura, G.; Arima, K. Funiculosin, a new antibiotic. I isolation, biological and chemical properties. J. Antibiot. (Tokyo), 1969, 22(5), 189-194.
[http://dx.doi.org/10.7164/antibiotics.22.189] [PMID: 4980446]
[17]
Hayakawa, S.; Minato, H.; Katagiri, K. The ilicicolins, antibiotics from Cylindrocladium ilicicola. J. Antibiot. (Tokyo), 1971, 24(9), 653-654.
[http://dx.doi.org/10.7164/antibiotics.24.653] [PMID: 5167226]
[18]
Wolf, H.; Zähner, H. Stoffwechselprodukte von Mikroorganismen. Arch. Microbiol., 1972, 83, 147-154.
[http://dx.doi.org/10.1007/BF00407696]
[19]
Klein, N.A.; Siskind, S.J.; Frishman, W.H.; Sonnenblick, E.H.; Lejemtel, T.H. Hemodynamic comparison of intravenous amrinone and dobutamine in patients with chronic congestive heart failure. Am. J. Cardiol., 1981, 48(1), 170-175.
[http://dx.doi.org/10.1016/0002-9149(81)90587-7] [PMID: 7246440]
[20]
Alousi, A.A.; Stankus, G.P.; Stuart, J.C.; Walton, L.H. Characterization of the cardiotonic effects of milrinone, a new and potent cardiac bipyridine, on isolated tissues from several animal species. J. Cardiovasc. Pharmacol., 1983, 5(5), 804-811.
[http://dx.doi.org/10.1097/00005344-198309000-00015] [PMID: 6195468]
[21]
Angibaud, P.R.; Venet, M.G.; Filliers, W.; Broeckx, R.; Ligny, Y.A.; Muller, P.; Poncelet, V.S.; End, D.W. Synthesis routes towards the farnesyl protein transferase inhibitor ZARNESTRATM. Eur. J. Org. Chem., 2004, 2004(3), 479-486.
[http://dx.doi.org/10.1002/ejoc.200300538]
[22]
Pemberton, N.; Chorell, E.; Almqvist, F. Microwave-assisted synthesis and functionalization of 2-pyridones, 2-quinolones and other ring-fused 2-pyridones. Top. Heterocycl. Chem., 2006, 1, 1-30.
[http://dx.doi.org/10.1007/7081_006]
[23]
Wall, M.E.; Wani, M.C.; Cook, C.E.; Palmer, K.H.; McPhail, A.T.; Sim, G.A. Plant antitumor agents, The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from camptotheca acuminate. J. Am. Chem. Soc., 1966, 88(16), 3888-3890.
[http://dx.doi.org/10.1021/ja00968a057]
[24]
Arrayás, R.G.; Alcudia, A.; Liebeskind, L.S. Facile enantiodivergent approach to 5-hydroxy-5,6-dihydro-2(1H)-pyridones. First total synthesis of both enantiomers of pipermethystine. Org. Lett., 2001, 3(21), 3381-3383.
[http://dx.doi.org/10.1021/ol010183+] [PMID: 11594839]
[25]
Parmar, K.A.; Prajapati, S.N.; Joshi, S.A.; Goswami, K.V.; Patel, A.N. Studies on cyanopyridones and isoxazoles ring system in the synthesis of novel bioactive compounds. Der. Chemica Sinica., 2011, 2, 100-110.
[26]
Ranjbar-Karimi, R.; Darehkordi, A.; Bahadornia, F.; Poorfreidoni, A. Dipyrido[1,2-b:3′,4′-e][1,2,4]triazine Scaffolds from Pentafluoropyridine. J. Heterocycl. Chem., 2018, 55(11), 2516-2521.
[http://dx.doi.org/10.1002/jhet.3283]
[27]
Cherry, K.; Abarbri, M.; Parrain, J.L.; Duchêne, A. Regio- and selective synthesis of 4,6-disubstituted-2-pyridones. Tetrahedron Lett., 2003, 44(31), 5791-5794.
[http://dx.doi.org/10.1016/S0040-4039(03)01429-1]
[28]
Smyth, L.A.; Matthews, T.P.; Horton, P.N.; Hursthouse, M.B.; Collins, I. Synthesis and reactivity of 3-amino-1H-pyrazolo[4,3-c]pyridin-4(5H)-ones: development of a novel kinase-focussed library. Tetrahedron, 2010, 66(15), 2843-2854.
[http://dx.doi.org/10.1016/j.tet.2010.02.047]
[29]
Zhang, Y.; Loertscher, B.M.; Castle, S.L. An annulation method for the synthesis of alkyl-substituted 6-carbomethoxy-2-pyridones. Tetrahedron, 2009, 65(33), 6584-6590.
[http://dx.doi.org/10.1016/j.tet.2009.06.006]
[30]
Keshavarz, N.; Behbahani, F.K. Synthesis of 4-aryl-6-phenyl-3-cyano-2-pyridones Using l-Proline as an Organocatalyst. Chemistry Africa, 2018, 1(3-4), 113-117.
[http://dx.doi.org/10.1007/s42250-018-0021-9]
[31]
Dollé, V.; Nguyen, C.H.; Legraverend, M.; Aubertin, A.M.; Kirn, A.; Andreola, M.L.; Ventura, M.; Tarrago-Litvak, L.; Bisagni, E. Synthesis and antiviral activity of 4-benzyl pyridinone derivatives as potent and selective non-nucleoside human immunodeficiency virus type 1 reverse transcriptase inhibitors. J. Med. Chem., 2000, 43(21), 3949-3962.
[http://dx.doi.org/10.1021/jm0009437] [PMID: 11052800]
[32]
Ravinder, M.; Mahendar, B.; Mattapally, S.; Hamsini, K.V.; Reddy, T.N.; Rohit, C.; Srinivas, K.; Banerjee, S.K.; Rao, V.J. Synthesis and evaluation of novel 2-pyridone derivatives as inhibitors of phosphodiesterase3 (PDE3): A target for heart failure and platelet aggregation. Bioorg. Med. Chem. Lett., 2012, 22(18), 6010-6015.
[http://dx.doi.org/10.1016/j.bmcl.2012.05.019] [PMID: 22897945]
[33]
Mijin, D.; Markovic, J.; Brkovic, D.; Marinkovic, A. Microwave assisted synthesis of 2-pyridone and 2-pyridone based compounds. Hem. Ind., 2014, 68(1), 1-14.
[http://dx.doi.org/10.2298/HEMIND121204021M]
[34]
Mehrparvar, S.; Balalaie, S.; Rabbanizadeh, M.; Ghabraie, E.; Rominger, F. An efficient tandem approach for the synthesis of functionalized 2-pyridone-3-carboxylic acids using three-component reaction in aqueous media. Mol. Divers., 2014, 18(3), 535-543.
[http://dx.doi.org/10.1007/s11030-014-9522-x] [PMID: 24792225]
[35]
Tugusheva, N.Z.; Alekseeva, L.M.; Shashkov, A.S.; Chernyshev, V.V.; Granik, V.G. Synthesis and functionalization of 4-arylamino-2-pyridone derivatives. Russ. Chem. Bull., 2006, 55(8), 1475-1486.
[http://dx.doi.org/10.1007/s11172-006-0443-4]
[36]
Salem, M.S.; Sakr, S.I.; El-Senousy, W.M.; Madkour, H.M.F. Synthesis, antibacterial, and antiviral evaluation of new heterocycles containing the pyridine moiety. Arch. Pharm. (Weinheim), 2013, 346(10), 766-773.
[http://dx.doi.org/10.1002/ardp.201300183] [PMID: 24105721]
[37]
Pandit, A.B.; Savant, M.M.; Ladva, K.D. An Efficient One-Pot Synthesis of Highly Substituted Pyridone Derivatives and Their Antimicrobial and Antifungal Activity. J. Heterocycl. Chem., 2018, 55(4), 983-987.
[http://dx.doi.org/10.1002/jhet.3128]
[38]
Alrobaian, M.; Azwari, S.A.; Belal, A.; Eldeab, H.A. An eco-friendly technique: Solvent-free microwave synthesis and docking studies of some new pyridine nucleosides and their pharmacological significance. Molecules, 2019, 24(10), 1969.
[http://dx.doi.org/10.3390/molecules24101969] [PMID: 31121872]
[39]
Azzam, R.A.; Elgemeie, G.H. Synthesis and antimicrobial evaluation of novel N-substituted 4-ethylsulfanyl-2-pyridones and triazolopyridines. Med. Chem. Res., 2019, 28(1), 62-70.
[http://dx.doi.org/10.1007/s00044-018-2264-z]
[40]
Engström, P.; Krishnan, K.S.; Ngyuen, B.D.; Chorell, E.; Normark, J.; Silver, J.; Bastidas, R.J.; Welch, M.D.; Hultgren, S.J.; Wolf-Watz, H.; Valdivia, R.H.; Almqvist, F.; Bergström, S.A. 2-pyridone-amide inhibitor targets the glucose metabolism pathway of Chlamydia trachomatis. MBio, 2015, 6(1), e02304-14.
[http://dx.doi.org/10.1128/mBio.02304-14] [PMID: 25550323]
[41]
Dragovich, P.S.; Prins, T.J.; Zhou, R.; Johnson, T.O.; Brown, E.L.; Maldonado, F.C.; Fuhrman, S.A.; Zalman, L.S.; Patick, A.K.; Matthews, D.A.; Hou, X.; Meador, J.W., III; Ferre, R.A.; Worland, S.T. Structure-based design, synthesis, and biological evaluation of irreversible human rhinovirus 3C protease inhibitors. Part 7: structure-activity studies of bicyclic 2-pyridone-containing peptidomimetics. Bioorg. Med. Chem. Lett., 2002, 12(5), 733-738.
[http://dx.doi.org/10.1016/S0960-894X(02)00008-2] [PMID: 11858991]
[42]
Patick, A.K.; Brothers, M.A.; Maldonado, F.; Binford, S.; Maldonado, O.; Fuhrman, S.; Petersen, A.; Smith, G.J., III; Zalman, L.S.; Burns-Naas, L.A.; Tran, J.Q. In vitro antiviral activity and single-dose pharmacokinetics in humans of a novel, orally bioavailable inhibitor of human rhinovirus 3C protease. Antimicrob. Agents Chemother., 2005, 49(6), 2267-2275.
[http://dx.doi.org/10.1128/AAC.49.6.2267-2275.2005] [PMID: 15917520]
[43]
Åberg, V.; Das, P.; Chorell, E.; Hedenström, M.; Pinkner, J.S.; Hultgren, S.J.; Almqvist, F. Carboxylic acid isosteres improve the activity of ring-fused 2-pyridones that inhibit pilus biogenesis in E. coli. Bioorg. Med. Chem. Lett., 2008, 18(12), 3536-3540.
[http://dx.doi.org/10.1016/j.bmcl.2008.05.020] [PMID: 18499455]
[44]
Sayed, H.H.; Morsy, E.M.H.; Flefel, E.M. Synthesis and reactions of some novel nicotinonitrile, thiazolotriazole, and imidazolotriazole derivatives for antioxidant evaluation. Synth. Commun., 2010, 40(9), 1360-1370.
[http://dx.doi.org/10.1080/00397910903079631]
[45]
Kamali, M.; Shahi, S.; Mashhadi Akbar Bujar, M. Temperature‐dependent green synthesis of new series of mannich bases from 4‐hydroxy‐pyridine‐2‐one and their antioxidant activity evaluation. ChemistrySelect, 2020, 5(5), 1709-1712.
[http://dx.doi.org/10.1002/slct.201904615]
[46]
Savant, M.M.; Ladva, K.D.; Pandit, A.B. Facile synthesis of highly functionalized novel pyrazolopyridones using oxoketene dithioacetal and their anti-HIV activity. Synth. Commun., 2018, 48(13), 1640-1648.
[http://dx.doi.org/10.1080/00397911.2018.1458239]
[47]
Wang, Z.; Yu, Z.; Kang, D.; Zhang, J.; Tian, Y.; Daelemans, D.; De Clercq, E.; Pannecouque, C.; Zhan, P.; Liu, X. Design, synthesis and biological evaluation of novel acetamide-substituted doravirine and its prodrugs as potent HIV-1 NNRTIs. Bioorg. Med. Chem., 2019, 27(3), 447-456.
[http://dx.doi.org/10.1016/j.bmc.2018.12.039] [PMID: 30606670]
[48]
Li, A.; Ouyang, Y.; Wang, Z.; Cao, Y.; Liu, X.; Ran, L.; Li, C.; Li, L.; Zhang, L.; Qiao, K.; Xu, W.; Huang, Y.; Zhang, Z.; Tian, C.; Liu, Z.; Jiang, S.; Shao, Y.; Du, Y.; Ma, L.; Wang, X.; Liu, J. Novel pyridinone derivatives as non-nucleoside reverse transcriptase inhibitors (NNRTIs) with high potency against NNRTI-resistant HIV-1 strains. J. Med. Chem., 2013, 56(9), 3593-3608.
[http://dx.doi.org/10.1021/jm400102x] [PMID: 23540737]
[49]
Saari, W.S.; Hoffman, J.M.; Wai, J.S.; Fisher, T.E.; Rooney, C.S.; Smith, A.M.; Thomas, C.M.; Goldman, M.E.; O’Brien, J.A.; Nunberg, J.H.; Quintero, J.C.; Schleif, W.A.; Emini, E.A.; Stern, A.M.; Anderson, P.S. 2-Pyridinone derivatives: a new class of nonnucleoside, HIV-1-specific reverse transcriptase inhibitors. J. Med. Chem., 1991, 34(9), 2922-2925.
[http://dx.doi.org/10.1021/jm00113a036] [PMID: 1716683]
[50]
Benjahad, A.; Courté, K.; Guillemont, J.; Mabire, D.; Coupa, S.; Poncelet, A.; Csoka, I.; Andries, K.; Pauwels, R.; de Béthune, M.P.; Monneret, C.; Bisagni, E.; Nguyen, C.H.; Grierson, D.S. 4-benzyl- and 4-benzoyl-3-dimethylaminopyridin-2(1H)-ones, a new family of potent anti-HIV agents: optimization and in vitro evaluation against clinically important HIV mutant strains. J. Med. Chem., 2004, 47(22), 5501-5514.
[http://dx.doi.org/10.1021/jm0407658] [PMID: 15481987]
[51]
Benjahad, A.; Croisy, M.; Monneret, C.; Bisagni, E.; Mabire, D.; Coupa, S.; Poncelet, A.; Csoka, I.; Guillemont, J.; Meyer, C.; Andries, K.; Pauwels, R.; de Béthune, M.P.; Himmel, D.M.; Das, K.; Arnold, E.; Nguyen, C.H.; Grierson, D.S. 4-Benzyl and 4-benzoyl-3-dimethylaminopyridin-2(1H)-ones: in vitro evaluation of new C-3-amino-substituted and C-5,6-alkyl-substituted analogues against clinically important HIV mutant strains. J. Med. Chem., 2005, 48(6), 1948-1964.
[http://dx.doi.org/10.1021/jm0408621] [PMID: 15771439]
[52]
Zhang, Y.K.; Lv, Z.L.; Niu, C.J.; Li, K. Synthesis and anti-HBV activity of novel 5-substituted pyridin-2(1H)-one derivatives. Chin. Chem. Lett., 2010, 21(3), 290-292.
[http://dx.doi.org/10.1016/j.cclet.2009.10.010]
[53]
Lv, Z.; Sheng, C.; Wang, T.; Zhang, Y.; Liu, J.; Feng, J.; Sun, H.; Zhong, H.; Niu, C.; Li, K. Design, synthesis, and antihepatitis B virus activities of novel 2-pyridone derivatives. J. Med. Chem., 2010, 53(2), 660-668.
[http://dx.doi.org/10.1021/jm901237x] [PMID: 20000776]
[54]
Manfroni, G.; Meschini, F.; Barreca, M.L.; Leyssen, P.; Samuele, A.; Iraci, N.; Sabatini, S.; Massari, S.; Maga, G.; Neyts, J.; Cecchetti, V. Pyridobenzothiazole derivatives as new chemotype targeting the HCV NS5B polymerase. Bioorg. Med. Chem., 2012, 20(2), 866-876.
[http://dx.doi.org/10.1016/j.bmc.2011.11.061] [PMID: 22197397]
[55]
Camarasa, M.; Puig de la Bellacasa, R.; González, À.L.; Ondoño, R.; Estrada, R.; Franco, S.; Badia, R.; Esté, J.; Martínez, M.Á.; Teixidó, J.; Clotet, B.; Borrell, J.I. Design, synthesis and biological evaluation of pyrido[2,3-d]pyrimidin-7-(8H)-ones as HCV inhibitors. Eur. J. Med. Chem., 2016, 115, 463-483.
[http://dx.doi.org/10.1016/j.ejmech.2016.03.055] [PMID: 27054294]
[56]
Jia, H.; Song, Y.; Yu, J.; Zhan, P.; Rai, D.; Liang, X.; Ma, C.; Liu, X. Design, synthesis and primary biological evaluation of the novel 2-pyridone derivatives as potent non-nucleoside HBV inhibitors. Eur. J. Med. Chem., 2017, 136, 144-153.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.048] [PMID: 28494252]
[57]
Ruebsam, F.; Tran, C.V.; Li, L.S.; Kim, S.H.; Xiang, A.X.; Zhou, Y.; Blazel, J.K.; Sun, Z.; Dragovich, P.S.; Zhao, J.; McGuire, H.M.; Murphy, D.E.; Tran, M.T.; Stankovic, N.; Ellis, D.A.; Gobbi, A.; Showalter, R.E.; Webber, S.E.; Shah, A.M.; Tsan, M.; Patel, R.A.; LeBrun, L.A.; Hou, H.J.; Kamran, R.; Sergeeva, M.V.; Bartkowski, D.M.; Nolan, T.G.; Norris, D.A.; Kirkovsky, L. 5,6-Dihydro-1H-pyridin-2-ones as potent inhibitors of HCV NS5B polymerase. Bioorg. Med. Chem. Lett., 2009, 19(2), 451-458.
[http://dx.doi.org/10.1016/j.bmcl.2008.11.048] [PMID: 19054673]
[58]
Helal, M.H.; El-Awdan, S.A.; Salem, M.A.; Abd-elaziz, T.A.; Moahamed, Y.A.; El-Sherif, A.A.; Mohamed, G.A.M. Synthesis, biological evaluation and molecular modeling of novel series of pyridine derivatives as anticancer, anti-inflammatory and analgesic agents. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2015, 135(135), 764-773.
[http://dx.doi.org/10.1016/j.saa.2014.06.145] [PMID: 25150427]
[59]
Rai, S.K.; Singh, P.; Khanam, S.; Tewari, A.K. Polymorphic study and anti-inflammatory activity of a 3-cyano-2-pyridone based flexible model. New J. Chem., 2016, 40(6), 5577-5587.
[http://dx.doi.org/10.1039/C5NJ03683F]
[60]
Ismail, M.M.F.; Ammar, Y.A.; El-Zahaby, H.S.A.; Eisa, S.I.; El-Sayed Barakat, S. Synthesis of novel 1-pyrazolylpyridin-2-ones as potential anti-inflammatory and analgesic agents. Arch. Pharm. (Weinheim), 2007, 340(9), 476-482.
[http://dx.doi.org/10.1002/ardp.200600197] [PMID: 17647214]
[61]
Kato, M.; Kusakabe, H.; Yanagihara, S.; Akizawa, H.; Tamoto, Y. Pharmaceutical compositions containing 2-pyridone derivatives as effective components U.S. Patents US20090298889 A1, 2009.
[62]
Rather, M.A.; Rasool, F.; Bhat, Z.S.; Dar, H.U.; Maqbool, M.; Amin, S.; Yousuf, S.K.; Ahmad, Z. Design and synthesis of indolopyridone hybrids as new antituberculosis agents. Microb. Pathog., 2017, 113, 330-334.
[http://dx.doi.org/10.1016/j.micpath.2017.10.045] [PMID: 29079215]
[63]
Verma, R.; Boshoff, H.I.M.; Arora, K.; Bairy, I.; Tiwari, M.; Bhat, V.G.; Shenoy, G.G. Synthesis, antitubercular evaluation, molecular docking and molecular dynamics studies of 4,6-disubstituted-2-oxo-dihydropyridine-3-carbonitriles. J. Mol. Struct., 2019, 1197, 117-133.
[http://dx.doi.org/10.1016/j.molstruc.2019.07.035]
[64]
Wang, L.; Lin, N.H.; Li, Q.; Henry, R.F.; Zhang, H.; Cohen, J.; Gu, W.Z.; Marsh, K.C.; Bauch, J.L.; Rosenberg, S.H.; Sham, H.L. Synthesis of 1H-pyridin-2-one derivatives as potent and selective farnesyltransferase inhibitors. Bioorg. Med. Chem. Lett., 2004, 14(18), 4603-4606.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.004] [PMID: 15324873]
[65]
Zhang, D.; Ai, J.; Liang, Z.; Zhu, W.; Peng, X.; Chen, X.; Ji, Y.; Jiang, H.; Luo, C.; Geng, M.; Liu, H. Novel 5-(benzyloxy)pyridin-2(1H)-one derivatives as potent c-Met inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(8), 2408-2413.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.037] [PMID: 23474386]
[66]
Zhu, W.; Shen, J.; Li, Q.; Pei, Q.; Chen, J.; Chen, Z.; Liu, Z.; Hu, G. Synthesis, pharmacophores, and mechanism study of pyridin-2(1H)-one derivatives as regulators of translation initiation factor 3A. Arch. Pharm. , 2013, 346(9), 654-666.
[http://dx.doi.org/10.1002/ardp.201300138] [PMID: 23959654]
[67]
Lv, Z.; Zhang, Y.; Zhang, M.; Chen, H.; Sun, Z.; Geng, D.; Niu, C.; Li, K. Design and synthesis of novel 2′-hydroxy group substituted 2-pyridone derivatives as anticancer agents. Eur. J. Med. Chem., 2013, 67, 447-453.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.046] [PMID: 23920246]
[68]
Wang, H.; Lawson, J.D.; Scorah, N.; Kamran, R.; Hixon, M.S.; Atienza, J.; Dougan, D.R.; Sabat, M. Design, synthesis and optimization of novel Alk5 (activin-like kinase 5) inhibitors. Bioorg. Med. Chem. Lett., 2016, 26(17), 4334-4339.
[http://dx.doi.org/10.1016/j.bmcl.2016.07.030] [PMID: 27460209]
[69]
Xie, W.; Wu, Y.; Zhang, J.; Mei, Q.; Zhang, Y.; Zhu, N.; Liu, R.; Zhang, H. Design, synthesis and biological evaluations of novel pyridone-thiazole hybrid molecules as antitumor agents. Eur. J. Med. Chem., 2018, 145, 35-40.
[http://dx.doi.org/10.1016/j.ejmech.2017.12.038] [PMID: 29316536]
[70]
Liu, L.; Li, X.; Cheng, Y.; Wang, L.; Yang, H.; Li, J.; He, S. shuangjie Wu; Yin, Q.; Xiang, H. Optimization of novel benzofuro[3,2-b]pyridin-2(1H)-one derivatives as dual inhibitors of BTK and PI3Kδ. Eur. J. Med. Chem., 2019, 164, 304-316.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.055] [PMID: 30605829]
[71]
Kaieda, A.; Takahashi, M.; Fukuda, H.; Okamoto, R.; Morimoto, S.; Gotoh, M.; Miyazaki, T.; Hori, Y.; Unno, S.; Kawamoto, T.; Tanaka, T.; Itono, S.; Takagi, T.; Sugimoto, H.; Okada, K.; Lane, W.; Sang, B.C.; Saikatendu, K.; Matsunaga, S.; Miwatashi, S. Structure‐based design, synthesis, and biological evaluation of imidazo[4,5‐b]pyridin‐2‐one‐based p38 MAP kinase inhibitors: Part 2. ChemMedChem, 2019, 14(24), 2093-2101.
[http://dx.doi.org/10.1002/cmdc.201900373] [PMID: 31697454]
[72]
Mishra, P.S.; Aanandhi, M.V.; Ravichandiran, V. Design, synthesis and characterization of 2-pyridone derivatives as C-Jun N-terminal Kinases (JNKs) signaling pathway inhibitors. Res. J. Pharm. Technol., 2017, 10(11), 3768-3774.
[http://dx.doi.org/10.5958/0974-360X.2017.00684.9]
[73]
Chen, T.; Luo, Y.; Hu, Y.; Yang, B.; Lu, W. Synthesis and biological evaluation of novel 1,6-diaryl pyridin-2(1H)-one analogs. Eur. J. Med. Chem., 2013, 64, 613-620.
[http://dx.doi.org/10.1016/j.ejmech.2013.04.008] [PMID: 23708235]
[74]
Buduma, K.; Chinde, S.; Arigari, N.K.; Grover, P.; Srinivas, K.V.N.S.; Kotesh Kumar, J. Iodine catalyzed simple and efficient synthesis of antiproliferative 2-pyridones. Bioorg. Med. Chem. Lett., 2016, 26(9), 2159-2163.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.071] [PMID: 27036521]
[75]
Rong, J.; Feng, Z.Z.; Shi, Y.J.; Ren, J.; Xu, Y.; Wang, N.Y.; Xue, Q.; Liu, K.L.; Zhou, S.Y.; Wei, W.; Yu, L.T. Design, synthesis and biological evaluation of 3,5-dimethylisoxazole and pyridone derivatives as BRD4 inhibitors. Bioorg. Med. Chem. Lett., 2019, 29(19), 126577.
[http://dx.doi.org/10.1016/j.bmcl.2019.07.036] [PMID: 31421967]
[76]
Hu, X.; Li, L.; Zhang, Q.; Wang, Q.; Feng, Z.; Xu, Y.; Xia, Y.; Yu, L. Design, synthesis and biological evaluation of a novel tubulin inhibitor SKLB0565 targeting the colchicine binding site. Bioorg. Chem., 2020, 97, 103695.
[http://dx.doi.org/10.1016/j.bioorg.2020.103695] [PMID: 32120073]
[77]
Visseq, A.; Descheemaeker, A.; Pinto-Pardo, N.; Nauton, L.; Théry, V.; Giraud, F.; Abrunhosa-Thomas, I.; Artola, A.; Anizon, F.; Dallel, R.; Moreau, P. Pyridin-2(1H)one derivatives: A possible new class of therapeutics for mechanical allodynia. Eur. J. Med. Chem., 2020, 187, 111917.
[http://dx.doi.org/10.1016/j.ejmech.2019.111917] [PMID: 31806536]
[78]
Visseq, A.; Descheemaeker, A.; Hérault, K.; Giraud, F.; Abrunhosa-Thomas, I.; Artola, A.; Anizon, F.; Dallel, R.; Moreau, P. Improved potency of pyridin-2(1H)one derivatives for the treatment of mechanical allodynia. Eur. J. Med. Chem., 2021, 225, 113748.
[http://dx.doi.org/10.1016/j.ejmech.2021.113748] [PMID: 34392191]
[79]
Xu, T.; Xue, Y.; Lu, J.; Jin, C. Synthesis and biological evaluation of 1-(4-(piperazin-1-yl)phenyl)pyridin-2(1H)-one derivatives as potential SSRIs. Eur. J. Med. Chem., 2021, 223, 113644.
[http://dx.doi.org/10.1016/j.ejmech.2021.113644] [PMID: 34182358]
[80]
Hadden, M.; Deering, D.M.; Henderson, A.J.; Surman, M.D.; Luche, M.; Khmelnitsky, Y.; Vickers, S.; Viggers, J.; Cheetham, S.; Guzzo, P.R. Synthesis and SAR of 4-aryl-1-(indazol-5-yl)pyridin-2(1H)ones as MCH-1 antagonists for the treatment of obesity. Bioorg. Med. Chem. Lett., 2010, 20(23), 7020-7023.
[http://dx.doi.org/10.1016/j.bmcl.2010.09.037] [PMID: 20951036]
[81]
Hibi, S.; Ueno, K.; Nagato, S.; Kawano, K.; Ito, K.; Norimine, Y.; Takenaka, O.; Hanada, T.; Yonaga, M. Discovery of 2-(2-Oxo-1-phenyl-5-pyridin-2-yl-1,2-dihydropyridin-3-yl)benzonitrile (Perampanel): A Novel, Noncompetitive α-Amino-3-hydroxy-5-methyl-4-isoxazolepropanoic Acid (AMPA). Receptor Antagonist. J. Med. Chem., 2012, 55(23), 10584-10600.
[http://dx.doi.org/10.1021/jm301268u] [PMID: 23181587]

© 2025 Bentham Science Publishers | Privacy Policy