Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Biosynthesis and Bioapplications of Nanomaterials from Mushroom Products

Author(s): Sachchida Nand Rai, Divya Mishra, Payal Singh, Mohan P. Singh*, Emanuel Vamanu* and Alexandru Petre

Volume 29, Issue 13, 2023

Published on: 27 April, 2023

Page: [1002 - 1008] Pages: 7

DOI: 10.2174/1381612829666230417083133

Price: $65

conference banner
Abstract

The production of nanoparticles (NPs) from chemical and physical synthesis has ended due to the involvement of toxic byproducts and harsh analytical conditions. Innovation and research in nanoparticle synthesis are derived from biomaterials that have gained attention due to their novel features, such as ease of synthesis, low-cost, eco-friendly approach, and high water solubility. Nanoparticles obtained through macrofungi involve several mushroom species, i.e., Pleurotus spp., Ganoderma spp., Lentinus spp., and Agaricus bisporus. It is well-known that macrofungi possess high nutritional, antimicrobial, anti-cancerous, and immune-modulatory properties. Nanoparticle synthesis via medicinal and edible mushrooms is a striking research field, as macrofungi act as an eco-friendly biofilm that secretes essential enzymes to reduce metal ions. The mushroom-isolated nanoparticles exhibit longer shelf life, higher stability, and increased biological activities. The synthesis mechanisms are still unknown; evidence suggests that fungal flavones and reductases have a significant role. Several macrofungi have been utilized for metal synthesis (such as Ag, Au, Pt, Fe) and non-metal nanoparticles (Cd, Se, etc.). These nanoparticles have found significant applications in advancing industrial and bio-medical ventures. A complete understanding of the synthesis mechanism will help optimize the synthesis protocols and control the shape and size of nanoparticles. This review highlights various aspects of NP production via mushrooms, including its synthesis from mycelium and the fruiting body of macrofungi. Also, we discuss the applications of different technologies in NP high-scale production via mushrooms.

Next »
[1]
Ferreira ICFR, Vaz JA, Vasconcelos MH, Martins A. Compounds from wild mushrooms with antitumor potential. Anticancer Agents Med Chem 2010; 10(5): 424-36.
[http://dx.doi.org/10.2174/1871520611009050424] [PMID: 20545620]
[2]
Fierascu I, Fierascu IC, Brazdis RI, Baroi AM, Fistos T, Fierascu RC. Phytosynthesized metallic nanoparticles-between nano- medicine and toxicology. A brief review of 2019′s findings. Materials 2020; 13(3): 574.
[http://dx.doi.org/10.3390/ma13030574] [PMID: 31991830]
[3]
Burdulis D, Sarkinas A, Jasutiené I, Stackevicené E, Nikolajevas L, Janulis V. Comparative study of anthocyanin composition, antimicrobial and antioxidant activity in bilberry (Vaccinium myrtillus L.) and blueberry (Vaccinium corymbosum L.) fruits. Acta Pol Pharm 2009; 66(4): 399-408.
[PMID: 19702172]
[4]
Ferlemi AV, Lamari F. Berry leaves: An alternative source of bioactive natural products of nutritional and medicinal value. Antioxidants 2016; 5(2): 17.
[http://dx.doi.org/10.3390/antiox5020017] [PMID: 27258314]
[5]
Ashour AA, Raafat D, El-Gowelli HM, El-Kamel AH. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: Characterization and antimicrobial properties. Int J Nanomedicine 2015; 10: 7207-21.
[PMID: 26664112]
[6]
Puišo J, Jonkuvienė D, Mačionienė I, Šalomskienė J, Jasutienė I, Kondrotas R. Biosynthesis of silver nanoparticles using lingonberry and cranberry juices and their antimicrobial activity. Colloids Surf B Biointerfaces 2014; 121: 214-21.
[http://dx.doi.org/10.1016/j.colsurfb.2014.05.001] [PMID: 24988412]
[7]
Luo H, Lv XD, Wang GE, Li YF, Kurihara H, He RR. Anti-inflammatory effects of anthocyanins-rich extract from bilberry (Vaccinium myrtillus L.) on croton oil-induced ear edema and Propionibacterium acnes plus LPS-induced liver damage in mice. Int J Food Sci Nutr 2014; 65(5): 594-601.
[http://dx.doi.org/10.3109/09637486.2014.886184] [PMID: 24548119]
[8]
Hussain T, Tan B, Yin Y, Blachier F, Tossou MCB, Rahu N. Oxidative stress and inflammation: What polyphenols can do for us? Oxid Med Cell Longev 2016; 2016: 1-9.
[http://dx.doi.org/10.1155/2016/7432797] [PMID: 27738491]
[9]
Betancourt T, Brannon-Peppas L. Micro- and nanofabrication methods in nanotechnological medical and pharmaceutical devices. Int J Nanomedicine 2006; 1(4): 483-95.
[http://dx.doi.org/10.2147/nano.2006.1.4.483] [PMID: 17722281]
[10]
Yahfoufi N, Alsadi N, Jambi M, Matar C. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients 2018; 10(11): 1618.
[http://dx.doi.org/10.3390/nu10111618] [PMID: 30400131]
[11]
Galicia-Garcia U, Benito-Vicente A, Jebari S, et al. Pathophysiology of Type 2 Diabetes Mellitus. Int J Mol Sci 2020; 21(17): 6275.
[http://dx.doi.org/10.3390/ijms21176275] [PMID: 32872570]
[12]
Prabhu N, Nadu T. Biogenic synthesis of myconanoparticles from mushroom extracts and its medical applications: A review. Int J Pharm Sci Res 2019; 10: 2108-18.
[13]
Numata M, Hasegawa T, Fujisawa T, Sakurai K, Shinkai S. β-1,3-glucan (schizophyllan) can act as a one-dimensional host for creation of novel poly(aniline) nanofiber structures. Org Lett 2004; 6(24): 4447-50.
[http://dx.doi.org/10.1021/ol0483448] [PMID: 15548047]
[14]
Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH. Silver-protein (core-shell) nanoparticle production using spent mushroom substrate. Langmuir 2007; 23(13): 7113-7.
[http://dx.doi.org/10.1021/la063627p] [PMID: 17518485]
[15]
Khandel P, Shahi SK. Mycogenic nanoparticles and their bio-prospective applications: Current status and future challenges. J Nanostructure Chem 2018; 8(4): 369-91.
[http://dx.doi.org/10.1007/s40097-018-0285-2]
[16]
Shi J, Votruba AR, Farokhzad OC, Langer R. Nanotechnology in drug delivery and tissue engineering: From discovery to applications. Nano Lett 2010; 10(9): 3223-30.
[http://dx.doi.org/10.1021/nl102184c] [PMID: 20726522]
[17]
Maurya S, Bhardwaj AK, Gupta KK, et al. Green synthesis of silver nanoparticles using Pleurotus and its bactericidal activity. J Cell Mol Biol 2016; 62: 1-3.
[18]
Owaid MN, Al-Saeedi SS, Abed IA. Study on UV-Visible for detection of biosynthesis of silver nanoparticles by Oyster mushroom’s extract. J Water Environ Nano-technol 2017; 2: 66-70.
[19]
Bhardwaj K, Sharma A, Tejwan N, et al. Pleurotus macrofungi-assisted nanoparticle synthesis and its potential applications: A review. J Fungi 2020; 6(4): 351.
[http://dx.doi.org/10.3390/jof6040351] [PMID: 33317038]
[20]
Mirunalini S, Arulmozhi V, Deepalakshmi K, Krishnaveni M. Intracellular biosynthesis and antibacterial activity of silver nanoparticles using edible mushroom. Not Sci Biol 2012; 4(4): 55-61.
[http://dx.doi.org/10.15835/nsb448051]
[21]
Zhang XF, Liu ZG, Shen W, Gurunathan S. Silver nanoparticles: Synthesis, characterization, properties, applications, and therapeutic approaches. Int J Mol Sci 2016; 17(9): 1534.
[http://dx.doi.org/10.3390/ijms17091534] [PMID: 27649147]
[22]
Sanghi R, Verma P. Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 2009; 100(1): 501-4.
[http://dx.doi.org/10.1016/j.biortech.2008.05.048] [PMID: 18625550]
[23]
Sudhakar T, Nanda A, Babu SG, Janani S, Evans MD, Markose TK. Synthesis of silver nanoparticles from edible mushroom and its antimicrobial activity against human pathogens. Int J Pharm Tech Res 2014; 6: 1718-23.
[24]
Jaloot AS, Owaid MN, Naeem GA, Muslim RF. Mycosynthesizing and characterizing silver nanoparticles from the mushroom Inonotus hispidus (Hymenochaetaceae), and their antibacterial and antifungal activities. Environ Nanotechnol Monit Manag 2020; 14: 100313.
[http://dx.doi.org/10.1016/j.enmm.2020.100313]
[25]
Owaid M. Biosynthesis of silver nanoparticles from truffles and mushrooms and their applications as nanodrugs. Curr Appl Sci Technol 2021; 22: 5.
[26]
Aygün A, Özdemir S, Gülcan M, Cellat K, Şen F. Synthesis and characterization of Reishi mushroom-mediated green synthesis of silver nanoparticles for the biochemical applications. J Pharm Biomed Anal 2020; 178: 112970.
[http://dx.doi.org/10.1016/j.jpba.2019.112970] [PMID: 31722822]
[27]
Narayanan KB, Sakthivel N. Green synthesis of biogenic metal nanoparticles by terrestrial and aquatic phototrophic and heterotrophic eukaryotes and biocompatible agents. Adv Colloid Interface Sci 2011; 169(2): 59-79.
[http://dx.doi.org/10.1016/j.cis.2011.08.004] [PMID: 21981929]
[28]
Bhat R, Sharanabasava VG, Deshpande R, Shetti U, Sanjeev G, Venkataraman A. Photo-bio-synthesis of irregular shaped functionalized gold nanoparticles using edible mushroom Pleurotus florida and its anticancer evaluation. J Photochem Photobiol B 2013; 125: 63-9.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.05.002] [PMID: 23747539]
[29]
Zhang X, He X, Wang K, Wang Y, Li H, Tan W. Biosynthesis of size-controlled gold nanoparticles using fungus, Penicillium sp. J Nanosci Nanotechnol 2009; 9(10): 5738-44.
[http://dx.doi.org/10.1166/jnn.2009.1287] [PMID: 19908446]
[30]
Sen IK, Maity K, Islam SS. Green synthesis of gold nanoparticles using a glucan of an edible mushroom and study of catalytic activity. Carbohydr Polym 2013; 91(2): 518-28.
[http://dx.doi.org/10.1016/j.carbpol.2012.08.058] [PMID: 23121940]
[31]
Raj S, Trivedi R, Soni V. Biogenic synthesis of silver nanoparticles, characterization and their applications-A review. Surfaces 2021; 5(1): 67-90.
[http://dx.doi.org/10.3390/surfaces5010003]
[32]
Gericke M, Pinches A. Biological synthesis of metal nanoparticles. Hydrometallurgy 2006; 83(1-4): 132-40.
[http://dx.doi.org/10.1016/j.hydromet.2006.03.019]
[33]
Philip D. Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Bimol Spectrosc 2009; 73: 374-81.
[34]
Borovaya M, Pirko Y, Krupodorova T, Naumenko A, Blume Y, Yemets A. Biosynthesis of cadmium sulphide quandum dots by using Ostreatus (Jacq)p. Kumm Biotechnol Biotechnol Equip 2005; 29: 1-8.
[35]
Syed A, Ahmad A. Extracellular biosynthesis of CdTe quantum dots by the fungus Fusarium oxysporum and their anti-bacterial activity. Spectrochim Acta A Mol Biomol Spectrosc 2013; 106: 41-7.
[http://dx.doi.org/10.1016/j.saa.2013.01.002] [PMID: 23357677]
[36]
Jha P, Saraf A, Sohal JK. Antimicrobial activity of biologically synthesized gold nanoparticles from wild mushroom Cantharellus species. Journal of Scientific Research 2021; 65(3): 78-83.
[http://dx.doi.org/10.37398/JSR.2021.650310]
[37]
Mohammed AD, Mustafa NO, Muwafaq AR, Azlan AA, Mahmood SJ. Mycosynthesis of gold nanoparticles by the portabello mushroom extract, Agaricaceae, and their efficacy for decolorization of Azo dye. Environ Nanotechnol Monit Manag 2020; 14: 100312.
[38]
Raman K, Subramanian B, Balasubramanian M, Pambayan UM. Mycofabrication of gold nanoparticles: Optimization, characterization, stabilization and evaluation of its antimicrobial potential on selected human pathogens. Biocatal Agric Biotechnol 2021; 35: 102107.
[39]
Ahmad A, Mukherjee P, Mandal D, et al. Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 2002; 124(41): 12108-9.
[http://dx.doi.org/10.1021/ja027296o] [PMID: 12371846]
[40]
Wu HF, Kailasa SK, Shastri L. Electrostatically self-assembled azides on zinc sulfide nanoparticles as multifunctional nanoprobes for peptide and protein analysis in MALDI-TOF MS. Talanta 2010; 82(2): 540-7.
[http://dx.doi.org/10.1016/j.talanta.2010.05.026] [PMID: 20602933]
[41]
Senapati US, Jha DK, Sarkar D, Res J. Structural, optical, thermal and electrical properties of fungus guided biosynthesized zinc sulphide nanoparticles. Res J Chem Sci 2015; 5: 33-40.
[42]
Meng X, Xu G, Zhou QL, Wu JP, Yang LR. Highly efficient solvent-free synthesis of 1,3-diacylglycerols by lipase immobilised on nano-sized magnetite particles. Food Chem 2014; 143: 319-24.
[http://dx.doi.org/10.1016/j.foodchem.2013.07.132] [PMID: 24054246]
[43]
Tiwari DK, Behari J, Sen P. Time and dose-dependent antimicrobial potential of Ag nanoparticles synthesized by a top-down approach. Curr Sci 2008; 95: 647-55.
[44]
Kant V, Gupta V, Gupta AR. Synthesis, characterization and biomedical application of nanoparticles. Sci Int 2013; 1(5): 167-74.
[http://dx.doi.org/10.5567/sciintl.2013.167.174]
[45]
Brice-Profeta S, Arrio MA, Tronc E, et al. Magnetic order in - nanoparticles: A XMCD study. J Magn Magn Mater 2005; 288: 354-65.
[http://dx.doi.org/10.1016/j.jmmm.2004.09.120]
[46]
Kowalczyk B, Lagzi I, Grzybowski BA. Nanoseparations: Strategies for size and/or shape-selective purification of nanoparticles. Curr Opin Colloid Interface Sci 2011; 16(2): 135-48.
[http://dx.doi.org/10.1016/j.cocis.2011.01.004]
[47]
Faraji M, Yamini Y, Rezaee M. Magnetic nanoparticles: Synthesis, stabilization, functionalization, characterization, and applications. J Indian Chem Soc 2010; 7(1): 1-37.
[http://dx.doi.org/10.1007/BF03245856]
[48]
El-Ramady H, Abdalla N, Fawzy Z, et al. Green biotechnology of oyster mushroom (Pleurotus ostreatus L.): A sustainable strategy for myco-remediation and bio-fermentation. Sustainability 2022; 14(6): 3667.
[http://dx.doi.org/10.3390/su14063667]
[49]
Fenice M, Barghini P, Selbmann L, Federici F. Combined effects of agitation and aeration on the chitinolytic enzymes production by the Antarctic fungus Lecanicillium muscarium CCFEE 5003. Microb Cell Fact 2012; 11(1): 12.
[http://dx.doi.org/10.1186/1475-2859-11-12] [PMID: 22270226]
[50]
Siddiqi KS, Husen A. Fabrication of metal nanoparticles from fungi and metal salts: Scope and application. Nanoscale Res Lett 2016; 11(1): 98.
[http://dx.doi.org/10.1186/s11671-016-1311-2] [PMID: 26909778]
[51]
Bellettini MB, Fiorda FA, Maieves HA, et al. Factors affecting mushroom Pleurotus spp. Saudi J Biol Sci 2019; 26(4): 633-46.
[http://dx.doi.org/10.1016/j.sjbs.2016.12.005] [PMID: 31048986]
[52]
Koul B, Poonia AK, Yadav D, Jin JO. Microbe-mediated biosynthesis of nanoparticles: Applications and future prospects. Biomolecules 2021; 11(6): 886.
[http://dx.doi.org/10.3390/biom11060886] [PMID: 34203733]
[53]
Gurunathan S, Han J, Park JH, Kim JH. A green chemistry approach for synthesizing biocompatible gold nanoparticles. Nanoscale Res Lett 2014; 9(1): 248.
[http://dx.doi.org/10.1186/1556-276X-9-248] [PMID: 24940177]
[54]
Mohd Yusof H, Mohamad R, Zaidan UH, Abdul Rahman NA. Microbial synthesis of zinc oxide nanoparticles and their potential application as an antimicrobial agent and a feed supplement in animal industry: A review. J Anim Sci Biotechnol 2019; 10(1): 57.
[http://dx.doi.org/10.1186/s40104-019-0368-z] [PMID: 31321032]
[55]
Burdușel AC, Gherasim O, Grumezescu AM, Mogoantă L, Ficai A, Andronescu E. Biomedical applications of silver nanoparticles: An up-to-date overview. Nanomaterials 2018; 8(9): 681.
[http://dx.doi.org/10.3390/nano8090681] [PMID: 30200373]
[56]
Ungureanu C, Fierascu I, Fierascu RC, et al. In vitro and in vivo evaluation of silver nanoparticles phytosynthesized using Raphanus sativus L. Waste Extracts. Materials 2021; 14(8): 1845.
[http://dx.doi.org/10.3390/ma14081845] [PMID: 33917755]
[57]
Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res Pharm Sci 2014; 9(6): 385-406.
[PMID: 26339255]
[58]
Petre V, Petre M. Biotechnology for controlled cultivation of edible mushrooms through submerged fermentation of fruit wastes. AgroLife Sci J 2013; II: 117-20.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy