Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Reaction Optimization of Strontium Perchlorate Catalyzed Novel Protocol for Stereoselective Synthesis of Dihydropyrimidinones

Author(s): Divya Chauhan, Harish Kumar Chopra and Surendra Kumar Nayak*

Volume 21, Issue 1, 2024

Published on: 01 June, 2023

Page: [78 - 90] Pages: 13

DOI: 10.2174/1570179420666230416171921

Price: $65

Abstract

Background: Hydrated strontium perchlorate [Sr(ClO4)2.3H2O] acts as a very strong oxidizing and dehydrating agent. Until now, it could not be reported as a catalyst in dehydration mechanism-based organic synthetic reactions. Therefore, it is important to find whether it could be an effective catalyst for one-pot multicomponent reactions (MCRs).

Objective: The main objective of the present work is the development of a novel process for the synthesis of 1,4-dihydropyrimidinones through the one-pot multicomponent strategy using hydrated Sr(ClO4)2 as a catalyst. Furthermore, it includes process optimization, stereoselectivity, and spectroscopic characterization of the synthesized compounds.

Methods: Conventional and microwave-supported synthesis of 1,4-dihydropyrimidinones using 20 mol % of hydrated Sr(ClO4)2 catalyst via the one-pot solvent-free reaction was discovered as a new catalytic MCR methodology. The box-Behnken design approach and advanced analytical techniques were used for process optimization and reaction analysis.

Results: The results confirmed that hydrated Sr(ClO4)2 works as an efficient catalyst for one-pot multicomponent organic synthesis under both conventional and microwave heating. It is an effective catalyst for laboratory synthesis of 1,4-dihydropyrimidinones stereoselectively with moderate to excellent yield without any undesirable effect. Microwave heating provided the desired product within 1-4 minutes. Moreover, this method provides easy isolation of the pure products simply by recrystallization, and without the use of a chromatographic purification method.

Conclusion: The simplicity and neutrality of reaction conditions, easy post-reaction workup, higher satisfactory to excellent yield, effectiveness, the diversity of substrates, etc. render the hydrated Sr(ClO4)2 catalyst-based protocol for the stereoselective synthesis of 1,4-dihydropyrimidinones as a highly efficient method. Furthermore, it has been found to be safe un-der laboratory reaction conditions and no undesirable issues have been faced during the process

Graphical Abstract

[1]
Ghashghaei, O.; Pedrola, M.; Seghetti, F.; Martin, V.V.; Zavarce, R.; Babiak, M.; Novacek, J.; Hartung, F.; Rolfes, K.M.; Haarmann-Stemmann, T.; Lavilla, R. Extended multicomponent reactions with indole aldehydes: Access to unprecedented polyheterocyclic scaffolds, ligands of the aryl hydrocarbon receptor. Angew. Chem. Int. Ed., 2021, 60(5), 2603-2608.
[http://dx.doi.org/10.1002/anie.202011253] [PMID: 33048416]
[2]
Fairoosa, J.; Saranya, S.; Radhika, S.; Anilkumar, G. Recent advances in microwave assisted multicomponent reactions. ChemistrySelect, 2020, 5(17), 5180-5197.
[http://dx.doi.org/10.1002/slct.202000683]
[3]
Neto, B.A.D.; Rocha, R.O.; Rodrigues, M.O. Catalytic approaches to multicomponent reactions: A critical review and perspectives on the roles of catalysis. Molecules, 2021, 27(1), 132.
[http://dx.doi.org/10.3390/molecules27010132] [PMID: 35011363]
[4]
Heravi, M.M.; Zadsirjan, V. Recent Advances in Applications of Name Reactions in Multicomponent Reactions; Elsevier: Amsterdam, 2020.
[5]
Chen, M.N.; Mo, L.P.; Cui, Z.S.; Zhang, Z.H. Magnetic nanocatalysts: Synthesis and application in multicomponent reactions. Curr. Opin. Green Sustain. Chem., 2019, 15, 27-37.
[http://dx.doi.org/10.1016/j.cogsc.2018.08.009]
[6]
Elkanzi, N.A.A.; Kadry, A.M.; Ryad, R.M.; Bakr, R.B.; Ali El-Remaily, M.A.E.A.A.; Ali, A.M. Efficient and recoverable bio-organic catalyst cysteine for synthesis, docking study, and antifungal activity of new bio-active 3,4-dihydropyrimidin-2(1H)-ones/thiones under microwave irradiation. ACS Omega, 2022, 7(26), 22839-22849.
[http://dx.doi.org/10.1021/acsomega.2c02449] [PMID: 35811927]
[7]
Zhang, M.; Liu, Y.H.; Shang, Z.R.; Hu, H.C.; Zhang, Z.H. Supported molybdenum on graphene oxide/Fe3O4: An efficient, magnetically separable catalyst for one-pot construction of spiro-oxindole dihydropyridines in deep eutectic solvent under microwave irradiation. Catal. Commun., 2017, 88, 39-44.
[http://dx.doi.org/10.1016/j.catcom.2016.09.028]
[8]
Zhang, W.H.; Chen, M.N.; Hao, Y.; Jiang, X.; Zhou, X.L.; Zhang, Z.H. Choline chloride and lactic acid: A natural deep eutectic solvent for one-pot rapid construction of spiro[indoline-3,4′-pyrazolo[3,4-b]pyridines]. J. Mol. Liq., 2019, 278, 124-129.
[http://dx.doi.org/10.1016/j.molliq.2019.01.065]
[9]
Kafi-Ahmadi, L.; Khademinia, S.; Poursattar Marjani, A.; Nozad, E. Microwave-assisted preparation of polysubstituted imidazoles using Zingiber extract synthesized green Cr2O3 nanoparticles. Sci. Rep., 2022, 12(1), 19942.
[http://dx.doi.org/10.1038/s41598-022-24364-6] [PMID: 36402805]
[10]
Keihanfar, M.; Mirjalili, B.B.F. Catalyst-free synthesis of tetrahydrodipyrazolopyridines via an one-pot tandem and green pseudo-six-component reaction in water. BMC Chem., 2022, 16(1), 9.
[http://dx.doi.org/10.1186/s13065-022-00802-4] [PMID: 35246233]
[11]
Mohammadi, M.; Ghorbani-Choghamarani, A. Hercynite silica sulfuric acid: A novel inorganic sulfurous solid acid catalyst for one-pot cascade organic transformations. RSC Advances, 2022, 12(40), 26023-26041.
[http://dx.doi.org/10.1039/D2RA03481F] [PMID: 36199605]
[12]
Chahkamali, F.O.; Sobhani, S.; Sansano, J.M. A novel base-metal multifunctional catalyst for the synthesis of 2-amino-3-cyano-4H-chromenes by a multicomponent tandem oxidation process. Sci. Rep., 2022, 12(1), 2867.
[http://dx.doi.org/10.1038/s41598-022-06759-7] [PMID: 35190576]
[13]
Sambri, L.; Bartoli, G.; Bencivenni, G.; Dalpozzo, R. Metal perchlorates as lewis acids: A powerful and versatile tool in organic synthesis.Perchlorates: Production, Uses and Health Effects; Matthews, L.E., Ed.; Nova Publishing: New York, 2011, pp. 143-176.
[14]
Dalpozzo, R.; Bartoli, G.; Sambri, L.; Melchiorre, P. Perchloric acid and its salts: Very powerful catalysts in organic chemistry. Chem. Rev., 2010, 110(6), 3501-3551.
[http://dx.doi.org/10.1021/cr9003488] [PMID: 20235581]
[15]
Sarazin, Y.; Carpentier, J.F. Calcium, strontium and barium homogeneous catalysts for fine chemicals synthesis. Chem. Rec., 2016, 16(6), 2482-2505.
[http://dx.doi.org/10.1002/tcr.201600067] [PMID: 27353504]
[16]
Biginelli, P. Aldehyde-urea derivatives of aceto- and oxaloacetic acids. Gazz. Chim. Ital., 1893, 23, 360-413.
[17]
Taheri Hatkehlouei, S.F.; Mirza, B.; Soleimani-Amiri, S. Solvent-free one pot synthesis of diverse dihydropyrimidinones/tetrahydropyrimidinones using Biginelli reaction catalyzed by Fe3O4@C@OSO3H. Polycycl. Aromat. Compd., 2022, 42(4), 1341-1357.
[http://dx.doi.org/10.1080/10406638.2020.1781203]
[18]
Khaskel, A.; Gogoi, P.; Barman, P.; Bandyopadhyay, B. Grindstone chemistry: A highly efficient and green method for synthesis of 3,4-dihydropyrimidin-2-(1H)-ones by L -tyrosine as an organocatalyst: A combined experimental and DFT study. RSC Advances, 2014, 4(67), 35559-35567.
[http://dx.doi.org/10.1039/C4RA05244G]
[19]
Guggilapu, S.D.; Prajapti, S.K.; Nagarsenkar, A.; Lalita, G.; Naidu Vegi, G.M.; Babu, B.N.; Babu, B.N. MoO 2 Cl 2 catalyzed efficient synthesis of functionalized 3,4-dihydropyrimidin-2(1H)-ones/thiones and polyhydroquinolines: Recyclability, fluorescence and biological studies. New J. Chem., 2016, 40(1), 838-843.
[http://dx.doi.org/10.1039/C5NJ02444G]
[20]
Ciaffaglione, V.; Modica, M.N.; Pittalà, V.; Romeo, G.; Salerno, L.; Intagliata, S. Mutual prodrugs of 5-fluorouracil: From a classic chemotherapeutic agent to novel potential anticancer drugs. ChemMedChem, 2021, 16(23), 3496-3512.
[http://dx.doi.org/10.1002/cmdc.202100473] [PMID: 34415107]
[21]
Liu, R.; Chen, Y.; Zheng, J.; Zhang, L.; Xu, T.; Xu, P.; Yang, Y. Synthesis of nucleosides and deoxynucleosides via gold(I)-catalyzed N-glycosylation of glycosyl (Z)-ynenoates. Org. Lett., 2022, 24(51), 9479-9484.
[http://dx.doi.org/10.1021/acs.orglett.2c03964] [PMID: 36524759]
[22]
Hopkins, A.L.; Ren, J.; Esnouf, R.M.; Willcox, B.E.; Jones, E.Y.; Ross, C.; Miyasaka, T.; Walker, R.T.; Tanaka, H.; Stammers, D.K.; Stuart, D.I. Complexes of HIV-1 reverse transcriptase with inhibitors of the HEPT series reveal conformational changes relevant to the design of potent non-nucleoside inhibitors. J. Med. Chem., 1996, 39(8), 1589-1600.
[http://dx.doi.org/10.1021/jm960056x] [PMID: 8648598]
[23]
Oliverio, M.; Costanzo, P.; Nardi, M.; Rivalta, I.; Procopio, A. Facile ecofriendly synthesis of monastrol and its structural isomers via Biginelli reaction. ACS Sustain. Chem.& Eng., 2014, 2(5), 1228-1233.
[http://dx.doi.org/10.1021/sc5000682]
[24]
Gartner, M.; Sunder-Plassmann, N.; Seiler, J.; Utz, M.; Vernos, I.; Surrey, T.; Giannis, A. Development and biological evaluation of potent and specific inhibitors of mitotic Kinesin Eg5. ChemBioChem, 2005, 6(7), 1173-1177.
[http://dx.doi.org/10.1002/cbic.200500005] [PMID: 15912555]
[25]
Karimian, S.; Moghdani, Y.; Khoshneviszadeh, M.; Pirhadi, S.; Iraji, A.; Khoshneviszadeh, M. Rational design, synthesis, in vitro, and in silico studies of dihydropyrimidinone derivatives as β-glucuronidase inhibitors. J. Chem., 2021, 2021, 1-10.
[http://dx.doi.org/10.1155/2021/6664756]
[26]
Barrow, J.C.; Nantermet, P.G.; Selnick, H.G.; Glass, K.L.; Rittle, K.E.; Gilbert, K.F.; Steele, T.G.; Homnick, C.F.; Freidinger, R.M.; Ransom, R.W.; Kling, P.; Reiss, D.; Broten, T.P.; Schorn, T.W.; Chang, R.S.L.; O’Malley, S.S.; Olah, T.V.; Ellis, J.D.; Barrish, A.; Kassahun, K.; Leppert, P.; Nagarathnam, D.; Forray, C. In vitro and in vivo evaluation of dihydropyrimidinone C-5 amides as potent and selective α(1A) receptor antagonists for the treatment of benign prostatic hyperplasia. J. Med. Chem., 2000, 43(14), 2703-2718.
[http://dx.doi.org/10.1021/jm990612y] [PMID: 10893308]
[27]
Atwal, K.S.; Swanson, B.N.; Unger, S.E.; Floyd, D.M.; Moreland, S.; Hedberg, A.; O’Reilly, B.C. Dihydropyrimidine calcium channel blockers. 3. 3-Carbamoyl-4-aryl-1,2,3,4-tetrahydro-6-methyl-5-pyrimidinecarboxylic acid esters as orally effective antihypertensive agents. J. Med. Chem., 1991, 34(2), 806-811.
[http://dx.doi.org/10.1021/jm00106a048] [PMID: 1995904]
[28]
Rovnyak, G.C.; Atwal, K.S.; Hedberg, A.; Kimball, S.D.; Moreland, S.; Gougoutas, J.Z.; O’Reilly, B.C.; Schwartz, J.; Malley, M.F. Dihydropyrimidine calcium channel blockers. 4. Basic 3-substituted-4-aryl-1,4-dihydropyrimidine-5-carboxylic acid esters. Potent antihypertensive agents. J. Med. Chem., 1992, 35(17), 3254-3263.
[http://dx.doi.org/10.1021/jm00095a023] [PMID: 1387168]
[29]
Triggle, D.J. 1,4-Dihydropyridines as calcium channel ligands and privileged structures. Cell. Mol. Neurobiol., 2003, 23(3), 293-303.
[http://dx.doi.org/10.1023/A:1023632419813] [PMID: 12825828]
[30]
Castro Jara, M.; Silva, A.C.A.; Ritter, M.; da Silva, A.F.; Gonçalves, C.L.; dos Santos, P.R.; Borja, L.S.; de Pereira, C.M.P.; da Silva Nascente, P. Dihydropyrimidinones against multiresistant bacteria. Front. Microbiol., 2022, 13, 743213.
[http://dx.doi.org/10.3389/fmicb.2022.743213] [PMID: 35369453]
[31]
Dash, A.K.; Mukherjee, D.; Dhulap, A.; Haider, S.; Kumar, D. Green chemistry appended synthesis, metabolic stability and pharmacokinetic assessment of medicinally important chromene dihydropyrimidinones. Bioorg. Med. Chem. Lett., 2019, 29(24), 126750.
[http://dx.doi.org/10.1016/j.bmcl.2019.126750] [PMID: 31699608]
[32]
Trifunovi, R.; Minorics, R.; Bartha, S.; Jankovic, N.; Zupko, I. The evaluation of the anticancer activity of the Biginelli hybrids and pharmacokinetic profiling based on their retention parameters. J. Mol. Struct., 2022, 1254, 132373.
[http://dx.doi.org/10.1016/j.molstruc.2022.132373]
[33]
Alavala, R.R.; Kulandaivelu, U.; Bonagiri, P.; Boyapati, S.; Jayaprakash, V.; Subramaniam, A.T. Synthesis and antiviral activity of dihydropyrimidines-ciprofloxacin Mannich bases against various viral strains. Antiinfect. Agents, 2015, 13(2), 154-165.
[http://dx.doi.org/10.2174/221135251302151029111113]
[34]
Kaoukabi, H.; Kabri, Y.; Curti, C.; Taourirte, M.; Rodriguez-Ubis, J.C.; Snoeck, R.; Andrei, G.; Vanelle, P.; Lazrek, H.B. Dihydropyrimidinone/1,2,3-triazole hybrid molecules: Synthesis and anti-varicella-zoster virus (VZV) evaluation. Eur. J. Med. Chem., 2018, 155, 772-781.
[http://dx.doi.org/10.1016/j.ejmech.2018.06.028] [PMID: 29945100]
[35]
Podilla, N.; Tirthankar, C. Synthesis of some dihydropyrimidinone derivatives and study of their anti-inflammatory activity. J. Appl. Pharm. Res., 2018, 6(1), 11-15.
[http://dx.doi.org/10.18231/2348-0335.2018.0003]
[36]
Parth. Kaur, H. Persoons, L.; Andrei, G.; Singh, K. Quinoline-dihydropyrimidin-2(1H)-one hybrids: Synthesis, biological activity, and mechanistic studies. ChemMedChem, 2022, 17(8), e202200031.
[http://dx.doi.org/10.1002/cmdc.202200031] [PMID: 35174629]
[37]
Rogerio, K.R.; Carvalho, L.J.M.; Domingues, L.H.P.; Neves, B.J.; Moreira Filho, J.T.; Castro, R.N.; Bianco Júnior, C.; Daniel-Ribeiro, C.T.; Andrade, C.H.; Graebin, C.S. Synthesis and molecular modelling studies of pyrimidinones and pyrrolo[3,4-d]-pyrimidinodiones as new antiplasmodial compounds. Mem. Inst. Oswaldo Cruz, 2018, 113(8), e170452.
[http://dx.doi.org/10.1590/0074-02760170452] [PMID: 29924131]
[38]
Kappe, C.O. A reexamination of the mechanism of the Biginelli dihydropyrimidine synthesis. Support for an N-acyliminium ion intermediate. J. Org. Chem., 1997, 62(21), 7201-7204.
[http://dx.doi.org/10.1021/jo971010u] [PMID: 11671828]
[39]
Liu, C.J.; Wang, J.D. Ultrasound-assisted synthesis of novel 4-(2-phenyl-1,2,3-triazol-4-yl)-3,4-dihydropyrimidin-(1H)-(thio)ones catalyzed by Sm(ClO(4))(3). Molecules, 2010, 15(4), 2087-2095.
[http://dx.doi.org/10.3390/molecules15042087] [PMID: 20428028]
[40]
Uitert, L.G.V.; Fernelius, W.C.; Douglas, B.E. Studies on coordination compounds. IV. A comparison of the chelating tendencies of β-diketones toward divalent metals. J. Am. Chem. Soc., 1953, 75(11), 2736-2738.
[http://dx.doi.org/10.1021/ja01107a056]
[41]
Calvin, M.; Melchior, N.C. Stability of chelate compounds; effect of the metal ion. J. Am. Chem. Soc., 1948, 70(10), 3270-3273.
[http://dx.doi.org/10.1021/ja01190a020] [PMID: 18891839]
[42]
de Medeiros, W.M.T.Q.; de Medeiros, M.J.C.; Carvalho, E.M.; de Lima, J.A. da S Oliveira, V.; de B Pontes, A.C.F.; da Silva, F.O.N.; Ellena, J.A.; de O Rocha, H.A.; de Sousa, E.H.S.; de L Pontes, D. A vanillin-based copper(ii) metal complex with a DNA-mediated apoptotic activity. RSC Advances, 2018, 8(30), 16873-16886.
[http://dx.doi.org/10.1039/C8RA03626H] [PMID: 35540529]
[43]
Palekar, V.S.; Shukla, S.R. Zinc perchlorate catalyzed one-pot synthesis of 3,4-dihydropyrimidinones under solvent-free conditions. Green Chem. Lett. Rev., 2008, 1(3), 185-190.
[http://dx.doi.org/10.1080/17518250802541490]
[44]
Li, G.; Wang, B.; Resasco, D.E. Solvent effects on catalytic reactions and related phenomena at liquid-solid interfaces. Surf. Sci. Rep., 2021, 76(4), 100541.
[http://dx.doi.org/10.1016/j.surfrep.2021.100541]
[45]
Kumar, T.D.A.; Swathi, N.; Subrahmanyam, C.V.S.; Satyanarayana, K. Application of design of experiments (DoE) approach for the optimization of phase-transfer catalyzed Biginelli dihydropyrimidinone (DHPM) synthesis. Lett. Org. Chem., 2021, 18(7), 520-531.
[http://dx.doi.org/10.2174/1570178617999200812133809]
[46]
Li, Y.L.; Fang, Z.X.; You, J. Application of Box-Behnken experimental design to optimize the extraction of insecticidal Cry1Ac from soil. J. Agric. Food Chem., 2013, 61(7), 1464-1470.
[http://dx.doi.org/10.1021/jf304970g] [PMID: 23327690]
[47]
Ogruc Ildiz, G.; Fausto, R. Structural aspects of the ortho chloro- and fluoro- substituted benzoic acids: Implications on chemical properties. Molecules, 2020, 25(21), 4908.
[http://dx.doi.org/10.3390/molecules25214908] [PMID: 33114074]
[48]
Chen, P.; Tu, M. Synthesis of 2-selenoxo DHPMs by Biginelli reaction with Hf(OTf)4 as catalyst. Tetrahedron Lett., 2018, 59(11), 987-990.
[http://dx.doi.org/10.1016/j.tetlet.2018.01.070]
[49]
Smolobochkin, A.V.; Gazizov, A.S.; Burilov, A.R.; Pudovik, M.A.; Sinyashin, O.G. Advances in the synthesis of heterocycles bearing an endocyclic urea moiety. Russ. Chem. Rev., 2021, 90(3), 395-417.
[http://dx.doi.org/10.1070/RCR4988]
[50]
Casali, E.; Faita, G.; Toma, L. Role of anion in determining the stereoselectivity of Mg-Ph-BOX-catalyzed Diels-Alder reactions: A computational study. Organometallics, 2022, 41(2), 105-114.
[http://dx.doi.org/10.1021/acs.organomet.1c00550]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy