Generic placeholder image

Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1573-4064
ISSN (Online): 1875-6638

Research Article

An In silico Investigation to Identify Promising Inhibitors for SARS-CoV-2 Mpro Target

Author(s): V. Alagarsamy*, P. Shyam Sundar, B. Narendhar, M. T. Sulthana, Vishaka S. Kulkarni, A. Dharshini Aishwarya, V. Raja Solomon, S. Murugesan, S. Jubie, K. Rohitha and Sangeeta Dhanwar

Volume 19, Issue 9, 2023

Published on: 08 May, 2023

Page: [925 - 938] Pages: 14

DOI: 10.2174/1573406419666230413112802

Price: $65

Abstract

Background: A limited number of small molecules against SARS-CoV-2 has been discovered since the epidemic commenced in November 2019. The conventional medicinal chemistry approach demands more than a decade of the year of laborious research and development and a substantial financial commitment, which is not achievable in the face of the current epidemic.

Objective: This study aims to discover and recognize the most effective and promising small molecules by interacting SARS-CoV-2 Mpro target through computational screening of 39 phytochemicals from five different Ayurvedic medicinal plants.

Methods: The phytochemicals were downloaded from Research Collaboratory for Structural Bioinformatics (RCSB) Protein Data Bank (PDB) PubChem, and the SARS-CoV-2 protein (PDB ID: 6LU7; Mpro) was taken from the PDB. The molecular interactions, binding energy, and ADMET properties were analyzed.

Results: The binding affinities were studied using a structure-based drug design of molecular docking, divulging 21 molecules possessing greater to equal affinity towards the target than the reference standard. Molecular docking analysis identified 13 phytochemicals, sennoside-B (-9.5 kcal/mol), isotrilobine (-9.4 kcal/mol), trilobine (-9.0 kcal/mol), serratagenic acid (-8.1 kcal/mol), fistulin (-8.0 kcal/mol), friedelin (-7.9 kcal/mol), oleanolic acid (-7.9 kcal/mol), uncinatone (-7.8 kcal/mol), 3,4-di- O-caffeoylquinic acid (-7.4 kcal/mol), clemaphenol A (-7.3 kcal/mol), pectolinarigenin (-7.2 kcal/mol), leucocyanidin (-7.2 kcal/mol), and 28-acetyl botulin (-7.2 kcal/mol) from ayurvedic medicinal plants phytochemicals possess greater affinity than the reference standard Molnupiravir (-7.0 kcal/mol) against SARS-CoV-2-Mpro.

Conclusion: Two molecules, namely sennoside-B, and isotrilobine with low binding energies, were predicted as most promising. Furthermore, we carried out molecular dynamics simulations for the sennoside-B protein complexes based on the docking score. ADMET properties prediction confirmed that the selected docked phytochemicals were optimal. These compounds can be investigated further and utilized as a parent core molecule to create novel lead molecules for preventing COVID-19.

« Previous
Graphical Abstract

[1]
Zhou, P.; Yang, X. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nat., 2020, 5797798, 270-273.
[2]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[3]
Wu, F.; Zhao, S.; Yu, B.; Chen, Y.M.; Wang, W.; Song, Z.G.; Hu, Y.; Tao, Z.W.; Tian, J.H.; Pei, Y.Y.; Yuan, M.L.; Zhang, Y.L.; Dai, F.H.; Liu, Y.; Wang, Q.M.; Zheng, J.J.; Xu, L.; Holmes, E.C.; Zhang, Y.Z. A new coronavirus associated with human respiratory disease in China. Nature, 2020, 579(7798), 265-269.
[http://dx.doi.org/10.1038/s41586-020-2008-3] [PMID: 32015508]
[4]
Rotondo, J.C.; Martini, F.; Maritati, M.; Caselli, E.; Gallenga, C.E.; Guarino, M.; De Giorgio, R.; Mazziotta, C.; Tramarin, M.L.; Badiale, G.; Tognon, M.; Contini, C. Advanced molecular and immunological diagnostic methods to detect SARS-CoV-2 infection. Microorganisms, 2022, 10(6), 1193.
[http://dx.doi.org/10.3390/microorganisms10061193] [PMID: 35744711]
[5]
Khandker, S.S.; Godman, B.; Jawad, M.I.; Meghla, B.A.; Tisha, T.A.; Khondoker, M.U.; Haq, M.A.; Charan, J.; Talukder, A.A.; Azmuda, N.; Sharmin, S.; Jamiruddin, M.R.; Haque, M.; Adnan, N. A systematic review on COVID-19 vaccine strategies, their effectiveness, and issues. Vaccines, 2021, 9(12), 1387.
[http://dx.doi.org/10.3390/vaccines9121387] [PMID: 34960133]
[6]
Morales-Núñez, J.J.; Muñoz-Valle, J.F.; Meza-López, C.; Wang, L.F.; Sulbarán, A.C.M.; Torres-Hernández, P.C.; Bedolla-Barajas, M. De la O-Gómez, B.; Balcázar-Félix, P.; Hernández-Bello, J. Neutralizing antibodies titers and side effects in response to BNT162b2 vaccine in healthcare workers with and without prior SARS-CoV-2 infection. Vaccines, 2021, 9(7), 742.
[http://dx.doi.org/10.3390/vaccines9070742] [PMID: 34358158]
[7]
Butler, C.C.; Yu, L.M.; Dorward, J.; Gbinigie, O.; Hayward, G.; Saville, B.R.; Van Hecke, O.; Berry, N.; Detry, M.A.; Saunders, C.; Fitzgerald, M.; Harris, V.; Djukanovic, R.; Gadola, S.; Kirkpatrick, J.; de Lusignan, S.; Ogburn, E.; Evans, P.H.; Thomas, N.P.B.; Patel, M.G.; Hobbs, F.D.R. Doxycycline for community treatment of suspected COVID-19 in people at high risk of adverse outcomes in the UK (PRINCIPLE): A randomised, controlled, open-label, adaptive platform trial. Lancet Respir. Med., 2021, 9(9), 1010-1020.
[http://dx.doi.org/10.1016/S2213-2600(21)00310-6] [PMID: 34329624]
[8]
Xia, Q.; Dai, W.; Xu, K.; Ni, Q.; Li, Y.; Liu, J.; Zhao, H.; Guo, Y.; Yu, L.; Yi, P.; Su, J.; Lang, G.; Tao, J.; Shi, D.; Wu, W.; Wu, X.; Xu, Y.; Xu, M.; Yu, L.; Wang, X.; Cai, H.; Fang, Q.; Zhou, J.; Qiu, Y.; Li, L. Clinical efficacy of methylprednisolone and the combined use of lopinavir/ritonavir with arbidol in treatment of coronavirus disease 2019. J. Med. Virol., 2021, 93(7), 4446-4453.
[http://dx.doi.org/10.1002/jmv.26798] [PMID: 33448426]
[9]
Pilkington, V.; Pepperrell, T.; Hill, A. A review of the safety of favipiravir-a potential treatment in the COVID-19 pandemic? J. Virus Erad., 2020, 6(2), 45-51.
[http://dx.doi.org/10.1016/S2055-6640(20)30016-9] [PMID: 32405421]
[10]
Saini, M.; Rana, M.; Bhatti, K.; Das, R.; Mehta, D.K.; Chidurala, R.M. Clinical efficacy of remdesivir and favipiravir in the treatment of Covid-19 patients: Scenario so far. Curr. Drug Res. Rev., 2022, 14(1), 11-19.
[http://dx.doi.org/10.2174/2589977513666210806122901] [PMID: 34365935]
[11]
Senanayake, S.L. Drug Repurposing Strategies for COVID-19; Futur. Drug Discov, 2020, p. 0.
[12]
Elfiky, A.A. Ribavirin, Remdesivir, sofosbuvir, galidesivir, and tenofovir against SARS-CoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 253, 117592.
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[13]
Self, W.H.; Semler, M.W.; Leither, L.M.; Casey, J.D.; Angus, D.C.; Brower, R.G.; Chang, S.Y.; Collins, S.P.; Eppensteiner, J.C.; Filbin, M.R.; Files, D.C.; Gibbs, K.W.; Ginde, A.A.; Gong, M.N.; Harrell, F.E., Jr; Hayden, D.L.; Hough, C.L.; Johnson, N.J.; Khan, A.; Lindsell, C.J.; Matthay, M.A.; Moss, M.; Park, P.K.; Rice, T.W.; Robinson, B.R.H.; Schoenfeld, D.A.; Shapiro, N.I.; Steingrub, J.S.; Ulysse, C.A.; Weissman, A.; Yealy, D.M.; Thompson, B.T.; Brown, S.M.; Steingrub, J.; Smithline, H.; Tiru, B.; Tidswell, M.; Kozikowski, L.; Thornton-Thompson, S.; De Souza, L.; Hou, P.; Baron, R.; Massaro, A.; Aisiku, I.; Fredenburgh, L.; Seethala, R.; Johnsky, L.; Riker, R.; Seder, D.; May, T.; Baumann, M.; Eldridge, A.; Lord, C.; Shapiro, N.; Talmor, D.; O’Mara, T.; Kirk, C.; Harrison, K.; Kurt, L.; Schermerhorn, M.; Banner-Goodspeed, V.; Boyle, K.; Dubosh, N.; Filbin, M.; Hibbert, K.; Parry, B.; Lavin-Parsons, K.; Pulido, N.; Lilley, B.; Lodenstein, C.; Margolin, J.; Brait, K.; Jones, A.; Galbraith, J.; Peacock, R.; Nandi, U.; Wachs, T.; Matthay, M.; Liu, K.; Kangelaris, K.; Wang, R.; Calfee, C.; Yee, K.; Hendey, G.; Chang, S.; Lim, G.; Qadir, N.; Tam, A.; Beutler, R.; Levitt, J.; Wilson, J.; Rogers, A.; Vojnik, R.; Roque, J.; Albertson, T.; Chenoweth, J.; Adams, J.; Pearson, S.; Juarez, M.; Almasri, E.; Fayed, M.; Hughes, A.; Hillard, S.; Huebinger, R.; Wang, H.; Vidales, E.; Patel, B.; Ginde, A.; Moss, M.; Baduashvili, A.; McKeehan, J.; Finck, L.; Higgins, C.; Howell, M.; Douglas, I.; Haukoos, J.; Hiller, T.; Lyle, C.; Cupelo, A.; Caruso, E.; Camacho, C.; Gravitz, S.; Finigan, J.; Griesmer, C.; Park, P.; Hyzy, R.; Nelson, K.; McDonough, K.; Olbrich, N.; Williams, M.; Kapoor, R.; Nash, J.; Willig, M.; Ford, H.; Gardner-Gray, J.; Ramesh, M.; Moses, M.; Ng Gong, M.; Aboodi, M.; Asghar, A.; Amosu, O.; Torres, M.; Kaur, S.; Chen, J.T.; Hope, A.; Lopez, B.; Rosales, K.; Young You, J.; Mosier, J.; Hypes, C.; Natt, B.; Borg, B.; Salvagio Campbell, E.; Hite, R.D.; Hudock, K.; Cresie, A.; Alhasan, F.; Gomez-Arroyo, J.; Duggal, A.; Mehkri, O.; Hastings, A.; Sahoo, D.; Abi Fadel, F.; Gole, S.; Shaner, V.; Wimer, A.; Meli, Y.; King, A.; Terndrup, T.; Exline, M.; Pannu, S.; Robart, E.; Karow, S.; Hough, C.; Robinson, B.; Johnson, N.; Henning, D.; Campo, M.; Gundel, S.; Seghal, S.; Katsandres, S.; Dean, S.; Khan, A.; Krol, O.; Jouzestani, M.; Huynh, P.; Weissman, A.; Yealy, D.; Scholl, D.; Adams, P.; McVerry, B.; Huang, D.; Angus, D.; Schooler, J.; Moore, S.; Files, C.; Miller, C.; Gibbs, K.; LaRose, M.; Flores, L.; Koehler, L.; Morse, C.; Sanders, J.; Langford, C.; Nanney, K. MdalaGausi, M.; Yeboah, P.; Morris, P.; Sturgill, J.; Seif, S.; Cassity, E.; Dhar, S.; de Wit, M.; Mason, J.; Goodwin, A.; Hall, G.; Grady, A.; Chamberlain, A.; Brown, S.; Bledsoe, J.; Leither, L.; Peltan, I.; Starr, N.; Fergus, M.; Aston, V.; Montgomery, Q.; Smith, R.; Merrill, M.; Brown, K.; Armbruster, B.; Harris, E.; Middleton, E.; Paine, R.; Johnson, S.; Barrios, M.; Eppensteiner, J.; Limkakeng, A.; McGowan, L.; Porter, T.; Bouffler, A.; Leahy, J.C.; deBoisblanc, B.; Lammi, M.; Happel, K.; Lauto, P.; Self, W.; Casey, J.; Semler, M.; Collins, S.; Harrell, F.; Lindsell, C.; Rice, T.; Stubblefield, W.; Gray, C.; Johnson, J.; Roth, M.; Hays, M.; Torr, D.; Zakaria, A.; Schoenfeld, D.; Thompson, T.; Hayden, D.; Ringwood, N.; Oldmixon, C.; Ulysse, C.; Morse, R.; Muzikansky, A.; Fitzgerald, L.; Whitaker, S.; Lagakos, A.; Brower, R.; Reineck, L.; Aggarwal, N.; Bienstock, K.; Freemer, M.; Maclawiw, M.; Weinmann, G.; Morrison, L.; Gillespie, M.; Kryscio, R.; Brodie, D.; Zareba, W.; Rompalo, A.; Boeckh, M.; Parsons, P.; Christie, J.; Hall, J.; Horton, N.; Zoloth, L.; Dickert, N.; Diercks, D. Effect of hydroxychloroquine on clinical status at 14 days in hospitalized patients with COVID-19. JAMA, 2020, 324(21), 2165-2176.
[http://dx.doi.org/10.1001/jama.2020.22240] [PMID: 33165621]
[14]
Geleris, J.; Sun, Y.; Platt, J.; Zucker, J.; Baldwin, M.; Hripcsak, G.; Labella, A.; Manson, D.K.; Kubin, C.; Barr, R.G.; Sobieszczyk, M.E.; Schluger, N.W. Observational study of hydroxychloroquine in hospitalized patients with Covid-19. N. Engl. J. Med., 2020, 382(25), 2411-2418.
[http://dx.doi.org/10.1056/NEJMoa2012410] [PMID: 32379955]
[15]
Uzunova, K.; Filipova, E.; Pavlova, V.; Vekov, T. Insights into antiviral mechanisms of remdesivir, lopinavir/ritonavir and chloroquine/hydroxychloroquine affecting the new SARS-CoV-2. Biomed. Pharmacother., 2020, 131, 110668.
[http://dx.doi.org/10.1016/j.biopha.2020.110668] [PMID: 32861965]
[16]
Suwannarach, N.; Kumla, J.; Sujarit, K.; Pattananandecha, T.; Saenjum, C.; Lumyong, S. Natural bioactive compounds from fungi as potential candidates for protease inhibitors and immunomodulators to apply for coronaviruses. Molecules, 2020, 25(8), 1800.
[17]
Sen, D.; Debnath, P.; Debnath, B.; Bhaumik, S.; Debnath, S. Identification of potential inhibitors of SARS-CoV-2 main protease and spike receptor from 10 important spices through structure-based virtual screening and molecular dynamic study. J. Biomol. Struct. Dyn., 2022, 40(2), 941-962.
[http://dx.doi.org/10.1080/07391102.2020.1819883] [PMID: 32948116]
[18]
Hu, X.; Cai, X.; Song, X.; Li, C.; Zhao, J.; Luo, W.; Zhang, Q.; Ekumi, I.O.; He, Z. Possible SARS-coronavirus 2 inhibitor revealed by simulated molecular docking to viral main protease and host toll-like receptor. Future Virol., 2020, 15(6), 359-368.
[http://dx.doi.org/10.2217/fvl-2020-0099]
[19]
Sarkar, P.K.; Das Mukhopadhyay, C. Ayurvedic metal nanoparticles could be novel antiviral agents against SARS-CoV-2. Int. Nano Lett., 2021, 11(3), 197-203.
[http://dx.doi.org/10.1007/s40089-020-00323-9] [PMID: 33425283]
[20]
Singh, R.; Goel, S.; Bourgeade, P.; Aleya, L.; Tewari, D. Ayurveda Rasayana as antivirals and immunomodulators: potential applications in COVID-19. Environ. Sci. Pollut. Res. Int., 2021, 28(40), 55925-55951.
[http://dx.doi.org/10.1007/s11356-021-16280-5] [PMID: 34491498]
[21]
Rawat, S.; Jugran, A.K.; Bhatt, I.D.; Rawal, R.S. Hedychium spicatum: A systematic review on traditional uses, phytochemistry, pharmacology and future prospectus. J. Pharm. Pharmacol., 2018, 70(6), 687-712.
[http://dx.doi.org/10.1111/jphp.12890] [PMID: 29484653]
[22]
Kajaria, D.; Pandey, B.L.; Tiwari, S.K.; Tripathi, J.S. Anti-histaminic, mast cell stabilizing and bronchodilator effect of hydroalcoholic extract of polyherbal compound- Bharangyadi. Anc. Sci. Life, 2012, 31(3), 95-100.
[http://dx.doi.org/10.4103/0257-7941.103182] [PMID: 23284214]
[23]
Rawat, A.; Rawat, M.; Prakash, O.; Kumar, R.; Punetha, H.; Rawat, D.S. Comparative study on eucalyptol and camphor rich essential oils from rhizomes of Hedychium spicatum Sm. and their pharmacological, antioxidant and antifungal activities. An. Acad. Bras. Cienc., 2022, 94(3), e20210932.
[http://dx.doi.org/10.1590/0001-3765202220210932] [PMID: 35920490]
[24]
Bisht, G.S.; Awasthi, A.K.; Dhole, T.N. Antimicrobial activity of Hedychium spicatum. Fitoterapia, 2006, 77(3), 240-242.
[http://dx.doi.org/10.1016/j.fitote.2006.02.004] [PMID: 16530343]
[25]
Goel, R.K.; Joshi, V.K.; Gautam, M.K.; Ghildiyal, S. Pharmacological evaluation of extracts of Hedychium spicatum (Ham-ex-Smith) rhizome. Anc. Sci. Life, 2012, 31(3), 117-122.
[http://dx.doi.org/10.4103/0257-7941.103189] [PMID: 23284217]
[26]
Reddy, P.P.; Rao, R.R.; Rekha, K.; Suresh Babu, K.; Shashidhar, J.; Shashikiran, G.; Vijaya Lakshmi, V.; Rao, J.M. Two new cytotoxic diterpenes from the rhizomes of Hedychium spicatum. Bioorg. Med. Chem. Lett., 2009, 19(1), 192-195.
[http://dx.doi.org/10.1016/j.bmcl.2008.10.121] [PMID: 19027298]
[27]
Sun, C.P.; Jia, Z.L.; Huo, X.K.; Tian, X.G.; Feng, L.; Wang, C.; Zhang, B.J.; Zhao, W.Y.; Ma, X.C. Medicinal Inula Species: Phytochemistry, biosynthesis, and bioactivities. Am. J. Chin. Med., 2021, 49(2), 315-358.
[http://dx.doi.org/10.1142/S0192415X21500166] [PMID: 33622212]
[28]
Jagruti, J. Clerodendrum serratum (L.) Moon.-a review on traditional uses, phytochemistry and pharmacological activities. J. thnopharmacol., 2014, 154(2), 268-85.
[29]
Tiwari, R.K.; Chanda, SMU.; Singh, M.; Agarwal, S. Anti-inflammatory and anti-arthritic potential of standardized extract of Clerodendrum serratum (L.) moon. Front. Pharmacol., 2021, 12, 629607.
[http://dx.doi.org/10.3389/fphar.2021.629607] [PMID: 33912046]
[30]
Mwangi, R.W.; Macharia, J.M.; Wagara, I.N.; Bence, R.L. The medicinal properties of Cassia fistula L: A review. Biomed. Pharmacother., 2021, 144, 112240.
[http://dx.doi.org/10.1016/j.biopha.2021.112240]
[31]
Suryavanshi, V.S.; Maharana, T.; Jagtap, P.K. Microencapsulation of cassia fistula flower extract with chitosan and its antibacterial studies. Curr. Drug Deliv., 2022, 19(9), 980-990.
[http://dx.doi.org/10.2174/1567201818666211006102721] [PMID: 34620063]
[32]
Kainsa, S.; Kumar, P.; Rani, P. Pharmacological potentials of Cassia auriculata and Cassia fistula plants: A review. Pak. J. Biol. Sci., 2012, 15(9), 408-417.
[http://dx.doi.org/10.3923/pjbs.2012.408.417] [PMID: 24163950]
[33]
Zhou, M.; Xing, H.H.; Yang, Y.; Wang, Y.D.; Zhou, K.; Dong, W.; Li, G.P.; Hu, W.Y.; Liu, Q.; Li, X.M.; Hu, Q.F. Three new anthraquinones from the twigs of Cassia fistula and their bioactivities. J. Asian Nat. Prod. Res., 2017, 19(11), 1073-1078.
[http://dx.doi.org/10.1080/10286020.2017.1285911] [PMID: 28152609]
[34]
Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[35]
Krieger, E.; Vriend, G. YASARA View—molecular graphics for all devices—from smartphones to workstations. Bioinformatics, 2014, 30(20), 2981-2982.
[http://dx.doi.org/10.1093/bioinformatics/btu426] [PMID: 24996895]
[36]
Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A, 2001, 105(43), 9954-9960.
[http://dx.doi.org/10.1021/jp003020w]
[37]
Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc., 1996, 118(45), 11225-11236.
[http://dx.doi.org/10.1021/ja9621760]
[38]
Jayaram, B.; Singh, T.; Mukherjee, G.; Mathur, A.; Shekhar, S.; Shekhar, V. Sanjeevini: A freely accessible web-server for target directed lead molecule discovery. BMC Bioinform, 2012, 13(Suppl. 17), S7.
[39]
Lipinski, C.A. Lead- and drug-like compounds: The rule-of-five revolution. Drug Discov. Today. Technol., 2004, 1(4), 337-341.
[http://dx.doi.org/10.1016/j.ddtec.2004.11.007] [PMID: 24981612]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy