Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Mini-Review Article

Wnt/β-catenin Signaling in Lung Cancer: Association with Proliferation, Metastasis, and Therapy Resistance

Author(s): Maliheh Entezari, Mahshid Deldar Abad Paskeh, Sima Orouei, Amirabbas Kakavand, Shamin Rezaei, Elahe Sadat Hejazi, Parya Pashootan, Naghmeh Nazdari, Alireza Tavakolpournegari, Mehrdad Hashemi, Shokooh Salimimoghadam, Sepideh Mirzaei*, Afshin Taheriazam* and Saeed Samarghandian*

Volume 24, Issue 1, 2024

Published on: 12 June, 2023

Page: [94 - 113] Pages: 20

DOI: 10.2174/1568009623666230413094317

Price: $65

Abstract

The capacity of cancer cells for abnormal growth and metastasis has made it difficult to find a cure for tumor. Both males and females suffer from lung tumors, and physicians still deem them incurable. The initiation and development of lung tumors can be forced by genomic mutations. Wnt is a critical pathway for regulating growth, differentiation and migration. However, its oncogenic function has been observed in lung cancer. Wnt is able to increase the proliferation of lung tumors. The metastasis potential of lung tumors can be accelerated by Wnt/EMT axis. Overexpression of Wnt/β-catenin prevents chemotherapy-mediated cell death in lung tumors. This pathway promotes cancer stem cell features in lung tumors which induce radioresistance. Anti-cancer agents, such as curcumin, are able to inhibit Wnt in lung tumor treatment. Wnt interaction with other factors in lung tumors is essential in controlling biological behavior, and non-coding RNA transcripts are the most well-known ones. It can be concluded from the current study that Wnt is an important regulator of lung tumorigenesis, and the translation of these findings into the clinic is vital.

Graphical Abstract

[1]
Mamdani, H.; Matosevic, S.; Khalid, A.B.; Durm, G.; Jalal, S.I. Immunotherapy in lung cancer: Current landscape and future directions. Front. Immunol., 2022, 13, 823618-823618.
[http://dx.doi.org/10.3389/fimmu.2022.823618] [PMID: 35222404]
[2]
Ashrafizadeh, M.; Najafi, M.; Makvandi, P.; Zarrabi, A.; Farkhondeh, T.; Samarghandian, S. Versatile role of curcumin and its derivatives in lung cancer therapy. J. Cell. Physiol., 2020, 235(12), 9241-9268.
[http://dx.doi.org/10.1002/jcp.29819] [PMID: 32519340]
[3]
Ashrafizadeh, M.; Zarrabi, A.; Hushmandi, K.; Hashemi, F.; Moghadam, E.R.; Owrang, M.; Hashemi, F.; Makvandi, P. Goharrizi, MASB. Lung cancer cells and their sensitivity/resistance to cisplatin chemotherapy: Role of microRNAs and upstream mediators. Cell. Signal., 2021, 78, 109871.
[http://dx.doi.org/10.1016/j.cellsig.2020.109871] [PMID: 33279671]
[4]
Ashrafizadeh, M.; Shahinozzaman, M.; Orouei, S.; Zarrin, V.; Hushmandi, K.; Hashemi, F.; Kumar, A.; Samarghandian, S.; Najafi, M.; Zarrabi, A. Crosstalk of long non-coding RNAs and EMT: Searching the missing pieces of an incomplete puzzle for lung cancer therapy. Curr. Cancer Drug Targets, 2021, 21(8), 640-665.
[http://dx.doi.org/10.2174/1568009621666210203110305] [PMID: 33535952]
[5]
Cameron, L.; Solomon, B.J.D. Treatment of ALK-rearranged non-small cell lung cancer: Recent progress and future directions. Drugs, 2015, 75(10), 1059-1070.
[http://dx.doi.org/10.1007/s40265-015-0415-9]
[6]
Patcas, A.; Chis, A.F.; Militaru, C.F.; Bordea, I.R.; Rajnoveanu, R.; Coza, O.F.; Hanna, R.; Tiberiu, T.; Todea, D.A. An insight into lung cancer: A comprehensive review exploring ALK TKI and mechanisms of resistance. Bosn. J. Basic Med. Sci., 2022, 22(1), 1-13.
[PMID: 34082691]
[7]
Filipska, M.; Rosell, R. Mutated circulating tumor DNA as a liquid biopsy in lung cancer detection and treatment. Mol. Oncol., 2021, 15(6), 1667-1682.
[http://dx.doi.org/10.1002/1878-0261.12983] [PMID: 33969622]
[8]
Herbst, R.S.; Morgensztern, D.; Boshoff, C.J.N. The biology and management of non-small cell lung cancer. Nature, 2018, 553(7689), 446-454.
[http://dx.doi.org/10.1038/nature25183]
[9]
Spira, A.; Ettinger, D.S. Multidisciplinary management of lung cancer. N. Engl. J. Med., 2004, 350(4), 379-392.
[10]
Lynch, T.J.; Bell, D.W.; Sordella, R.; Gurubhagavatula, S.; Okimoto, R.A.; Brannigan, B.W.; Harris, P.L.; Haserlat, S.M.; Supko, J.G. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med., 2004, 350(21), 2129-2139.
[11]
Ancey, P.B.; Contat, C.; Boivin, G.; Sabatino, S.; Pascual, J.; Zangger, N.; Perentes, J.Y.; Peters, S.; Abel, E.D.; Kirsch, D.G.; Rathmell, J.C.; Vozenin, M.C.; Meylan, E. GLUT1 expression in tumor-associated neutrophils promotes lung cancer growth and resistance to radiotherapy. Cancer Res., 2021, 81(9), 2345-2357.
[http://dx.doi.org/10.1158/0008-5472.CAN-20-2870] [PMID: 33753374]
[12]
Xu, Y.; Hu, Y.; Xu, T.; Yan, K.; Zhang, T.; Li, Q.; Chang, F.; Guo, X.; Peng, J.; Li, M.; Zhao, M.; Zhen, H.; Xu, L.; Zheng, D.; Li, L.; Shao, G. RNF8-mediated regulation of Akt promotes lung cancer cell survival and resistance to DNA damage. Cell Rep., 2021, 37(3), 109854.
[http://dx.doi.org/10.1016/j.celrep.2021.109854] [PMID: 34686341]
[13]
Shao, N.; Song, L.; Sun, X. Exosomal circ_PIP5K1A regulates the progression of non-small cell lung cancer and cisplatin sensitivity by miR-101/ABCC1 axis. Mol. Cell. Biochem., 2021, 476(6), 2253-2267.
[http://dx.doi.org/10.1007/s11010-021-04083-8] [PMID: 33570734]
[14]
Guan, S.; Li, L.; Chen, W.S.; Jiang, W.Y.; Ding, Y.; Zhao, L.L.; Shi, Y.F.; Wang, J.; Gui, Q.; Xu, C.C.; Cheng, Y.; Zhang, W. Circular RNA WHSC1 exerts oncogenic properties by regulating miR‐7/TAB2 in lung cancer. J. Cell. Mol. Med., 2021, 25(20), 9784-9795.
[http://dx.doi.org/10.1111/jcmm.16925] [PMID: 34551195]
[15]
Kim, D.H.; Park, H.; Choi, Y.J.; Kang, M.H.; Kim, T.K.; Pack, C.G.; Choi, C.M.; Lee, J.C.; Rho, J.K. Exosomal miR-1260b derived from non-small cell lung cancer promotes tumor metastasis through the inhibition of HIPK2. Cell Death Dis., 2021, 12(8), 747.
[http://dx.doi.org/10.1038/s41419-021-04024-9] [PMID: 34321461]
[16]
Zheng, S.; Wang, C.; Yan, H.; Du, Y. Blocking hsa_circ_0074027 suppressed non-small cell lung cancer chemoresistance via the miR-379-5p/IGF1 axis. Bioengineered, 2021, 12(1), 8347-8357.
[http://dx.doi.org/10.1080/21655979.2021.1987053] [PMID: 34592879]
[17]
Mao, G.; Mu, Z.; Wu, D. Exosome-derived miR-2682-5p suppresses cell viability and migration by HDAC1-silence-mediated upregulation of ADH1A in non-small cell lung cancer. Hum. Exp. Toxicol., 2021, 40(Suppl. 12), S318-S330.
[http://dx.doi.org/10.1177/09603271211041997] [PMID: 34477002]
[18]
Liu, W.W.; Hu, J.; Wang, R.; Han, Q.; Liu, Y.; Wang, S. Cytoplasmic P120ctn promotes gefitinib resistance in lung cancer cells by activating PAK1 and ERK pathway. Appl. Immunohistochem. Mol. Morphol., 2021, 29(10), 750-758.
[http://dx.doi.org/10.1097/PAI.0000000000000965] [PMID: 34412070]
[19]
Qi, H.; Liu, Y.; Wang, N.; Xiao, C. Lentinan Attenuated the PM2.5 Exposure-induced inflammatory response, epithelial–mesenchymal transition and migration by inhibiting the PVT1/miR-199a-5p/caveolin1 pathway in lung cancer. DNA Cell Biol., 2021, 40(5), 683-693.
[http://dx.doi.org/10.1089/dna.2020.6338] [PMID: 33902331]
[20]
Yang, C.; Shi, J.; Wang, J.; Hao, D.; An, J.; Jiang, J. Circ_0006988 promotes the proliferation, metastasis and angiogenesis of non-small cell lung cancer cells by modulating miR-491-5p/MAP3K3 axis. Cell Cycle, 2021, 20(13), 1334-1346.
[http://dx.doi.org/10.1080/15384101.2021.1941612] [PMID: 34189997]
[21]
Zhang, Y.; Yao, H.; Li, Y.; Yang, L.; Zhang, L.; Chen, J.; Wang, Y.; Li, X. Circular RNA TADA2A promotes proliferation and migration via modulating of miR 638/KIAA0101 signal in non small cell lung cancer. Oncol. Rep., 2021, 46(3), 201.
[http://dx.doi.org/10.3892/or.2021.8152] [PMID: 34296306]
[22]
Ni, L.; Li, Z.; Ren, H.; Kong, L.; Chen, X.; Xiong, M.; Zhang, X.; Ning, B.; Li, J. Berberine inhibits non‐small cell lung cancer cell growth through repressing DNA repair and replication rather than through apoptosis. Clin. Exp. Pharmacol. Physiol., 2022, 49(1), 134-144.
[http://dx.doi.org/10.1111/1440-1681.13582] [PMID: 34448246]
[23]
Rasheduzzaman, M.; Jeong, J.K.; Park, S.Y. Resveratrol sensitizes lung cancer cell to TRAIL by p53 independent and suppression of Akt/NF-κB signaling. Life Sci., 2018, 208, 208-220.
[http://dx.doi.org/10.1016/j.lfs.2018.07.035] [PMID: 30031063]
[24]
Rijsewijk, F.; Schuermann, M.; Wagenaar, E.; Parren, P.; Weigel, D.; Nusse, R.J.C. The Drosophila homology of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell, 1987, 50(4), 649-657.
[http://dx.doi.org/10.1016/0092-8674(87)90038-9]
[25]
Reya, T.; Clevers, H. Wnt signalling in stem cells and cancer. Nature, 2005, 434(7035), 843-850.
[http://dx.doi.org/10.1038/nature03319] [PMID: 15829953]
[26]
Willert, K.; Brown, J.D.; Danenberg, E.; Duncan, A.W.; Weissman, I.L.; Reya, T.; Yates, J.R.; Nusse, R.J.N. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature, 2003, 423(6938), 448-452.
[http://dx.doi.org/10.1038/nature01611]
[27]
Aguilera, K.Y.; Dawson, D.W. WNT ligand dependencies in pancreatic cancer. Front. Cell Dev. Biol., 2021, 9, 671022.
[http://dx.doi.org/10.3389/fcell.2021.671022] [PMID: 33996827]
[28]
Karaca, B. Bakır, E.; Yerer, M.B.; Cumaoğlu, A.; Hamurcu, Z.; Eken, A. Doxazosin and erlotinib have anticancer effects in the endometrial cancer cell and important roles in ERα and Wnt/β‐catenin signaling pathways. J. Biochem. Mol. Toxicol., 2021, 35(11), e22905.
[http://dx.doi.org/10.1002/jbt.22905] [PMID: 34463000]
[29]
Zhu, X.; Xiang, Z.; Zou, L.; Chen, X.; Peng, X.; Xu, D. APMAP promotes epithelial-mesenchymal transition and metastasis of cervical cancer cells by activating the Wnt/β-catenin pathway. J. Cancer, 2021, 12(20), 6265-6273.
[http://dx.doi.org/10.7150/jca.59595] [PMID: 34539899]
[30]
Teeuwssen, M.; Fodde, R. Wnt signaling in ovarian cancer stemness, EMT, and therapy resistance. J. Clin. Med., 2019, 8(10), 1658.
[http://dx.doi.org/10.3390/jcm8101658] [PMID: 31614568]
[31]
Deldar Abad Paskeh, M.; Mirzaei, S.; Ashrafizadeh, M.; Zarrabi, A.; Sethi, G. Wnt/β-Catenin signaling as a driver of hepatocellular carcinoma progression: An emphasis on molecular pathways. J. Hepatocell. Carcinoma, 2021, 8, 1415-1444.
[32]
Deng, J.; Zhang, J.; Ye, Y.; Liu, K.; Zeng, L.; Huang, J.; Pan, L.; Li, M.; Bai, R.; Zhuang, L.; Huang, X.; Wu, G.; Wei, L.; Zheng, Y.; Su, J.; Zhang, S.; Chen, R.; Lin, D.; Zheng, J. N6-methyladenosine–mediated upregulation of WTAPP1 promotes WTAP translation and wnt signaling to facilitate pancreatic cancer progression. Cancer Res., 2021, 81(20), 5268-5283.
[http://dx.doi.org/10.1158/0008-5472.CAN-21-0494] [PMID: 34362795]
[33]
Kang, H.E.; Seo, Y.; Yun, J.S.; Song, S.H.; Han, D.; Cho, E.S.; Cho, S.B.; Jeon, Y.; Lee, H.; Kim, H.S.; Kang, J.; Yook, J.I.; Kim, N.H.; Kim, T.I. Metformin and niclosamide synergistically suppress Wnt and YAP in APC-mutated colorectal cancer. Cancers, 2021, 13(14), 3437.
[http://dx.doi.org/10.3390/cancers13143437] [PMID: 34298652]
[34]
Giebel, N.; Jaime-Soguero, A.; García del Arco, A.; Landry, J.J.M.; Tietje, M.; Villacorta, L.; Benes, V.; Fernández-Sáiz, V.; Acebrón, S.P. USP42 protects ZNRF3/RNF43 from R‐spondin‐dependent clearance and inhibits Wnt signalling. EMBO Rep., 2021, 22(5), e51415.
[http://dx.doi.org/10.15252/embr.202051415] [PMID: 33786993]
[35]
DeVito, N.C.; Sturdivant, M.; Thievanthiran, B.; Xiao, C.; Plebanek, M.P.; Salama, A.K.S.; Beasley, G.M.; Holtzhausen, A.; Novotny-Diermayr, V.; Strickler, J.H.; Hanks, B.A. Pharmacological Wnt ligand inhibition overcomes key tumor-mediated resistance pathways to anti-PD-1 immunotherapy. Cell Rep., 2021, 35(5), 109071.
[http://dx.doi.org/10.1016/j.celrep.2021.109071] [PMID: 33951424]
[36]
Shi, Q.; Zhou, C.; Xie, R.; Li, M.; Shen, P.; Lu, Y.; Ma, S. CircCNIH4 inhibits gastric cancer progression via regulating DKK2 and FRZB expression and Wnt/β-catenin pathway. J. Biol. Res., 2021, 28(1), 19.
[http://dx.doi.org/10.1186/s40709-021-00140-x] [PMID: 34364402]
[37]
Wang, Z.; Jiao, P.; Zhong, Y.; Ji, H.; Zhang, Y.; Song, H.; Du, H.; Ding, X.; Wu, H.J.C.T. The endoplasmic reticulum-stressed head and neck squamous cell carcinoma cells induced exosomal miR-424-5p inhibits angiogenesis and migration of humanumbilical vein endothelial cells through LAMC1-mediated Wnt/β-catenin signaling pathway. Cell Transplant., 2022, 9636897221083549.
[38]
Hong, J.; Xie, Z.; Yang, Z.; Yang, F.; Liao, H.; Rao, S.; Huang, X. Inactivation of Wnt-LRP5 signaling suppresses the proliferation and migration of ovarian cancer cells. Transl. Cancer Res., 2021, 10(5), 2277-2285.
[http://dx.doi.org/10.21037/tcr-20-3462] [PMID: 35116545]
[39]
Hu, W.; Li, M.; Chen, Y.; Gu, X. UBE2S promotes the progression and Olaparib resistance of ovarian cancer through Wnt/β-catenin signaling pathway. J. Ovarian Res., 2021, 14(1), 121.
[http://dx.doi.org/10.1186/s13048-021-00877-y] [PMID: 34535173]
[40]
Peng, Y.; Xu, Y.; Zhang, X.; Deng, S.; Yuan, Y.; Luo, X.; Hossain, M.T.; Zhu, X.; Du, K.; Hu, F.; Chen, Y.; Chang, S.; Feng, X.; Fan, X.; Ashktorab, H.; Smoot, D.; Meltzer, S.J.; Hou, G.; Wei, Y.; Li, S.; Qin, Y.; Jin, Z. A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression. Mol. Cancer, 2021, 20(1), 158.
[http://dx.doi.org/10.1186/s12943-021-01457-w] [PMID: 34863211]
[41]
Li, Q.; Wang, G.; Tao, J.; Chen, W. RNF6 promotes colorectal cancer invasion and migration via the Wnt/β-catenin pathway by inhibiting GSK3β activity. Pathol. Res. Pract., 2021, 225, 153545.
[http://dx.doi.org/10.1016/j.prp.2021.153545] [PMID: 34352441]
[42]
Yin, H.; Gao, T.; Xie, J.; Huang, Z.; Zhang, X.; Yang, F.; Qi, W.; Yang, Z.; Zhou, T.; Gao, G.; Yang, X. FUBP1 promotes colorectal cancer stemness and metastasis via DVL1‐mediated activation of Wnt/β‐catenin signaling. Mol. Oncol., 2021, 15(12), 3490-3512.
[http://dx.doi.org/10.1002/1878-0261.13064] [PMID: 34288405]
[43]
Wu, Q.; Yin, X.; Zhao, W.; Xu, W.; Chen, L. Downregulation of SFRP2 facilitates cancer stemness and radioresistance of glioma cells via activating Wnt/β-catenin signaling. PLoS One, 2021, 16(12), e0260864.
[http://dx.doi.org/10.1371/journal.pone.0260864] [PMID: 34852024]
[44]
Sun, M.; Huang, S.; Gao, Y. Lidocaine inhibits the proliferation and metastasis of epithelial ovarian cancer through the Wnt/β-catenin pathway. Transl. Cancer Res., 2021, 10(7), 3479-3490.
[http://dx.doi.org/10.21037/tcr-21-1047] [PMID: 35116652]
[45]
Gudiño, V.; Pohl, S.Ö.G.; Billard, C.V.; Cammareri, P.; Bolado, A.; Aitken, S.; Stevenson, D.; Hall, A.E.; Agostino, M.; Cassidy, J.; Nixon, C.; von Kriegsheim, A.; Freile, P.; Popplewell, L.; Dickson, G.; Murphy, L.; Wheeler, A.; Dunlop, M.; Din, F.; Strathdee, D.; Sansom, O.J.; Myant, K.B. RAC1B modulates intestinal tumourigenesis via modulation of WNT and EGFR signalling pathways. Nat. Commun., 2021, 12(1), 2335.
[http://dx.doi.org/10.1038/s41467-021-22531-3] [PMID: 33879799]
[46]
Takeuchi, Y.; Tanegashima, T.; Sato, E.; Irie, T.; Sai, A.; Itahashi, K.; Kumagai, S.; Tada, Y.; Togashi, Y.; Koyama, S.; Akbay, E.A.; Karasaki, T.; Kataoka, K.; Funaki, S.; Shintani, Y.; Nagatomo, I.; Kida, H.; Ishii, G.; Miyoshi, T.; Aokage, K.; Kakimi, K.; Ogawa, S.; Okumura, M.; Eto, M.; Kumanogoh, A.; Tsuboi, M.; Nishikawa, H. Highly immunogenic cancer cells require activation of the WNT pathway for immunological escape. Sci. Immunol., 2021, 6(65), eabc6424.
[http://dx.doi.org/10.1126/sciimmunol.abc6424] [PMID: 34767457]
[47]
Li, Z.; Huang, Y.; Xu, Y.; Wang, X.; Wang, H.; Zhao, S.; Liu, H.; Yu, G.; Che, X. Targeting ADAR1 suppresses progression and peritoneal metastasis of gastric cancer through Wnt/β-catenin pathway. J. Cancer, 2021, 12(24), 7334-7348.
[http://dx.doi.org/10.7150/jca.61031] [PMID: 35003354]
[48]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[49]
Dai, J.; Yuan, G.; Li, Y.; Zhou, H. MicroRNA-596 is epigenetically inactivated and suppresses prostatic cancer cell growth and migration via regulating Wnt/β-catenin signaling. Clin. Transl. Oncol., 2021, 23(7), 1394-1404.
[http://dx.doi.org/10.1007/s12094-020-02536-y] [PMID: 33387246]
[50]
Cai, Z.; Mei, Y.; Jiang, X.; Shi, X. WDR74 promotes proliferation and metastasis in colorectal cancer cells through regulating the Wnt/β-catenin signaling pathway. Open Life Sci., 2021, 16(1), 920-929.
[http://dx.doi.org/10.1515/biol-2021-0096] [PMID: 34553072]
[51]
Wu, J.; Wang, Y.; Yang, Y.; Liu, F.; Chen, J.; Jiang, Z.; Jiang, Z. TNFSF9 promotes metastasis of pancreatic cancer through Wnt/Snail signaling and M2 polarization of macrophages. Aging, 2021, 13(17), 21571-21586.
[http://dx.doi.org/10.18632/aging.203497] [PMID: 34517345]
[52]
Ma, Y.; Zhang, P.; Zhang, Q.; Wang, X.; Miao, Q.; Lyu, X.; Cui, B.; Ma, H. Dihydroartemisinin suppresses proliferation, migration, the Wnt/β catenin pathway and EMT via TNKS in gastric cancer. Oncol. Lett., 2021, 22(4), 688.
[http://dx.doi.org/10.3892/ol.2021.12949] [PMID: 34457043]
[53]
Liu, Y.; Chen, Y.; Fei, W.; Zheng, C.; Zheng, Y.; Tang, M.; Qian, Y.; Zhang, X.; Zhao, M.; Zhang, M.; Wang, F. Silica-Based Nanoframeworks Involved Hepatocellular Carcinoma Theranostic. Front. Bioeng. Biotechnol., 2021, 9, 733792-733792.
[http://dx.doi.org/10.3389/fbioe.2021.733792] [PMID: 34557478]
[54]
Lan, C.; Liu, C.C.; Nie, X.C.; Lei, L.; Xiao, Z.X.; Li, M.X.; Tang, X.N.; Jia, M.Y.; Xu, H.T. FAM83A promotes the proliferative and invasive abilities of cervical cancer cells via epithelial-mesenchymal transition and the Wnt signaling pathway. J. Cancer, 2021, 12(21), 6320-6329.
[http://dx.doi.org/10.7150/jca.62563] [PMID: 34659522]
[55]
Wang, D.P.; Gu, L.L.; Xue, Q.; Chen, H.; Mao, G.X. CtBP2 promotes proliferation and reduces drug sensitivity in non-small cell lung cancer via the Wnt/β-catenin pathway. Neoplasma, 2018, 65(6), 888-897.
[http://dx.doi.org/10.4149/neo_2018_171220N828] [PMID: 30334447]
[56]
Wang, T.; Liu, X.; Tian, Q.; Liang, T.; Chang, P. Reduced SPOCK1 expression inhibits non-small cell lung cancer cell proliferation and migration through Wnt/β-catenin signaling. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(3), 637-644.
[PMID: 29461591]
[57]
Pan, F.; Shen, F.; Yang, L.; Zhang, L.; Guo, W.; Tian, J. Inhibitory effects of XAV939 on the proliferation of small cell lung cancer H446 cells and Wnt/β catenin signaling pathway in-vitro. Oncol. Lett., 2018, 16(2), 1953-1958.
[http://dx.doi.org/10.3892/ol.2018.8790] [PMID: 30008888]
[58]
Tang, X.; Ding, Y.; Wang, X.; Wang, X.; Zhao, L.; Bi, H. miR-650 promotes non-small cell lung cancer cell proliferation and invasion by targeting ING4 through Wnt-1/β-catenin pathway. Oncol. Lett., 2019, 18(5), 4621-4628.
[http://dx.doi.org/10.3892/ol.2019.10805] [PMID: 31611970]
[59]
Wang, X.H.; Cui, Y.X.; Wang, Z.M.; Liu, J. Down-regulation of FOXR2 inhibits non-small cell lung cancer cell proliferation and invasion through the Wnt/β-catenin signaling pathway. Biochem. Biophys. Res. Commun., 2018, 500(2), 229-235.
[http://dx.doi.org/10.1016/j.bbrc.2018.04.046] [PMID: 29634928]
[60]
Zhan, W.; Li, Y.; Liu, X.; Zheng, C.; Fu, Y. ZNF671 Inhibits the proliferation and metastasis of NSCLC via the Wnt/β-catenin pathway. Cancer Manag. Res., 2020, 12, 599-610.
[http://dx.doi.org/10.2147/CMAR.S235933] [PMID: 32158264]
[61]
Machida, Y.J.; Machida, Y.; Chen, Y.; Gurtan, A.M.; Kupfer, G.M.; D’Andrea, A.D. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol. Cell, 2006, 23(4), 589-596.
[62]
Kelsall, I.R.; Langenick, J.; MacKay, C.; Patel, K.J. The Fanconi anaemia components UBE2T and FANCM are functionally linked to nucleotide excision repair. PLoS One, 2012, 7(5), e36970.
[63]
Wen, M.; Kwon, Y.; Wang, Y.; Mao, J-H.; Wei, G.J.O. Elevated expression of UBE2T exhibits oncogenic properties in human prostate cancer. Oncotarget, 2015, 6(28), 25226-25239.
[http://dx.doi.org/10.18632/oncotarget.4712]
[64]
Liu, J.; Liu, X. UBE2T silencing inhibited non-small cell lung cancer cell proliferation and invasion by suppressing the wnt/β-catenin signaling pathway. Int. J. Clin. Exp. Pathol., 2017, 10(9), 9482-9488.
[PMID: 31966822]
[65]
Zheng, S.; Zhang, X.; Wang, X.; Li, J. MIR31HG promotes cell proliferation and invasion by activating the Wnt/β-catenin signaling pathway in non-small cell lung cancer. Oncol. Lett., 2019, 17(1), 221-229.
[PMID: 30655759]
[66]
Song, Z.; Du, J.; Zhou, L.; Sun, B. lncRNA AWPPH promotes proliferation and inhibits apoptosis of non small cell lung cancer cells by activating the Wnt/β catenin signaling pathway. Mol. Med. Rep., 2019, 19(5), 4425-4432.
[http://dx.doi.org/10.3892/mmr.2019.10089] [PMID: 30942396]
[67]
Zhao, M.; Ma, W.; Ma, C. Circ_0067934 promotes non-small cell lung cancer development by regulating miR-1182/KLF8 axis and activating Wnt/β-catenin pathway. Biomed. Pharmacother., 2020, 129, 110461.
[http://dx.doi.org/10.1016/j.biopha.2020.110461] [PMID: 32768951]
[68]
Lin, H.; Shangguan, Z.; Zhu, M.; Bao, L.; Zhang, Q.; Pan, S. lncRNA FLVCR1‐AS1 silencing inhibits lung cancer cell proliferation, migration, and invasion by inhibiting the activity of the Wnt/β‐catenin signaling pathway. J. Cell. Biochem., 2019, 120(6), 10625-10632.
[http://dx.doi.org/10.1002/jcb.28352] [PMID: 30697812]
[69]
Wang, Y.; Lei, L.; Zheng, Y.W.; Zhang, L.; Li, Z.H.; Shen, H.Y.; Jiang, G.Y.; Zhang, X.P.; Wang, E.H.; Xu, H.T. Odd-skipped related 1 inhibits lung cancer proliferation and invasion by reducing Wnt signaling through the suppression of SOX9 and β-catenin. Cancer Sci., 2018, 109(6), 1799-1810.
[http://dx.doi.org/10.1111/cas.13614] [PMID: 29660200]
[70]
Lei, Z.; Shi, H.; Li, W.; Yu, D.; Shen, F.; Yu, X.; Lu, D.; Sun, C.; Liao, K. miR 185 inhibits non small cell lung cancer cell proliferation and invasion through targeting of SOX9 and regulation of Wnt signaling. Mol. Med. Rep., 2018, 17(1), 1742-1752.
[PMID: 29138830]
[71]
Samarghandian, S.; Azimi-Nezhad, M.; Mehrad-Majd, H.; Mirhafez, S.R. Thymoquinone ameliorates acute renal failure in gentamicin-treated adult male rats. Pharmacology, 2015, 96(3-4), 112-117.
[72]
Feng, X.; Xu, E.S. Alectinib and lorlatinib function by modulating EMT-related proteins and MMPs in NSCLC metastasis. Bosn. J. Basic Med. Sci., 2021, 21(3), 331-338.
[PMID: 33091333]
[73]
Pan, G.; Liu, Y.; Shang, L.; Zhou, F.; Yang, S. EMT‐associated microRNAs and their roles in cancer stemness and drug resistance. Cancer Commun., 2021, 41(3), 199-217.
[http://dx.doi.org/10.1002/cac2.12138] [PMID: 33506604]
[74]
Georgakopoulos-Soares, I.; Chartoumpekis, D.V.; Kyriazopoulou, V.; Zaravinos, A. EMT factors and metabolic pathways in cancer. Front. Oncol., 2020, 10, 499.
[http://dx.doi.org/10.3389/fonc.2020.00499] [PMID: 32318352]
[75]
Bakir, B.; Chiarella, A.M.; Pitarresi, J.R.; Rustgi, A.K. EMT, MET, Plasticity, and tumor metastasis. Trends Cell Biol., 2020, 30(10), 764-776.
[http://dx.doi.org/10.1016/j.tcb.2020.07.003] [PMID: 32800658]
[76]
Pan, J.; Fang, S.; Tian, H.; Zhou, C.; Zhao, X.; Tian, H.; He, J.; Shen, W.; Meng, X.; Jin, X.; Gong, Z. lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/β-catenin signaling. Mol. Cancer, 2020, 19(1), 9.
[http://dx.doi.org/10.1186/s12943-020-1133-9] [PMID: 31941509]
[77]
Garinet, S.; Didelot, A.; Denize, T.; Perrier, A.; Beinse, G.; Leclere, J.B.; Oudart, J.B.; Gibault, L.; Badoual, C.; Le Pimpec-Barthes, F.; Laurent-Puig, P.; Legras, A.; Blons, H. Clinical assessment of the miR-34, miR-200, ZEB1 and SNAIL EMT regulation hub underlines the differential prognostic value of EMT miRs to drive mesenchymal transition and prognosis in resected NSCLC. Br. J. Cancer, 2021, 125(11), 1544-1551.
[http://dx.doi.org/10.1038/s41416-021-01568-7] [PMID: 34642464]
[78]
Qin, Q.; Li, X.; Liang, X.; Zeng, L.; Wang, J.; Sun, L.; Zhong, D. Targeting the EMT transcription factor Snail overcomes resistance to osimertinib inEGFR ‐mutant non‐small cell lung cancer. Thorac. Cancer, 2021, 12(11), 1708-1715.
[http://dx.doi.org/10.1111/1759-7714.13906] [PMID: 33943009]
[79]
Liu, W.; Fu, X.; Li, R. CNN1 regulates the DKK1/Wnt/β catenin/c myc signaling pathway by activating TIMP2 to inhibit the invasion, migration and EMT of lung squamous cell carcinoma cells. Exp. Ther. Med., 2021, 22(2), 855.
[http://dx.doi.org/10.3892/etm.2021.10287] [PMID: 34178128]
[80]
Wang, S.; Wang, Z.; Wu, Y.; Hou, C.; Dai, X.; Wang, Q.; Wu, Y.; Qian, C.; Zhang, X. The TCM Prescription Yi-Fei-Jie-Du-Tang Inhibit Invasive Migration and EMT of Lung Cancer Cells by Activating Autophagy. Evid. Based Complement. Alternat. Med., 2022, 2022, 9160616.
[http://dx.doi.org/10.1155/2022/9160616] [PMID: 35132327]
[81]
Kariya, Y. Oyama, M.; Suzuki, T.; Kariya, Y. αvβ3 Integrin induces partial EMT independent of TGF-β signaling. Commun. Biol., 2021, 4(1), 490.
[http://dx.doi.org/10.1038/s42003-021-02003-6] [PMID: 33883697]
[82]
Yang, S.; Liu, Y.; Li, M.Y.; Ng, C.S.H.; Yang, S.; Wang, S.; Zou, C.; Dong, Y.; Du, J.; Long, X.; Liu, L.Z.; Wan, I.Y.P.; Mok, T.; Underwood, M.J.; Chen, G.G. FOXP3 promotes tumor growth and metastasis by activating Wnt/β-catenin signaling pathway and EMT in non-small cell lung cancer. Mol. Cancer, 2017, 16(1), 124.
[http://dx.doi.org/10.1186/s12943-017-0700-1] [PMID: 28716029]
[83]
Yang, F.; Xiong, H.; Duan, L.; Li, Q.; Li, X.; Zhou, Y. MiR-1246 promotes metastasis and invasion of A549 cells by targeting GSK-3β‒mediated Wnt/β-catenin pathway. Cancer Res. Treat., 2019, 51(4), 1420-1429.
[http://dx.doi.org/10.4143/crt.2018.638] [PMID: 30913872]
[84]
Wang, X.; Zhang, S.; Shi, M.; Xu, X. HMGB1 Promotes the proliferation and metastasis of lung cancer by activating the Wnt/β-catenin pathway. Technol. Cancer Res. Treat., 2020, 19, 1533033820948054.
[http://dx.doi.org/10.1177/1533033820948054] [PMID: 32815451]
[85]
Huang, J.Q.; Wei, F.K.; Xu, X.L.; Ye, S.X.; Song, J.W.; Ding, P.K.; Zhu, J.; Li, H.F.; Luo, X.P.; Gong, H.; Su, L.; Yang, L.; Gong, L.Y. SOX9 drives the epithelial–mesenchymal transition in non-small-cell lung cancer through the Wnt/β-catenin pathway. J. Transl. Med., 2019, 17(1), 143.
[http://dx.doi.org/10.1186/s12967-019-1895-2] [PMID: 31060551]
[86]
She, K.; Yang, W.; Li, M.; Xiong, W.; Zhou, M. FAIM2 Promotes non-small cell lung cancer cell growth and bone metastasis by activating the Wnt/β-catenin pathway. Front. Oncol., 2021, 11, 690142.
[http://dx.doi.org/10.3389/fonc.2021.690142] [PMID: 34568020]
[87]
Kong, X.; Zhao, Y.; Li, X.; Tao, Z.; Hou, M.; Ma, H. Overexpression of HIF-2a-Dependent NEAT1 Promotes the progression of non-small cell lung cancer through miR-1013p/SOX9/Wnt/β-catenin signal pathway. Cell. Physiol. Biochem., 2019, 52(3), 368-381.
[http://dx.doi.org/10.33594/000000026] [PMID: 30845377]
[88]
He, W.; He, S.; Wang, Z.; Shen, H.; Fang, W.; Zhang, Y.; Qian, W.; Lin, M.; Yuan, J.; Wang, J.; Huang, W.; Wang, L.; Ke, Z. Astrocyte elevated gene-1(AEG-1) induces epithelial-mesenchymal transition in lung cancer through activating Wnt/β-catenin signaling. BMC Cancer, 2015, 15(1), 107.
[http://dx.doi.org/10.1186/s12885-015-1124-1] [PMID: 25880337]
[89]
Zhang, B.; Li, N.; Zhang, H. Knockdown of homeobox B5 (HOXB5) Inhibits Cell Proliferation, Migration, and Invasion in non-small cell lung cancer cells through inactivation of the Wnt/β-catenin pathway. Oncol. Res., 2018, 26(1), 37-44.
[http://dx.doi.org/10.3727/096504017X14900530835262] [PMID: 28337958]
[90]
Yang, Y.; Liu, L.; Cai, J.; Wu, J.; Guan, H.; Zhu, X.; Yuan, J.; Li, M. DEPDC1B enhances migration and invasion of non-small cell lung cancer cells via activating Wnt/β-catenin signaling. Biochem. Biophys. Res. Commun., 2014, 450(1), 899-905.
[http://dx.doi.org/10.1016/j.bbrc.2014.06.076] [PMID: 24971537]
[91]
Liao, Y.; Feng, J.; Sun, W.; Wu, C.; Li, J.; Jing, T.; Liang, Y.; Qian, Y.; Liu, W.; Wang, H. CIRP promotes the progression of non-small cell lung cancer through activation of Wnt/β-catenin signaling via CTNNB1. J. Exp. Clin. Cancer Res., 2021, 40(1), 275.
[http://dx.doi.org/10.1186/s13046-021-02080-9] [PMID: 34465343]
[92]
Zhang, H.J.; Chang, W.J.; Jia, C.Y.; Qiao, L.; Zhou, J.; Chen, Q.; Zheng, X.W.; Zhang, J.H.; Li, H.C.; Yang, Z.Y.; Liu, Z.H.; Liu, G.C.; Ji, S.P.; Lu, F. Destrin contributes to lung adenocarcinoma progression by activating Wnt/β-catenin signaling pathway. Mol. Cancer Res., 2020, 18(12), 1789-1802.
[http://dx.doi.org/10.1158/1541-7786.MCR-20-0187] [PMID: 32878967]
[93]
Xu, R.; Cao, X.R.; Zhang, B.Q.; Wang, J.L.; Wang, L.; Sun, W.Q. BLACAT1 is negatively associated with prognosis in patients with NSCLC and inhibits cell progression, metastasis and epithelial-mesenchymal transition through down-regulating Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(14), 6217-6225.
[PMID: 31364123]
[94]
Yang, Y.; Sun, Y.; Wu, Y.; Tang, D.; Ding, X.; Xu, W.; Su, B.; Gao, W. Downregulation of miR-3127-5p promotes epithelial-mesenchymal transition via FZD4 regulation of Wnt/β-catenin signaling in non-small-cell lung cancer. Mol. Carcinog., 2018, 57(7), 842-853.
[http://dx.doi.org/10.1002/mc.22805] [PMID: 29566281]
[95]
Zhao, C.; Qiao, C.; Zong, L.; Chen, Y. Long non coding RNA CCAT2 promotes the occurrence of non small cell lung cancer by regulating the Wnt/β catenin signaling pathway. Oncol. Lett., 2018, 16(4), 4600-4606.
[http://dx.doi.org/10.3892/ol.2018.9194] [PMID: 30214594]
[96]
Luo, X.; Ye, S.; Jiang, Q.; Gong, Y.; Yuan, Y.; Hu, X.; Su, X.; Zhu, W. Wnt inhibitory factor-1-mediated autophagy inhibits Wnt/β-catenin signaling by downregulating dishevelled-2 expression in non-small cell lung cancer cells. Int. J. Oncol., 2018, 53(2), 904-914.
[http://dx.doi.org/10.3892/ijo.2018.4442] [PMID: 29916529]
[97]
Che, J.; Yue, D.; Zhang, B.; Zhang, H.; Huo, Y.; Gao, L.; Zhen, H.; Yang, Y.; Cao, B. Claudin-3 inhibits lung squamous cell carcinoma cell epithelial-mesenchymal transition and invasion via suppression of the Wnt/β-catenin signaling pathway. Int. J. Med. Sci., 2018, 15(4), 339-351.
[http://dx.doi.org/10.7150/ijms.22927] [PMID: 29511369]
[98]
Wei, H.; Zhang, F.; Wang, J.; Zhao, M.; Hou, T.; Li, L. Dehydroeffusol inhibits hypoxia-induced epithelial–mesenchymal transition in non-small cell lung cancer cells through the inactivation of Wnt/β-catenin pathway. Biosci. Rep., 2020, 40(5), BSR20194284.
[http://dx.doi.org/10.1042/BSR20194284] [PMID: 32426814]
[99]
Bu, X.; Zhang, X.; Xu, J.; Yang, H.; Zhou, X.; Wang, H.; Gong, L. Inhibition of DNA methyltransferase 1 by RNA interference reverses epithelial mesenchymal transition in highly metastatic 95D lung cancer cells by inhibiting the Wnt signaling pathway. Oncol. Lett., 2018, 15(6), 9242-9250.
[http://dx.doi.org/10.3892/ol.2018.8449] [PMID: 29805653]
[100]
Qu, J.; Li, M. an, J.; Zhao, B.; Zhong, W.; Gu, Q.; Cao, L.; Yang, H.; Hu, C. MicroRNA-33b inhibits lung adenocarcinoma cell growth, invasion, and epithelial-mesenchymal transition by suppressing Wnt/β-catenin/ZEB1 signaling. Int. J. Oncol., 2015, 47(6), 2141-2152.
[http://dx.doi.org/10.3892/ijo.2015.3187] [PMID: 26459797]
[101]
Maiuthed, A.; Chantarawong, W. Lung cancer stem cells and cancer stem cell-targeting natural compounds. Anticancer Res., 2018, 38(7), 3797-3809.
[102]
Prabavathy, D. Heterogeneity of small cell lung cancer stem cells. Adv. Exp. Med. Biol., 2019, 1139, 41-57.
[103]
Raniszewska, A. Kwiecień I.; Rutkowska, E.; Rzepecki, P.; Domagała-Kulawik, J. Lung cancer stem cells-origin, diagnostic techniques and perspective for therapies. Cancers, 2021, 13(12), 2996.
[http://dx.doi.org/10.3390/cancers13122996] [PMID: 34203877]
[104]
Hamad, H.; Olsen, B.B. Cannabidiol induces cell death in human lung cancer cells and cancer stem cells. Pharmaceuticals, 2021, 14(11), 1169.
[http://dx.doi.org/10.3390/ph14111169] [PMID: 34832951]
[105]
Deldar Abad Paskeh, M.; Asadi, S.; Zabolian, A.; Saleki, H.; Khoshbakht, M.A.; Sabet, S.; Naghdi, M.J.; Hashemi, M.; Hushmandi, K. Targeting cancer stem cells by dietary agents: An important therapeutic strategy against human malignancies. Int. J. Mol. Sci., 2021, 22(21), 11669.
[106]
Silapech, A.; Racha, S.; Aksorn, N.; Lafauy, P.; Tungsukruthai, S.; Vinayanuwattikun, C.; Sritularak, B.; Chanvorachote, P. Pongol methyl ether inhibits Akt and suppresses cancer stem cell phenotypes in lung cancer cells. Pharmaceuticals, 2021, 14(11), 1085.
[http://dx.doi.org/10.3390/ph14111085] [PMID: 34832867]
[107]
Jiang, P.; Li, F.; Liu, Z.; Hao, S.; Gao, J.; Li, S. BTB and CNC homology 1 (Bach1) induces lung cancer stem cell phenotypes by stimulating CD44 expression. Respir. Res., 2021, 22(1), 320.
[http://dx.doi.org/10.1186/s12931-021-01918-2] [PMID: 34949193]
[108]
Mei, Y.; Liu, Y.B.; Cao, S.; Tian, Z.W.; Zhou, H.H. RIF1 promotes tumor growth and cancer stem cell-like traits in NSCLC by protein phosphatase 1-mediated activation of Wnt/β-catenin signaling. Cell Death Dis., 2018, 9(10), 942.
[http://dx.doi.org/10.1038/s41419-018-0972-4] [PMID: 30237512]
[109]
Wu, S.; Wang, H.; Pan, Y.; Yang, X.; Wu, D. miR 140 3p enhances cisplatin sensitivity and attenuates stem cell like properties through repressing Wnt/β catenin signaling in lung adenocarcinoma cells. Exp. Ther. Med., 2020, 20(2), 1664-1674.
[http://dx.doi.org/10.3892/etm.2020.8847] [PMID: 32765679]
[110]
Su, J.; Wu, S.; Wu, H.; Li, L.; Guo, T. CD44 is functionally crucial for driving lung cancer stem cells metastasis through Wnt/β-catenin-FoxM1-Twist signaling. Mol. Carcinog., 2016, 55(12), 1962-1973.
[http://dx.doi.org/10.1002/mc.22443] [PMID: 26621583]
[111]
Huang, W.C.; Kuo, K.T.; Adebayo, B.O.; Wang, C.H.; Chen, Y.J.; Jin, K.; Tsai, T.H.; Yeh, C.T. Garcinol inhibits cancer stem cell-like phenotype via suppression of the Wnt/β-catenin/STAT3 axis signalling pathway in human non-small cell lung carcinomas. J. Nutr. Biochem., 2018, 54, 140-150.
[http://dx.doi.org/10.1016/j.jnutbio.2017.12.008] [PMID: 29414668]
[112]
Fang, L.; Cai, J.; Chen, B.; Wu, S.; Li, R.; Xu, X.; Yang, Y.; Guan, H.; Zhu, X.; Zhang, L.; Yuan, J.; Wu, J.; Li, M. Aberrantly expressed miR-582-3p maintains lung cancer stem cell-like traits by activating Wnt/β-catenin signalling. Nat. Commun., 2015, 6(1), 8640.
[http://dx.doi.org/10.1038/ncomms9640] [PMID: 26468775]
[113]
Teng, Y.; Wang, X.; Wang, Y.; Ma, D. Wnt/β-catenin signaling regulates cancer stem cells in lung cancer A549 cells. Biochem. Biophys. Res. Commun., 2010, 392(3), 373-379.
[http://dx.doi.org/10.1016/j.bbrc.2010.01.028] [PMID: 20074550]
[114]
Su, Y-J.; Chang, Y-W.; Lin, W-H.; Liang, C-L.; Lee, J-L. An aberrant nuclear localization of E-cadherin is a potent inhibitor of Wnt/β-catenin-elicited promotion of the cancer stem cell phenotype. Oncogenesis, 2015, 4(6), e157.
[http://dx.doi.org/10.1038/oncsis.2015.17] [PMID: 26075748]
[115]
Zhu, L.; Pan, R.; Zhou, D.; Ye, G.; Tan, W. BCL11A enhances stemness and promotes progression by activating Wnt/β-catenin signaling in breast cancer. Cancer Manag. Res., 2019, 11, 2997-3007.
[http://dx.doi.org/10.2147/CMAR.S199368] [PMID: 31114347]
[116]
Wang, J.; Chen, J.; Jiang, Y.; Shi, Y.; Zhu, J.; Xie, C.; Geng, S.; Wu, J.; Zhang, Q.; Wang, X.; Meng, Y.; Li, Y.; Chen, Y.; Cao, W.; Wang, X.; Zhong, C.; Li, X. Wnt/β-catenin modulates chronic tobacco smoke exposure-induced acquisition of pulmonary cancer stem cell properties and diallyl trisulfide intervention. Toxicol. Lett., 2018, 291, 70-76.
[http://dx.doi.org/10.1016/j.toxlet.2018.04.003] [PMID: 29626521]
[117]
Wang, W.; Xia, X.; Chen, K.; Chen, M.; Meng, Y.; Lv, D.; Yang, H. Reduced PHLPP expression leads to EGFR-TKI resistance in lung cancer by activating PI3K-AKT and MAPK-ERK dual signaling. Front. Oncol., 2021, 11, 665045.
[http://dx.doi.org/10.3389/fonc.2021.665045] [PMID: 34168988]
[118]
Zeng, W.; Zheng, S.; Mao, Y.; Wang, S.; Zhong, Y.; Cao, W.; Su, T.; Gong, M.; Cheng, J.; Zhang, Y.; Yang, H. Elevated N-glycosylation contributes to the cisplatin resistance of non-small cell lung cancer cells revealed by membrane proteomic and glycoproteomic analysis. Front. Pharmacol., 2021, 12, 805499.
[http://dx.doi.org/10.3389/fphar.2021.805499] [PMID: 35002739]
[119]
Wu, J.; Liu, C.; Wang, F. Disparities in Hepatocellular Carcinoma Survival by Insurance Status: A Population-Based Study in China. Front. Public Health, 2021, 9, 742355.
[http://dx.doi.org/10.3389/fpubh.2021.742355] [PMID: 34805067]
[120]
Xue, F.; Yang, C.; Yun, K.; Jiang, C.; Cai, R.; Liang, M.; Wang, Q.; Bian, W.; Zhou, H.; Liu, Z.; Zhu, L. RETRACTED ARTICLE: Reduced LINC00467 elevates microRNA-125a-3p to suppress cisplatin resistance in non-small cell lung cancer through inhibiting sirtuin 6 and inactivating the ERK1/2 signaling pathway. Cell Biol.Toxicol., 2021, 021-096374.
[http://dx.doi.org/10.1007/s10565-021-09637-6] [PMID: 344589532]
[121]
Lou, T.; Li, B.; Xiong, P.; Jin, C.; Chen, Y. External validation of hepatocellular carcinoma risk scores in patients with chronic hepatitis B virus infection in China. J. Viral Hepat., 2021, 28(10), 1373-1380.
[http://dx.doi.org/10.1111/jvh.13569] [PMID: 34218498]
[122]
Cheng, L.; Tong, Q. Interaction of FLNA and ANXA2 promotes gefitinib resistance by activating the Wnt pathway in non-small-cell lung cancer. Mol. Cell. Biochem., 2021, 476(10), 3563-3575.
[http://dx.doi.org/10.1007/s11010-021-04179-1] [PMID: 34018148]
[123]
Wang, Q.; Liao, J.; He, Z.; Su, Y.; Lin, D.; Xu, L.; Xu, H.; Lin, J. LHX6 affects erlotinib resistance and migration of EGFR-mutant non-small-cell lung cancer HCC827 cells through suppressing Wnt/β-catenin signaling. OncoTargets Ther., 2020, 13, 10983-10994.
[http://dx.doi.org/10.2147/OTT.S258896] [PMID: 33149613]
[124]
Lin, Y.; Higashisaka, K.; Shintani, T.; Maki, A.; Hanamuro, S.; Haga, Y.; Maeda, S.; Tsujino, H.; Nagano, K.; Fujio, Y.; Tsutsumi, Y. Progesterone receptor membrane component 1 leads to erlotinib resistance, initiating crosstalk of Wnt/β-catenin and NF-κB pathways, in lung adenocarcinoma cells. Sci. Rep., 2020, 10(1), 4748.
[http://dx.doi.org/10.1038/s41598-020-61727-3] [PMID: 32179851]
[125]
Shi, S.L.; Zhang, Z.H. Long non-coding RNA SNHG1 contributes to cisplatin resistance in non-small cell lung cancer by regulating miR-140-5p/Wnt/β-catenin pathway. Neoplasma, 2019, 66(5), 756-765.
[http://dx.doi.org/10.4149/neo_2018_181218N980] [PMID: 31288529]
[126]
Chen, W.; Zhao, W.; Zhang, L.; Wang, L.; Wang, J.; Wan, Z.; Hong, Y.; Yu, L. MALAT1-miR-101-SOX9 feedback loop modulates the chemo-resistance of lung cancer cell to DDP via Wnt signaling pathway. Oncotarget, 2017, 8(55), 94317-94329.
[http://dx.doi.org/10.18632/oncotarget.21693] [PMID: 29212230]
[127]
Guo, F.; Cao, Z.; Guo, H.; Li, S. The action mechanism of lncRNA-HOTAIR on the drug resistance of non-small cell lung cancer by regulating Wnt signaling pathway. Exp. Ther. Med., 2018, 15(6), 4885-4889.
[http://dx.doi.org/10.3892/etm.2018.6052] [PMID: 29805510]
[128]
Zhang, Q.; Zhang, B.; Sun, L.; Yan, Q.; Zhang, Y.; Zhang, Z.; Su, Y.; Wang, C. MicroRNA-130b targets PTEN to induce resistance to cisplatin in lung cancer cells by activating Wnt/β-catenin pathway. Cell Biochem. Funct., 2018, 36(4), 194-202.
[http://dx.doi.org/10.1002/cbf.3331] [PMID: 29653464]
[129]
Xia, Y.; He, Z.; Liu, B.; Wang, P.; Chen, Y. Downregulation of Meg3 enhances cisplatin resistance of lung cancer cells through activation of the WNT/β-catenin signaling pathway. Mol. Med. Rep., 2015, 12(3), 4530-4537.
[http://dx.doi.org/10.3892/mmr.2015.3897] [PMID: 26059239]
[130]
Zou, A.; Wu, A.; Luo, M.; Zhou, C.; Lu, Y.; Yu, X. SHCBP1 promotes cisplatin induced apoptosis resistance, migration and invasion through activating Wnt pathway. Life Sci., 2019, 235, 116798.
[http://dx.doi.org/10.1016/j.lfs.2019.116798] [PMID: 31472149]
[131]
Voigt, E.; Wallenburg, M.; Wollenzien, H.; Thompson, E.; Kumar, K.; Feiner, J.; McNally, M.; Friesen, H.; Mukherjee, M.; Afeworki, Y.; Kareta, M.S. Sox2 Is an oncogenic driver of small-cell lung cancer and promotes the classic neuroendocrine subtype. Mol. Cancer Res., 2021, 19(12), 2015-2025.
[http://dx.doi.org/10.1158/1541-7786.MCR-20-1006] [PMID: 34593608]
[132]
Chen, T.; Zhou, J.; Li, P.; Tang, C.; Xu, K.; Li, T.; Ren, T. SOX2 knockdown with siRNA reverses cisplatin resistance in NSCLC by regulating APE1 signaling. Med. Oncol., 2022, 39(3), 36.
[http://dx.doi.org/10.1007/s12032-021-01626-3] [PMID: 35059870]
[133]
He, J.; Shi, J.; Zhang, K.; Xue, J.; Li, J.; Yang, J.; Chen, J.; Wei, J.; Ren, H.; Liu, X. Sox2 inhibits Wnt-β-catenin signaling and metastatic potency of cisplatin-resistant lung adenocarcinoma cells. Mol. Med. Rep., 2017, 15(4), 1693-1701.
[http://dx.doi.org/10.3892/mmr.2017.6170] [PMID: 28259951]
[134]
Quan, Y.; Li, S.; Wang, Y.; Liu, G.; Lv, Z.; Wang, Z. Propofol and sevoflurane alleviate malignant biological behavior and cisplatin resistance of xuanwei lung adenocarcinoma by modulating the Wnt/β-catenin pathway and PI3K/AKT pathway. Anticancer. Agents Med. Chem., 2021, 22(11), 2098-2108.
[PMID: 35152870]
[135]
Ning, M.Y.; Cheng, Z.L.; Zhao, J. MicroRNA-448 targets SATB1 to reverse the cisplatin resistance in lung cancer via mediating Wnt/β-catenin signalling pathway. J. Biochem., 2020, 168(1), 41-51.
[http://dx.doi.org/10.1093/jb/mvaa024] [PMID: 32525527]
[136]
Liu, L.; Zhu, H.; Liao, Y.; Wu, W.; Liu, L.; Liu, L.; Wu, Y.; Sun, F.; Lin, H. Inhibition of Wnt/β-catenin pathway reverses multi-drug resistance and EMT in Oct4+/Nanog+ NSCLC cells. Biomed. Pharmacother., 2020, 127, 110225.
[http://dx.doi.org/10.1016/j.biopha.2020.110225] [PMID: 32428834]
[137]
Li, Y.; Ma, C.; Shi, X.; Wen, Z.; Li, D.; Sun, M.; Ding, H. Effect of nitric oxide synthase on multiple drug resistance is related to Wnt signaling in non-small cell lung cancer. Oncol. Rep., 2014, 32(4), 1703-1708.
[http://dx.doi.org/10.3892/or.2014.3351] [PMID: 25070480]
[138]
Wang, Q.; Geng, F.; Zhou, H.; Chen, Y.; Du, J.; Zhang, X.; Song, D.; Zhao, H. MDIG promotes cisplatin resistance of lung adenocarcinoma by regulating ABC transporter expression via activation of the WNT/β catenin signaling pathway. Oncol. Lett., 2019, 18(4), 4294-4307.
[http://dx.doi.org/10.3892/ol.2019.10774] [PMID: 31579066]
[139]
Gao, Y.; Liu, Z.; Zhang, X.; He, J.; Pan, Y.; Hao, F.; Xie, L.; Li, Q.; Qiu, X.; Wang, E. Inhibition of cytoplasmic GSK-3β increases cisplatin resistance through activation of Wnt/β-catenin signaling in A549/DDP cells. Cancer Lett., 2013, 336(1), 231-239.
[http://dx.doi.org/10.1016/j.canlet.2013.05.005] [PMID: 23673211]
[140]
Ashrafizadeh, M.; Farhood, B.; Eleojo Musa, A.; Taeb, S.; Najafi, M. The interactions and communications in tumor resistance to radiotherapy: Therapy perspectives. Int. Immunopharmacol., 2020, 87, 106807.
[http://dx.doi.org/10.1016/j.intimp.2020.106807] [PMID: 32683299]
[141]
Taeb, S.; Ashrafizadeh, M.; Zarrabi, A.; Rezapoor, S.; Musa, A.E.; Farhood, B.; Najafi, M.J. Role of tumor microenvironment in cancer stem cells resistance to radiotherapy. Curr. Cancer Drug Targets, 2022, 22(1), 18-30.
[142]
Amini, P.; Nodooshan, S.J.; Ashrafizadeh, M.; Aliasgharzadeh, A.; Vakili, Z.; Tavakoli, S.; Aryafar, T.; Musa, A.E.; Najafi, M. Taeb, SJCR. Imperatorin attenuates proliferation of MCF-7 Cells in combination with Radiotherapy or Hyperthermia. Curr. Radiopharm., 2022, 15(3), 236-241.
[143]
Nodooshan, S.J.; Amini, P.; Ashrafizadeh, M.; Tavakoli, S.; Aryafar, T.; Khalafi, L.; Musa, A.E.; Mahdavi, S.R.; Najafi, M.; Ahmadi, A.J. Suberosin attenuates the proliferation of MCF-7 breast cancer cells in combination with radiotherapy or hyperthermia. Curr. Drug Res. Rev., 2021, 13(2), 148-153.
[http://dx.doi.org/10.2174/2589977512666201228104528]
[144]
Jie, X.; Fong, W.P.; Zhou, R.; Zhao, Y.; Zhao, Y.; Meng, R.; Zhang, S.; Dong, X.; Zhang, T.; Yang, K.; Wu, G.; Xu, S. USP9X-mediated KDM4C deubiquitination promotes lung cancer radioresistance by epigenetically inducing TGF-β2 transcription. Cell Death Differ., 2021, 28(7), 2095-2111.
[http://dx.doi.org/10.1038/s41418-021-00740-z] [PMID: 33558705]
[145]
Cao, K.; Chen, Y.; Zhao, S.; Huang, Y.; Liu, T.; Liu, H.; Li, B.; Cui, J.; Cai, J.; Bai, C.; Yang, Y.; Gao, F. Sirt3 Promoted DNA damage repair and radioresistance through ATM-Chk2 in non-small cell lung cancer cells. J. Cancer, 2021, 12(18), 5464-5472.
[http://dx.doi.org/10.7150/jca.53173] [PMID: 34405009]
[146]
Fu, W.; Zhao, J.; Hu, W.; Dai, L.; Jiang, Z.; Zhong, S.; Deng, B.; Huang, Y.; Wu, W.; Yin, J. LINC01224/ZNF91 Promote Stem Cell-Like Properties and Drive Radioresistance in Non-Small Cell Lung Cancer. Cancer Manag. Res., 2021, 13, 5671-5681.
[http://dx.doi.org/10.2147/CMAR.S313744] [PMID: 34285587]
[147]
Cui, Y.H.; Kang, J.H.; Suh, Y.; Zhao, Y.; Yi, J.M.; Bae, I.H.; Lee, H.J.; Park, D.W.; Kim, M.J.; Lee, S.J. Loss of FBXL14 promotes mesenchymal shift and radioresistance of non-small cell lung cancer by TWIST1 stabilization. Signal Transduct. Target. Ther., 2021, 6(1), 272.
[http://dx.doi.org/10.1038/s41392-021-00599-z] [PMID: 34285182]
[148]
Zhang, J.; Wu, Q.; Zhu, L.; Xie, S.; Tu, L.; Yang, Y.; Wu, K.; Zhao, Y.; Wang, Y.; Xu, Y.; Chen, X.; Ma, S.; Zhang, S. SERPINE2/PN-1 regulates the DNA damage response and radioresistance by activating ATM in lung cancer. Cancer Lett., 2022, 524, 268-283.
[http://dx.doi.org/10.1016/j.canlet.2021.10.001] [PMID: 34648881]
[149]
Yang, X.; Zeng, Z.; Jie, X.; Wang, Y.; Han, J.; Zheng, Z.; Li, J.; Liu, H.; Dong, X.; Wu, G.; Xu, S. Arginine methyltransferase PRMT5 methylates and destabilizes Mxi1 to confer radioresistance in non-small cell lung cancer. Cancer Lett., 2022, 532, 215594.
[http://dx.doi.org/10.1016/j.canlet.2022.215594] [PMID: 35149174]
[150]
Wu, D.; Li, L.; Yan, W. Knockdown of TC-1 enhances radiosensitivity of non-small cell lung cancer via the Wnt/β-catenin pathway. Biol. Open, 2016, 5(4), 492-498.
[http://dx.doi.org/10.1242/bio.017608] [PMID: 27029901]
[151]
Li, J.; Xu, S.; Dong, H.; Wu, X.; Wang, L.H.; Xu, X. Altered Wnt5a expression affects radiosensitivity of non small cell lung cancer via the Wnt/β catenin pathway. Exp. Ther. Med., 2021, 23(1), 5.
[http://dx.doi.org/10.3892/etm.2021.10927] [PMID: 34815757]
[152]
Yu, L.; Kim, H.J.; Park, M.K.; Byun, H.J.; Kim, E.J.; Kim, B.; Nguyen, M.T.; Kim, J.H.; Kang, G.J.; Lee, H.; Kim, S.Y.; Rho, S.B.; Lee, C.H. Ethacrynic acid, a loop diuretic, suppresses epithelial-mesenchymal transition of A549 lung cancer cells via blocking of NDP-induced WNT signaling. Biochem. Pharmacol., 2021, 183, 114339.
[http://dx.doi.org/10.1016/j.bcp.2020.114339] [PMID: 33189676]
[153]
Ashrafizadeh, M.; Zarrabi, A.; Hashemipour, M.; Vosough, M.; Najafi, M.; Shahinozzaman, M.; Hushmandi, K.; Khan, H. Sensing the scent of death: Modulation of microRNAs by Curcumin in gastrointestinal cancers. Pharmacol. Res., 2020, 160, 105199.
[154]
Abadi, A.J.; Mirzaei, S.; Mahabady, M.K.; Hashemi, F.; Zabolian, A.; Hashemi, F.; Raee, P.; Aghamiri, S.; Ashrafizadeh, M.; Aref, A.R. Curcumin and its derivatives in cancer therapy: Potentiating antitumor activity of cisplatin and reducing side effects. Phytother. Res., 2022, 36(1), 189-213.
[155]
Zhu, J.Y.; Yang, X.; Chen, Y.; Jiang, Y.; Wang, S.J.; Li, Y.; Wang, X.Q.; Meng, Y.; Zhu, M.M.; Ma, X.; Huang, C.; Wu, R.; Xie, C.F.; Li, X.T.; Geng, S.S.; Wu, J.S.; Zhong, C.Y.; Han, H.Y. Curcumin suppresses lung cancer stem cells via inhibiting Wnt/β-catenin and sonic hedgehog pathways. Phytother. Res., 2017, 31(4), 680-688.
[http://dx.doi.org/10.1002/ptr.5791] [PMID: 28198062]
[156]
Wang, J.Y.; Wang, X.; Wang, X.J.; Zheng, B.Z.; Wang, Y.; Wang, X.; Liang, B. Curcumin inhibits the growth via Wnt/β-catenin pathway in non-small-cell lung cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(21), 7492-7499.
[PMID: 30468498]
[157]
Dong, Y.; Yang, Y.; Wei, Y.; Gao, Y.; Jiang, W.; Wang, G. Ligustrazine eases lung cancer by regulating PTEN and Wnt/β-catenin pathway. Transl. Cancer Res., 2020, 9(3), 1742-1751.
[http://dx.doi.org/10.21037/tcr.2020.03.26] [PMID: 35117521]
[158]
Fang, K.; Zhan, Y.; Zhu, R.; Wang, Y.; Wu, C.; Sun, M.; Qiu, Y.; Yuan, Z.; Liang, X.; Yin, P.; Xu, K. Bufalin suppresses tumour microenvironment-mediated angiogenesis by inhibiting the STAT3 signalling pathway. J. Transl. Med., 2021, 19(1), 383.
[http://dx.doi.org/10.1186/s12967-021-03058-z] [PMID: 34496870]
[159]
Guo, W.; Shen, F.; Xiao, W.; Chen, J.; Pan, F. Wnt inhibitor XAV939 suppresses the viability of small cell lung cancer NCI H446 cells and induces apoptosis. Oncol. Lett., 2017, 14(6), 6585-6591.
[http://dx.doi.org/10.3892/ol.2017.7100] [PMID: 29344117]
[160]
Tong, Y.; Liu, Y.; Zheng, H.; Zheng, L.; Liu, W.; Wu, J.; Ou, R.; Zhang, G.; Li, F.; Hu, M.; Liu, Z.; Lu, L. Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget, 2016, 7(21), 31413-31428.
[http://dx.doi.org/10.18632/oncotarget.8920] [PMID: 27119499]
[161]
Bi, Y.; Jiang, Y.; Li, X.; Hou, G.; Li, K. Rapamycin inhibits lung squamous cell carcinoma growth by downregulating glypican-3/Wnt/β-catenin signaling and autophagy. J. Cancer Res. Clin. Oncol., 2021, 147(2), 499-505.
[http://dx.doi.org/10.1007/s00432-020-03422-4] [PMID: 33225417]
[162]
Wang, T.L. Ouyang, C.S.; Lin, L.Z. β-Asarone suppresses Wnt/β-catenin signaling to reduce viability, inhibit migration/invasion/adhesion and induce mitochondria-related apoptosis in lung cancer cells. Biomed. Pharmacother., 2018, 106, 821-830.
[http://dx.doi.org/10.1016/j.biopha.2018.07.009] [PMID: 29990876]
[163]
Li, C.; Zheng, X.; Han, Y.; Lv, Y.; Lan, F.; Zhao, J. XAV939 inhibits the proliferation and migration of lung adenocarcinoma A549 cells through the WNT pathway. Oncol. Lett., 2018, 15(6), 8973-8982.
[http://dx.doi.org/10.3892/ol.2018.8491] [PMID: 29805633]
[164]
Fatima, I.; El-Ayachi, I.; Taotao, L.; Lillo, M.A.; Krutilina, R.; Seagroves, T.N.; Radaszkiewicz, T.W.; Hutnan, M.; Bryja, V.; Krum, S.A.; Rivas, F.; Miranda-Carboni, G.A. The natural compound Jatrophone interferes with Wnt/β-catenin signaling and inhibits proliferation and EMT in human triple-negative breast cancer. PLoS One, 2017, 12(12), e0189864.
[http://dx.doi.org/10.1371/journal.pone.0189864] [PMID: 29281678]
[165]
Han, L.; Fang, S.; Li, G.; Wang, M.; Yu, R. Total flavonoids suppress lung cancer growth via the COX 2 mediated Wnt/β catenin signaling pathway. Oncol. Lett., 2020, 19(3), 1824-1830.
[http://dx.doi.org/10.3892/ol.2020.11271] [PMID: 32194676]
[166]
Xiong, J.; Xing, S.; Dong, Z.; Niu, L.; Xu, Q.; Liu, P.; Yang, P. STK31 regulates the proliferation and cell cycle of lung cancer cells via the Wnt/β catenin pathway and feedback regulation by c myc. Oncol. Rep., 2020, 43(2), 395-404.
[PMID: 31894338]
[167]
Lin, X.; Tan, S.; Fu, L.; Dong, Q. BCAT1 Overexpression promotes proliferation, invasion, and Wnt signaling in non-small cell lung cancers. OncoTargets Ther., 2020, 13, 3583-3594.
[http://dx.doi.org/10.2147/OTT.S237306] [PMID: 32425554]
[168]
He, Y.; Davies, C.M.; Harrington, B.S.; Hellmers, L.; Sheng, Y.; Broomfield, A.; McGann, T.; Bastick, K.; Zhong, L.; Wu, A.; Maresh, G.; McChesney, S.; Yau Wong, K.; Adams, M.N.; Sullivan, R.C.; Palmer, J.S.; Burke, L.J.; Ewing, A.D.; Zhang, X.; Margolin, D.; Li, L.; Lourie, R.; Matsika, A.; Srinivasan, B.; McGuckin, M.A.; Lumley, J.W.; Hooper, J.D. CDCP1 enhances Wnt signaling in colorectal cancer promoting nuclear localization of β-catenin and E-cadherin. Oncogene, 2020, 39(1), 219-233.
[http://dx.doi.org/10.1038/s41388-019-0983-3] [PMID: 31471585]
[169]
Xiao, L.; Wang, W.; Huangfu, Q.; Tao, H.; Zhang, J. PYGB facilitates cell proliferation and invasiveness in non-small cell lung cancer by activating the Wnt–β-catenin signaling pathway. Biochem. Cell Biol., 2020, 98(5), 565-574.
[http://dx.doi.org/10.1139/bcb-2019-0445] [PMID: 32191839]
[170]
Du, J.; Liu, H.; Mao, X.; Qin, Y.; Fan, C. ATF4 promotes lung cancer cell proliferation and invasion partially through regulating Wnt/β-catenin signaling. Int. J. Med. Sci., 2021, 18(6), 1442-1448.
[http://dx.doi.org/10.7150/ijms.43167] [PMID: 33628101]
[171]
Mohapatra, P.; Shriwas, O.; Mohanty, S.; Ghosh, A.; Smita, S.; Kaushik, S.R.; Arya, R.; Rath, R.; Das Majumdar, S.; Muduly, D.K.; Raghav, S.; Nanda, R.K.; Dash, R. CMTM6 drives cisplatin resistance by regulating Wnt signaling through ENO-1/AKT/GSK3β axis. JCI Insight, 2021, 6(4), 6.
[http://dx.doi.org/10.1172/jci.insight.143643] [PMID: 33434185]
[172]
Liu, X.L.; Meng, J.; Zhang, X.T.; Liang, X.H.; Zhang, F.; Zhao, G.R.; Zhang, T. ING5 inhibits lung cancer invasion and epithelial–mesenchymal transition by inhibiting the WNT/β‐catenin pathway. Thorac. Cancer, 2019, 10(4), 848-855.
[http://dx.doi.org/10.1111/1759-7714.13013] [PMID: 30810286]
[173]
Zhou, X.; Li, T.M.; Luo, J.Z.; Lan, C.L.; Wei, Z.L.; Fu, T.H.; Liao, X.W.; Zhu, G.Z.; Ye, X.P.; Peng, T. CYP2C8 suppress proliferation, migration, invasion and sorafenib resistance of hepatocellular carcinoma via PI3K/Akt/p27kip1 axis. J. Hepatocell. Carcinoma, 2021, 8, 1323-1338.
[http://dx.doi.org/10.2147/JHC.S335425] [PMID: 34765572]
[174]
Lei, L.; Wang, Y.; Li, Z.H.; Fei, L.R.; Huang, W.J.; Zheng, Y.W.; Liu, C.C.; Yang, M.Q.; Wang, Z.; Zou, Z.F.; Xu, H.T. PHLDA3 promotes lung adenocarcinoma cell proliferation and invasion via activation of the Wnt signaling pathway. Lab. Invest., 2021, 101(9), 1130-1141.
[http://dx.doi.org/10.1038/s41374-021-00608-3]
[175]
Mu, X.; Li, H.; Zhou, L.; Xu, W. TRIM52 regulates the proliferation and invasiveness of lung cancer cells via the Wnt/β catenin pathway. Oncol. Rep., 2019, 41(6), 3325-3334.
[http://dx.doi.org/10.3892/or.2019.7110] [PMID: 31002351]
[176]
Li, J.; Zhang, G.; Liu, C-G.; Xiang, X.; Le, M.T.; Sethi, G.; Wang, L.; Goh, B-C.; Ma, Z.J.T. The potential role of exosomal circRNAs in the tumor microenvironment: Insights into cancer diagnosis and therapy. Theranostics, 2022, 12(1), 87-104.
[http://dx.doi.org/10.7150/thno.64096]
[177]
Thakur, K.K.; Kumar, A.; Banik, K.; Verma, E.; Khatoon, E.; Harsha, C.; Sethi, G.; Gupta, S.C. Long noncoding RNAs in triple‐negative breast cancer: A new frontier in the regulation of tumorigenesis. J. Cell. Physiol., 2021, 236(12), 7938-7965.
[178]
Ashrafizadeh, M.; Paskeh, M.D.A.; Mirzaei, S.; Gholami, M.H.; Zarrabi, A.; Hashemi, F.; Hushmandi, K.; Hashemi, M.; Nabavi, N. Targeting autophagy in prostate cancer: Preclinical and clinical evidence for therapeutic response. J. Exp. Clin. Cancer Res., 2022, 41(1), 105.
[179]
Mirzaei, S.; Gholami, M.H.; Hushmandi, K.; Hshemi, F.; Zabolian, A.; Canadas, I.; Zarrabi, A.; Nabavi, N.; Aref, A.R. The long and short non-coding RNAs modulating EZH2 signaling in cancer. J. Hematol. Oncol., 2022, 15(1), 18.
[180]
Ning, Q.; Pang, Y.; Shao, S.; Luo, M.; Zhao, L.; Hu, T.; Zhao, X. MicroRNA‐147b suppresses the proliferation and invasion of non‐small‐cell lung cancer cells through downregulation of Wnt/β‐catenin signalling via targeting of RPS15A. Clin. Exp. Pharmacol. Physiol., 2020, 47(3), 449-458.
[http://dx.doi.org/10.1111/1440-1681.13203] [PMID: 31665807]
[181]
Deng, H.; Xie, C.; Ye, Y.; Du, Z. MicroRNA-1296 expression is associated with prognosis and inhibits cell proliferation and invasion by Wnt signaling in non-small cell lung cancer. Oncol. Lett., 2020, 19(1), 623-630.
[PMID: 31897178]
[182]
Zheng, J.; Li, X.; Cai, C.; Hong, C.; Zhang, B. MicroRNA-32 and MicroRNA-548a promote the drug sensitivity of non-small cell lung cancer cells to cisplatin by targeting ROBO1 and inhibiting the activation of Wnt/β-. Catenin Axis. Cancer Manag. Res., 2021, 13, 3005-3016.
[http://dx.doi.org/10.2147/CMAR.S295003] [PMID: 33854371]
[183]
Han, W.; Ren, X.; Yang, Y.; Li, H.; Zhao, L.; Lin, Z. MICRORNA ‐100 functions as a tumor suppressor in non‐small cell lung cancer via regulating epithelial‐mesenchymal transition and Wnt/β‐catenin by targeting HOXA1. Thorac. Cancer, 2020, 11(6), 1679-1688.
[http://dx.doi.org/10.1111/1759-7714.13459] [PMID: 32364673]
[184]
Mirzaei, S.; Zarrabi, A.; Hashemi, F.; Zabolian, A.; Saleki, H.; Ranjbar, A.; Saleh, S.H.S.; Bagherian, M. Regulation of Nuclear Factor-KappaB (NF-κB) signaling pathway by non-coding RNAs in cancer: Inhibiting or promoting carcinogenesis? Cancer Lett., 2021, 509, 63-80.
[185]
Ashrafizaveh, S.; Ashrafizadeh, M.; Zarrabi, A.; Husmandi, K.; Zabolian, A.; Shahinozzaman, M.; Aref, A.R.; Hamblin, M.R.; Nabavi, N. Crea, FJCL. Long non-coding RNAs in the doxorubicin resistance of cancer cells. Cancer Lett., 2021, 508, 104-114.
[http://dx.doi.org/10.1016/j.canlet.2021.03.018]
[186]
Hou, M.; Wu, N.; Yao, L. LncRNA CBR3-AS1 potentiates Wnt/β-catenin signaling to regulate lung adenocarcinoma cells proliferation, migration and invasion. Cancer Cell Int., 2021, 21(1), 36.
[http://dx.doi.org/10.1186/s12935-020-01685-y] [PMID: 33422081]
[187]
Wang, Z.X.; Zhao, Y.; Yu, Y.; Liu, N.; Zou, Q.X.; Liang, F.H.; Cheng, K.P.; Lin, F.W. Effects of lncRNA SNHG20 on proliferation and apoptosis of non-small cell lung cancer cells through Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(1), 230-237.
[PMID: 31957836]
[188]
Li, X.; Lv, F.; Li, F.; Du, M.; Liang, Y.; Ju, S.; Liu, Z.; Zhou, B.; Wang, B.; Gao, Y. LINC01089 inhibits tumorigenesis and epithelial–mesenchymal transition of non-small cell lung cancer via the miR-27a/SFRP1/Wnt/β-catenin axis. Front. Oncol., 2020, 10, 532581.
[http://dx.doi.org/10.3389/fonc.2020.532581] [PMID: 33282723]
[189]
Zhang, H.; Wang, L.; Bai, J.; Jiao, W.; Wang, M. MIER3 suppresses the progression of non-small cell lung cancer by inhibiting Wnt/β-Catenin pathway and histone acetyltransferase activity. Transl. Cancer Res., 2020, 9(1), 346-357.
[http://dx.doi.org/10.21037/tcr.2020.01.07] [PMID: 35117188]
[190]
Liu, S.; Yang, N.; Wang, L.; Wei, B.; Chen, J.; Gao, Y. lncRNA SNHG11 promotes lung cancer cell proliferation and migration via activation of Wnt/β‐catenin signaling pathway. J. Cell. Physiol., 2020, 235(10), 7541-7553.
[http://dx.doi.org/10.1002/jcp.29656] [PMID: 32239719]
[191]
Wang, Y.; Wang, L.; Guo, J.; Zuo, S.; Wang, Z.; Hua, S. MYPT1, regulated by miR-19b-3p inhibits the progression of non-small cell lung cancer via inhibiting the activation of wnt/β-catenin signaling. Life Sci., 2021, 278, 119573.
[http://dx.doi.org/10.1016/j.lfs.2021.119573] [PMID: 33964297]
[192]
Zhang, K.; Wang, J.; Yang, L.; Yuan, Y.C.; Tong, T.R.; Wu, J.; Yun, X.; Bonner, M.; Pangeni, R.; Liu, Z.; Yuchi, T.; Kim, J.Y.; Raz, D.J. Targeting histone methyltransferase G9a inhibits growth and Wnt signaling pathway by epigenetically regulating HP1α and APC2 gene expression in non-small cell lung cancer. Mol. Cancer, 2018, 17(1), 153.
[http://dx.doi.org/10.1186/s12943-018-0896-8] [PMID: 30348169]
[193]
Zhou, C.; Li, Y.; Wang, G.; Niu, W.; Zhang, J.; Wang, G.; Zhao, Q.; Fan, L. Enhanced SLP-2 promotes invasion and metastasis by regulating Wnt/β-catenin signal pathway in colorectal cancer and predicts poor prognosis. Pathol. Res. Pract., 2019, 215(1), 57-67.
[http://dx.doi.org/10.1016/j.prp.2018.10.018] [PMID: 30389319]
[194]
Zhong, C.; Chen, M.; Chen, Y.; Yao, F.; Fang, W. Loss of DSTYK activates Wnt/β-catenin signaling and glycolysis in lung adenocarcinoma. Cell Death Dis., 2021, 12(12), 1122.
[http://dx.doi.org/10.1038/s41419-021-04385-1] [PMID: 34853310]
[195]
Tong, J.B.; Zhang, X.X.; Wang, X.H.; Zeng, S.J.; Wang, D.Y.; Zhang, Z.Q.; Hu, J.; Yang, C.; Li, Z.G. Qiyusanlong decoction suppresses lung cancer in mice via Wnt/β-catenin pathway. Mol. Med. Rep., 2018, 17(4), 5320-5327.
[http://dx.doi.org/10.3892/mmr.2018.8478] [PMID: 29393404]
[196]
Guimaraes, P.P.G.; Tan, M.; Tammela, T.; Wu, K.; Chung, A.; Oberli, M.; Wang, K.; Spektor, R.; Riley, R.S.; Viana, C.T.R.; Jacks, T.; Langer, R.; Mitchell, M.J. Potent in vivo lung cancer Wnt signaling inhibition via cyclodextrin-LGK974 inclusion complexes. J. Control. Release, 2018, 290, 75-87.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.025] [PMID: 30290244]
[197]
Li, X.Y.; Liu, Y.R.; Zhou, J.H.; Li, W.; Guo, H.H.; Ma, H.P. Enhanced expression of circular RNA hsa_circ_000984 promotes cells proliferation and metastasis in non-small cell lung cancer by modulating Wnt/β-catenin pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(8), 3366-3374.
[PMID: 31081091]
[198]
Shen, D.; Jiang, Y.; Li, J.; Xu, L.; Tao, K. The RNA-binding protein RBM47 inhibits non-small cell lung carcinoma metastasis through modulation of AXIN1 mRNA stability and Wnt/β-catentin signaling. Surg. Oncol., 2020, 34, 31-39.
[http://dx.doi.org/10.1016/j.suronc.2020.02.011] [PMID: 32891348]
[199]
Farkhondeh, T.; Samarghandian, S.; Azimin-Nezhad, M.; Samini, F. Effect of chrysin on nociception in formalin test and serum levels of noradrenalin and corticosterone in rats. Int. J. Clin. Exp. Med., 2015, 2, 2465.
[200]
Yu, W.; Zhang, X.; Zhang, W.; Xiong, M.; Lin, Y.; Chang, M.; Xu, L.; Lu, Y.; Liu, Y.; Zhang, J. 19-Hydroxybufalin inhibits non-small cell lung cancer cell proliferation and promotes cell apoptosis via the Wnt/β-catenin pathway. Exp. Hematol. Oncol., 2021, 10(1), 48.
[http://dx.doi.org/10.1186/s40164-021-00243-0] [PMID: 34696818]
[201]
Cheng, X.; Qin, L.; Deng, L.; Zhu, X.; Li, Y.; Wu, X.; Zheng, Y. SNX-2112 induces apoptosis and inhibits proliferation, invasion, and migration of non-small cell lung cancer by downregulating epithelial-mesenchymal transition via the Wnt/β-catenin signaling pathway. J. Cancer, 2021, 12(19), 5825-5837.
[http://dx.doi.org/10.7150/jca.56640] [PMID: 34475996]
[202]
Ji, P.; Zhou, Y.; Yang, Y.; Wu, J.; Zhou, H.; Quan, W.; Sun, J.; Yao, Y.; Shang, A.; Gu, C.; Zeng, B.; Firrman, J.; Xiao, W.; Bals, R.; Sun, Z.; Li, D. Myeloid cell-derived LL-37 promotes lung cancer growth by activating Wnt/β-catenin signaling. Theranostics, 2019, 9(8), 2209-2223.
[http://dx.doi.org/10.7150/thno.30726] [PMID: 31149039]
[203]
Di Kim, J.H. Di(2-ethylhexyl) phthalate promotes lung cancer cell line A549 progression via Wnt/β-catenin signaling. J. Toxicol. Sci., 2019, 44(4), 237-244.
[http://dx.doi.org/10.2131/jts.44.237] [PMID: 30944277]
[204]
Zhang, Y.; Zheng, L.; Ding, Y.; Li, Q.; Wang, R.; Liu, T.; Sun, Q.; Yang, H.; Peng, S.; Wang, W.; Chen, L. MiR-20a Induces cell radioresistance by activating the PTEN/PI3K/Akt signaling pathway in hepatocellular carcinoma. Int. J. Radiat. Oncol. Biol. Phys., 2015, 92(5), 1132-1140.
[http://dx.doi.org/10.1016/j.ijrobp.2015.04.007] [PMID: 26031366]
[205]
Wan, L.; Zhang, L.; Fan, K.; Cheng, Z.X.; Sun, Q.C.; Wang, J.J. Circular RNA-ITCH suppresses lung cancer proliferation via inhibiting the Wnt/β -catenin pathway. BioMed Res. Int., 2016, 2016, 1-11.
[http://dx.doi.org/10.1155/2016/1579490] [PMID: 27642589]
[206]
Kong, W.; Chen, Y.; Zhao, Z.; Zhang, L.; Lin, X.; Luo, X.; Wang, S.; Song, Z.; Lin, X.; Lai, G.; Yu, Z. EXT1 methylation promotes proliferation and migration and predicts the clinical outcome of non‐small cell lung carcinoma via WNT signalling pathway. J. Cell. Mol. Med., 2021, 25(5), 2609-2620.
[http://dx.doi.org/10.1111/jcmm.16277] [PMID: 33565239]
[207]
Zhu, J.; Jiang, Y.; Yang, X.; Wang, S.; Xie, C.; Li, X.; Li, Y.; Chen, Y.; Wang, X.; Meng, Y.; Zhu, M.; Wu, R.; Huang, C.; Ma, X.; Geng, S.; Wu, J.; Zhong, C. Wnt/β-catenin pathway mediates (−)-Epigallocatechin-3-gallate (EGCG) inhibition of lung cancer stem cells. Biochem. Biophys. Res. Commun., 2017, 482(1), 15-21.
[http://dx.doi.org/10.1016/j.bbrc.2016.11.038] [PMID: 27836540]
[208]
Guo, Y.Z.; Xie, X.L.; Fu, J.; Xing, G.L. SOX9 regulated proliferation and apoptosis of human lung carcinoma cells by the Wnt/β-catenin signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(15), 4898-4907.
[PMID: 30070325]
[209]
Cho, S.H.; Kuo, I.Y.; Lu, P.J.F.; Tzeng, H.T.; Lai, W.W.; Su, W.C.; Wang, Y.C. Rab37 mediates exocytosis of secreted frizzled-related protein 1 to inhibit Wnt signaling and thus suppress lung cancer stemness. Cell Death Dis., 2018, 9(9), 868.
[http://dx.doi.org/10.1038/s41419-018-0915-0] [PMID: 30158579]
[210]
Wu, R.; Zhao, B.; Ren, X.; Wu, S.; Liu, M.; Wang, Z.; Liu, W. MiR-27a-3p Targeting GSK3β promotes triple-negative breast cancer proliferation and migration through Wnt/β-catenin pathway. Cancer Manag. Res., 2020, 12, 6241-6249.
[http://dx.doi.org/10.2147/CMAR.S255419] [PMID: 32801869]
[211]
Yu, J.E.; Ju, J.A.; Musacchio, N.; Mathias, T.J.; Vitolo, M.I. Long Noncoding RNA DANCR Activates Wnt/β-Catenin Signaling through MiR-216a Inhibition in Non-Small Cell Lung Cancer. Biomolecules, 2020, 10(12), 1646.
[http://dx.doi.org/10.3390/biom10121646] [PMID: 33302540]
[212]
Han, F.; Liu, W.; Shi, X.; Yang, J.; Zhang, X.; Li, Z.; Jiang, X.; Yin, L.; Li, J.; Huang, C.; Cao, J.; Liu, J. SOX30 inhibits tumor metastasis through attenuating Wnt-signaling via transcriptional and posttranslational regulation of β-Catenin in lung cancer. EBio. Med., 2018, 31, 253-266.
[http://dx.doi.org/10.1016/j.ebiom.2018.04.026] [PMID: 29739711]
[213]
Chen, C.; Zhang, W. Itraconazole alters the stem cell characteristics of A549 and NCI-H460 human lung cancer cells by suppressing Wnt signaling. Med. Sci. Monit., 2019, 25, 9509-9516.
[http://dx.doi.org/10.12659/MSM.919347] [PMID: 31833479]
[214]
Xia, C.; Xu, X.; Ding, Y.; Yu, C.; Qiao, J.; Liu, P. Abnormal spindle-like microcephaly-associated protein enhances cell invasion through Wnt/β-catenin-dependent regulation of epithelial-mesenchymal transition in non-small cell lung cancer cells. J. Thorac. Dis., 2021, 13(4), 2460-2474.
[http://dx.doi.org/10.21037/jtd-21-566] [PMID: 34012593]
[215]
Gao, F.; Jia, L.; Han, J.; Wang, Y.; Luo, W.; Zeng, Y. Circ-ZNF124 downregulation inhibits non-small cell lung cancer progression partly by inactivating the Wnt/β-catenin signaling pathway via mediating the miR-498/YES1 axis. Anticancer Drugs, 2021, 32(3), 257-268.
[http://dx.doi.org/10.1097/CAD.0000000000001014] [PMID: 33186139]
[216]
Xue, D.; Yang, P.; Wei, Q.; Li, X.; Lin, L.; Lin, T. IL 21/IL 21R inhibit tumor growth and invasion in non small cell lung cancer cells via suppressing Wnt/β catenin signaling and PD L1 expression. Int. J. Mol. Med., 2019, 44(5), 1697-1706.
[http://dx.doi.org/10.3892/ijmm.2019.4354] [PMID: 31573051]
[217]
Chen, Z.; He, J.; Xing, X.; Li, P.; Zhang, W.; Tong, Z.; Jing, X.; Li, L.; Liu, D.; Wu, Q.; Ju, H. Mn12Ac inhibits the migration, invasion and epithelial mesenchymal transition of lung cancer cells by downregulating the Wnt/β catenin and PI3K/AKT signaling pathways. Oncol. Lett., 2018, 16(3), 3943-3948.
[http://dx.doi.org/10.3892/ol.2018.9136] [PMID: 30128012]
[218]
Sun, D.; Chen, J.; Hu, H.; Lin, S.; Jin, L.; Luo, L.; Yan, X.; Zhang, C. Acanthopanax senticosus polysaccharide suppressing proliferation and metastasis of the human non-small cell lung cancer NCI-H520 cells is associated with Wnt/β-catenin signaling. Neoplasma, 2019, 66(4), 555-563.
[http://dx.doi.org/10.4149/neo_2018_180913N689] [PMID: 30943746]
[219]
Hong, C.F.; Chen, W.Y.; Wu, C.W. Upregulation of Wnt signaling under hypoxia promotes lung cancer progression. Oncol. Rep., 2017, 38(3), 1706-1714.
[http://dx.doi.org/10.3892/or.2017.5807] [PMID: 28713928]
[220]
Gu, B.; Wang, J.; Song, Y.; Wang, Q.; Wu, Q. microRNA-383 regulates cell viability and apoptosis by mediating Wnt/β-catenin signaling pathway in non-small cell lung cancer. J. Cell. Biochem., 2018, 120(5), 7918-7926.
[PMID: 30426539]
[221]
Das, B.; Sinha, D. Diallyl disulphide suppresses the cannonical Wnt signaling pathway and reverses the fibronectin-induced epithelial mesenchymal transition of A549 lung cancer cells. Food Funct., 2019, 10(1), 191-202.
[http://dx.doi.org/10.1039/C8FO00246K] [PMID: 30516195]
[222]
Gao, N.; Ye, B. Circ-SOX4 drives the tumorigenesis and development of lung adenocarcinoma via sponging miR-1270 and modulating PLAGL2 to activate WNT signaling pathway. Cancer Cell Int., 2020, 20(1), 2.
[http://dx.doi.org/10.1186/s12935-019-1065-x] [PMID: 31911754]
[223]
Xu, H.; Ma, H.; Zha, L.; Li, Q.; Yang, G.; Pan, H.; Fei, X.; Xu, X.; Xing, C.; Zhang, L. IMPDH2 promotes cell proliferation and epithelial mesenchymal transition of non small cell lung cancer by activating the Wnt/β catenin signaling pathway. Oncol. Lett., 2020, 20(5), 1.
[http://dx.doi.org/10.3892/ol.2020.12082] [PMID: 32963625]
[224]
Zheng, H.E.; Wang, G.; Song, J.; Liu, Y.; Li, Y.M.; Du, W.P. MicroRNA-495 inhibits the progression of non-small-cell lung cancer by targeting TCF4 and inactivating Wnt/β-catenin pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(22), 7750-7759.
[PMID: 30536319]
[225]
Li, P.; Zhao, S.; Hu, Y. SFRP2 modulates non small cell lung cancer A549 cell apoptosis and metastasis by regulating mitochondrial fission via Wnt pathways. Mol. Med. Rep., 2019, 20(2), 1925-1932.
[http://dx.doi.org/10.3892/mmr.2019.10393] [PMID: 31257495]
[226]
Sun, S.; Yang, F.; Zhu, Y.; Zhang, S. RETRACTED: KDM4A promotes the growth of non-small cell lung cancer by mediating the expression of Myc via DLX5 through the Wnt/β-catenin signaling pathway. Life Sci., 2020, 262, 118508.
[http://dx.doi.org/10.1016/j.lfs.2020.118508] [PMID: 33002480]
[227]
Su, G.; Yan, Z.; Deng, M. Sevoflurane inhibits proliferation, invasion, but enhances apoptosis of lung cancer cells by Wnt/β-catenin signaling via regulating lncRNA PCAT6/miR-326 axis. Open Life Sci., 2020, 15(1), 159-172.
[http://dx.doi.org/10.1515/biol-2020-0017] [PMID: 33987473]
[228]
Shi, J.; Ma, H.; Wang, H.; Zhu, W.; Jiang, S.; Dou, R.; Yan, B. Overexpression of LINC00261 inhibits non–small cell lung cancer cells progression by interacting with miR‐522‐3p and suppressing Wnt signaling. J. Cell. Biochem., 2019, 120(10), 18378-18387.
[http://dx.doi.org/10.1002/jcb.29149] [PMID: 31190356]
[229]
Cui, Y.; Zhang, F.; Zhu, C.; Geng, L.; Tian, T.; Liu, H. Upregulated lncRNA SNHG1 contributes to progression of non-small cell lung cancer through inhibition of miR-101-3p and activation of Wnt/β-catenin signaling pathway. Oncotarget, 2017, 8(11), 17785-17794.
[http://dx.doi.org/10.18632/oncotarget.14854] [PMID: 28147312]
[230]
Han, Q.; Lin, X.; Zhang, X.; Jiang, G.; Zhang, Y.; Miao, Y.; Rong, X.; Zheng, X.; Han, Y.; Han, X.; Wu, J.; Kremerskothen, J.; Wang, E. WWC3 regulates the Wnt and Hippo pathways via Dishevelled proteins and large tumour suppressor 1, to suppress lung cancer invasion and metastasis. J. Pathol., 2017, 242(4), 435-447.
[http://dx.doi.org/10.1002/path.4919] [PMID: 28543074]
[231]
Ren, T.; Fan, X.X.; Wang, M.F.; Duan, F.G.; Wei, C.L.; Li, R.Z.; Jiang, Z.B.; Wang, Y.W.; Yao, X.J.; Chen, M.W.; Tang, Y.J.; Leung, E.L. miR 20b promotes growth of non small cell lung cancer through a positive feedback loop of the Wnt/β catenin signaling pathway. Int. J. Oncol., 2020, 56(2), 470-479.
[PMID: 31894264]
[232]
Luo, K.; Gu, X.; Liu, J.; Zeng, G.; Peng, L.; Huang, H.; Jiang, M.; Yang, P.; Li, M.; Yang, Y.; Wang, Y.; Peng, Q.; Zhu, L.; Zhang, K. Inhibition of disheveled-2 resensitizes cisplatin-resistant lung cancer cells through down-regulating Wnt/β-catenin signaling. Exp. Cell Res., 2016, 347(1), 105-113.
[http://dx.doi.org/10.1016/j.yexcr.2016.07.014] [PMID: 27432651]
[233]
Huang, C.; Ma, R.; Xu, Y.; Li, N.; Li, Z.; Yue, J.; Li, H.; Guo, Y.; Qi, D. Wnt2 promotes non-small cell lung cancer progression by activating WNT/β-catenin pathway. Am. J. Cancer Res., 2015, 5(3), 1032-1046.
[PMID: 26045984]
[234]
Gong, S.; Qu, X.; Yang, S.; Zhou, S.; Li, P.; Zhang, Q. RFC3 induces epithelial mesenchymal transition in lung adenocarcinoma cells through the Wnt/β catenin pathway and possesses prognostic value in lung adenocarcinoma. Int. J. Mol. Med., 2019, 44(6), 2276-2288.
[http://dx.doi.org/10.3892/ijmm.2019.4386] [PMID: 31661124]
[235]
Wei, X.; Liao, J.; Lei, Y.; Li, M.; Zhao, G.; Zhou, Y.; Ye, L.; Huang, Y. WSB2 as a target of Hedgehog signaling promoted the malignant biological behavior of Xuanwei lung cancer through regulating Wnt/β-catenin signaling. Transl. Cancer Res., 2020, 9(12), 7394-7404.
[http://dx.doi.org/10.21037/tcr-20-2450] [PMID: 35117340]
[236]
Liang, H. Wang, C.; Gao, K.; Li, J.; Jia, R. ΜicroRNA 421 promotes the progression of non small cell lung cancer by targeting HOPX and regulating the Wnt/β catenin signaling pathway. Mol. Med. Rep., 2019, 20(1), 151-161.
[PMID: 31115507]
[237]
Chen, Y.; Min, L.; Ren, C.; Xu, X.; Yang, J.; Sun, X.; Wang, T.; Wang, F.; Sun, C.; Zhang, X. miRNA-148a serves as a prognostic factor and suppresses migration and invasion through Wnt1 in non-small cell lung cancer. PLoS One, 2017, 12(2), e0171751.
[http://dx.doi.org/10.1371/journal.pone.0171751] [PMID: 28199399]
[238]
Nakashima, N.; Liu, D.; Huang, C.; Ueno, M.; Zhang, X.; Yokomise, H. Wnt3 gene expression promotes tumor progression in non-small cell lung cancer. Lung Cancer, 2012, 76(2), 228-234.
[http://dx.doi.org/10.1016/j.lungcan.2011.10.007] [PMID: 22070884]
[239]
Xing, Z.; Wang, H.Y.; Su, W.Y.; Liu, Y.F.; Wang, X.X.; Zhan, P.; Lv, T.F.; Song, Y. Wnt3 knockdown sensitizes human non-small cell type lung cancer (NSCLC) cells to cisplatin via regulating the cell proliferation and apoptosis. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(5), 1323-1332.
[PMID: 29565490]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy