Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Integrating Network Pharmacology and an Experimental Model to Investigate the Effect of Zhenwu Decoction on Doxorubicin-Induced Heart Failure

Author(s): Yiran Hu, Huiyan Qu and Hua Zhou*

Volume 26, Issue 14, 2023

Published on: 11 May, 2023

Page: [2502 - 2516] Pages: 15

DOI: 10.2174/1386207326666230413091715

Price: $65

conference banner
Abstract

Background: Doxorubicin-induced heart failure is a clinical problem that needs to be solved urgently. Previous studies have confirmed that Zhenwu Decoction, a traditional Chinese medicine compound, can effectively improve chronic heart failure. However, its interventional effect on Doxorubicin-induced heart failure has not yet been investigated. In this study, we investigated the therapeutic effect and potential mechanism of Zhenwu Decoction on Doxorubicininduced heart failure through animal experiments and network pharmacology.

Objective: The study aimed to investigate the therapeutic effect and potential mechanism of Zhenwu Decoction (ZWD) on Doxorubicin-induced heart failure.

Methods: A heart-failure mouse model was established in 8-week-old male C57/BL6J mice using Doxorubicin, and the mice were then treated with ZWD for a 4-week period. Firstly, network pharmacology was conducted to explore the potential active components and molecular mechanisms of ZWD on Doxorubicin-induced heart failure. Next, we conducted an in vivo study on the effect of ZWD on Doxorubicin-induced heart failure. After the intervention, the cardiac function and levels of cardiac function injury marker in serum were measured to evaluate the therapeutic effect of ZWD on cardiac function. Then HE staining and Masson staining were used to evaluate the effect of ZWD on myocardial pathology, and biochemical method was used to detect the effect of ZWD on total antioxidant capacity and inflammation, and finally, Western blot was used to detect TGFβ, Smad-3, and collagen I protein expression levels to evaluate its effect on myocardial fibrosis.

Results: In Doxorubicin-induced heart failure mice, ZWD improved cardiac function and reduced the levels of CK-MB, NT-proBNP, and BNP in the serum, improved myocardial pathology, and reduced TGFβ, Smad-3 and collagen I protein expression levels to improve myocardial fibrosis. Network pharmacological analysis showed that ZWD has 146 active ingredients and 248 candidate targets. Moreover, 2,809 genes were found to be related to Doxorubicin-induced heart failure, and after screening, 74 common targets were obtained, mainly including IL-6, AKT1, caspase-3, PPARG, PTGS2, JUN, HSP90AA1, and ESR1. KEGG analysis confirmed that PI3K/AKT and IL- 6/NF-κB signaling pathways were the two main pathways underlying the cardioprotective effects of ZWD. Finally, in vivo experiments showed that ZWD improved the total antioxidant capacity, reduced the SOD level, increased the protein expression of PI3K, Akt, Bcl-2, Bax, and caspase-3, reduced the levels of TNF-α, IL-6, and IL-1β, and decreased the NF-κB p65, IL-6, and TNF-α protein expression levels.

Conclusion: In Doxorubicin-induced heart-failure mice, Zhenwu Decoction improved the cardiac function and myocardial pathology, and improved myocardial fibrosis through the TGFβ/Smad-3 signaling pathway. According to the prediction of network pharmacology, in vivo experiments demonstrated that Zhenwu Decoction can improve the oxidative stress response, improve myocardial cell apoptosis through the PI3K/AKT signaling pathway, and improve myocardial inflammation by reducing the levels of inflammatory factors and by reducing the protein expression of NF- κB p65, IL-6, and TNF-α.

[1]
Cardinale, D.; Colombo, A.; Bacchiani, G.; Tedeschi, I.; Meroni, C.A.; Veglia, F.; Civelli, M.; Lamantia, G.; Colombo, N.; Curigliano, G.; Fiorentini, C.; Cipolla, C.M. Early detection of anthracycline cardiotoxicity and improvement with heart failure therapy. Circulation, 2015, 131(22), 1981-1988.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.114.013777] [PMID: 25948538]
[2]
Li, T.; Singal, P.K. Adriamycin-induced early changes in myocardial antioxidant enzymes and their modulation by probucol. Circulation, 2000, 102(17), 2105-2110.
[http://dx.doi.org/10.1161/01.CIR.102.17.2105] [PMID: 11044428]
[3]
Hu, C.; Zhang, X.; Zhang, N.; Wei, W.Y.; Li, L.L.; Ma, Z.G.; Tang, Q.Z. Osteocrin attenuates inflammation, oxidative stress, apoptosis, and cardiac dysfunction in doxorubicin‐induced cardiotoxicity. Clin. Transl. Med., 2020, 10(3), e124-e143.
[http://dx.doi.org/10.1002/ctm2.124] [PMID: 32618439]
[4]
Sahu, R.; Dua, T.K.; Das, S.; De Feo, V.; Dewanjee, S. Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-κB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis. Food Chem. Toxicol., 2019, 125, 503-519.
[http://dx.doi.org/10.1016/j.fct.2019.01.034] [PMID: 30735749]
[5]
Quagliariello, V.; De Laurentiis, M.; Rea, D.; Barbieri, A.; Monti, M.G.; Carbone, A.; Paccone, A.; Altucci, L.; Conte, M.; Canale, M.L.; Botti, G.; Maurea, N. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc. Diabetol., 2021, 20(1), 150-170.
[http://dx.doi.org/10.1186/s12933-021-01346-y] [PMID: 34301253]
[6]
Henriksen, P.A. Anthracycline cardiotoxicity: An update on mechanisms, monitoring and prevention. Heart, 2018, 104(12), 971-977.
[http://dx.doi.org/10.1136/heartjnl-2017-312103] [PMID: 29217634]
[7]
Hao, P.; Jiang, F.; Cheng, J.; Ma, L.; Zhang, Y.; Zhao, Y. Traditional chinese medicine for cardiovascular disease. J. Am. Coll. Cardiol., 2017, 69(24), 2952-2966.
[http://dx.doi.org/10.1016/j.jacc.2017.04.041] [PMID: 28619197]
[8]
Hong, L.L.; Zhao, Y.; Yang, C.Y.; Li, G.Z.; Wang, H.S.; Chen, W.D.; Cheng, X.Y.; Liu, L. Identification of chemical constituents in vitro and in vivo of Er Shen Zhenwu Decoction by utilizing ultra‐high‐performance liquid chromatography with quadrupole time‐of‐flight mass spectrometry. J. Sep. Sci., 2021, 44(24), 4327-4342.
[http://dx.doi.org/10.1002/jssc.202100624] [PMID: 34665523]
[9]
Hong, L.L.; Yang, C.Y.; Zhao, Y.; Wang, H.S.; Chen, W.D.; Cheng, X.Y. Progress in pharmacodynamic basis, mechanism, and prediction of Q-markers of Zhenwu Decoction in treatment of chronic heart failure. Zhongguo Zhongyao Zazhi, 2021, 46(21), 5512-5521.
[http://dx.doi.org/10.19540/j.cnki.cjcmm.20210705.203] [PMID: 34951202]
[10]
Liao, P.; Chen, K.; Ge, J.; Zhang, M. Clinical practice guideline of integrative chinese and western medicine for acute myocardial infarction. Chin. J. Integr. Med., 2020, 26(7), 539-551.
[http://dx.doi.org/10.1007/s11655-019-3154-z] [PMID: 30972537]
[11]
Dabeek, W.M.; Marra, M.V. Dietary quercetin and kaempferol: Bioavailability and potential cardiovascular-related bioactivity in humans. Nutrients, 2019, 11(10), 2288-2307.
[http://dx.doi.org/10.3390/nu11102288] [PMID: 31557798]
[12]
Jiang, Y.H.; Li, X.; Niu, W.; Wang, D.; Wu, B.; Yang, C.H. β-Sitosterol regulated microRNAs in endothelial cells against an oxidized low-density lipoprotein. Food Funct., 2020, 11(2), 1881-1890.
[http://dx.doi.org/10.1039/C9FO01976F] [PMID: 32068754]
[13]
Wang, X.T.; Peng, Z.; An, Y.Y.; Shang, T.; Xiao, G.; He, S.; Chen, X.; Zhang, H.; Wang, Y.; Wang, T.; Zhang, J.H.; Gao, X.; Zhu, Y.; Feng, Y. Paeoniflorin and hydroxysafflor yellow a in xuebijing injection attenuate sepsis-induced cardiac dysfunction and inhibit proinflammatory cytokine production. Front. Pharmacol., 2021, 11, 614024-614043.
[http://dx.doi.org/10.3389/fphar.2020.614024] [PMID: 33986658]
[14]
Wang, X.; Wang, Z.Y.; Zheng, J.H.; Li, S. TCM network pharmacology: A new trend towards combining computational, experimental and clinical approaches. Chin. J. Nat. Med., 2021, 19(1), 1-11.
[http://dx.doi.org/10.1016/S1875-5364(21)60001-8] [PMID: 33516447]
[15]
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120.
[http://dx.doi.org/10.1016/S1875-5364(13)60037-0] [PMID: 23787177]
[16]
Luo, T.; Lu, Y.; Yan, S.; Xiao, X.; Rong, X.; Guo, J. Network pharmacology in research of chinese medicine formula: Methodology, application and prospective. Chin. J. Integr. Med., 2020, 26(1), 72-80.
[http://dx.doi.org/10.1007/s11655-019-3064-0] [PMID: 30941682]
[17]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13-19.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[18]
Gao, L.; Wang, X.; Niu, Y.; Duan, D.; Yang, X.; Hao, J.; Zhu, C.; Chen, D.; Wang, K.; Qin, X.; Wu, X. Molecular targets of Chinese herbs: A clinical study of hepatoma based on network pharmacology. Sci. Rep., 2016, 6(1), 24944-24955.
[http://dx.doi.org/10.1038/srep24944] [PMID: 27143508]
[19]
UniProt Consortium. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res., 2019, 47(D1), D506-D515.
[http://dx.doi.org/10.1093/nar/gky1049] [PMID: 30395287]
[20]
Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards Version 3: The human gene integrator. Database (Oxford), 2010, 2010, baq020.
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[21]
Sayers, E.W.; Beck, J.; Bolton, E.E.; Bourexis, D.; Brister, J.R.; Canese, K.; Comeau, D.C.; Funk, K.; Kim, S.; Klimke, W.; Marchler-Bauer, A.; Landrum, M.; Lathrop, S.; Lu, Z.; Madden, T.L.; O’Leary, N.; Phan, L.; Rangwala, S.H.; Schneider, V.A.; Skripchenko, Y.; Wang, J.; Ye, J.; Trawick, B.W.; Pruitt, K.D.; Sherry, S.T. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res., 2021, 49(D1), D10-D17.
[http://dx.doi.org/10.1093/nar/gkaa892] [PMID: 33095870]
[22]
Amberger, J.S.; Bocchini, C.A.; Schiettecatte, F.; Scott, A.F.; Hamosh, A. OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Res., 2015, 43(D1), D789-D798.
[http://dx.doi.org/10.1093/nar/gku1205] [PMID: 25428349]
[23]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[24]
Qu, X.; Zhai, J.; Hu, T.; Gao, H.; Tao, L.; Zhang, Y.; Song, Y.; Zhang, S. Dioscorea bulbifera L. delays the excretion of doxorubicin and aggravates doxorubicin-induced cardiotoxicity and nephrotoxicity by inhibiting the expression of P-glycoprotein in mice liver and kidney. Xenobiotica, 2019, 49(9), 1116-1125.
[http://dx.doi.org/10.1080/00498254.2018.1498560] [PMID: 29985077]
[25]
Yu, S.; Dong, B.; Fang, Z.; Hu, X.; Tang, L.; Zhou, S. Knockdown of lnc RNA AK 139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR‐204‐3p and inhibiting autophagy. J. Cell. Mol. Med., 2018, 22(10), 4886-4898.
[http://dx.doi.org/10.1111/jcmm.13754] [PMID: 30047214]
[26]
Yu, Y.; Yan, R.; Chen, X.; Sun, T.; Yan, J. Paeonol suppresses the effect of ox-LDL on mice vascular endothelial cells by regulating miR-338-3p/TET2 axis in atherosclerosis. Mol. Cell. Biochem., 2020, 475(1-2), 127-135.
[http://dx.doi.org/10.1007/s11010-020-03865-w] [PMID: 32770325]
[27]
Zhang, Z.; Tang, J.; Song, J.; Xie, M.; Liu, Y.; Dong, Z.; Liu, X.; Li, X.; Zhang, M.; Chen, Y.; Shi, H.; Zhong, J. Elabela alleviates ferroptosis, myocardial remodeling, fibrosis and heart dysfunction in hypertensive mice by modulating the IL-6/STAT3/GPX4 signaling. Free Radic. Biol. Med., 2022, 181, 130-142.
[http://dx.doi.org/10.1016/j.freeradbiomed.2022.01.020] [PMID: 35122997]
[28]
Huo, S.; Shi, W.; Ma, H.; Yan, D.; Luo, P.; Guo, J.; Li, C.; Lin, J.; Zhang, C.; Li, S.; Lv, J.; Lin, L. Alleviation of inflammation and oxidative stress in pressure overload-induced cardiac remodeling and heart failure via IL-6/STAT3 inhibition by raloxifene. Oxid. Med. Cell. Longev., 2021, 2021, 6699054.
[http://dx.doi.org/10.1155/2021/6699054] [PMID: 33824698]
[29]
Qin, J.J.; Cheng, X.; Zhou, F.; Lei, F.; Akolkar, G.; Cai, J.; Zhang, X.J.; Blet, A.; Xie, J.; Zhang, P.; Liu, Y.M.; Huang, Z.; Zhao, L.P.; Lin, L.; Xia, M.; Chen, M.M.; Song, X.; Bai, L.; Chen, Z.; Zhang, X.; Xiang, D.; Chen, J.; Xu, Q.; Ma, X.; Touyz, R.M.; Gao, C.; Wang, H.; Liu, L.; Mao, W.; Luo, P.; Yan, Y.; Ye, P.; Chen, M.; Chen, G.; Zhu, L.; She, Z.G.; Huang, X.; Yuan, Y.; Zhang, B.H.; Wang, Y.; Liu, P.P.; Li, H. Redefining cardiac biomarkers in predicting mortality of inpatients with COVID-19. Hypertension, 2020, 76(4), 1104-1112.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.120.15528] [PMID: 32673499]
[30]
Cao, Z.; Jia, Y.; Zhu, B. BNP and NT-proBNP as diagnostic biomarkers for cardiac dysfunction in both clinical and forensic medicine. Int. J. Mol. Sci., 2019, 20(8), 1820-1836.
[http://dx.doi.org/10.3390/ijms20081820] [PMID: 31013779]
[31]
González, A.; Schelbert, E.B.; Díez, J.; Butler, J. Myocardial interstitial fibrosis in heart failure. J. Am. Coll. Cardiol., 2018, 71(15), 1696-1706.
[http://dx.doi.org/10.1016/j.jacc.2018.02.021] [PMID: 29650126]
[32]
Zeng, Z.; Wang, Q.; Yang, X.; Ren, Y.; Jiao, S.; Zhu, Q.; Guo, D.; Xia, K.; Wang, Y.; Li, C.; Wang, W. Qishen granule attenuates cardiac fibrosis by regulating TGF-β/Smad3 and GSK-3β pathway. Phytomedicine, 2019, 62, 152949-152961.
[http://dx.doi.org/10.1016/j.phymed.2019.152949] [PMID: 31102891]
[33]
Khalil, H.; Kanisicak, O.; Prasad, V.; Correll, R.N.; Fu, X.; Schips, T.; Vagnozzi, R.J.; Liu, R.; Huynh, T.; Lee, S.J.; Karch, J.; Molkentin, J.D. Fibroblast-specific TGF-β–Smad2/3 signaling underlies cardiac fibrosis. J. Clin. Invest., 2017, 127(10), 3770-3783.
[http://dx.doi.org/10.1172/JCI94753] [PMID: 28891814]
[34]
Moris, D.; Spartalis, M.; Spartalis, E.; Karachaliou, G.S.; Karaolanis, G.I.; Tsourouflis, G.; Tsilimigras, D.I.; Tzatzaki, E.; Theocharis, S. The role of reactive oxygen species in the pathophysiology of cardiovascular diseases and the clinical significance of myocardial redox. Ann. Transl. Med., 2017, 5(16), 326-337.
[http://dx.doi.org/10.21037/atm.2017.06.27] [PMID: 28861423]
[35]
Poprac, P.; Jomova, K.; Simunkova, M.; Kollar, V.; Rhodes, C.J.; Valko, M. Targeting free radicals in oxidative stress-related human diseases. Trends Pharmacol. Sci., 2017, 38(7), 592-607.
[http://dx.doi.org/10.1016/j.tips.2017.04.005] [PMID: 28551354]
[36]
Chen, B.C.; Hung, M.Y.; Wang, H.F.; Yeh, L.J.; Pandey, S.; Chen, R.J.; Chang, R.L.; Viswanadha, V.P.; Lin, K.H.; Huang, C.Y. GABA tea attenuates cardiac apoptosis in spontaneously hypertensive rats (SHR) by enhancing PI3K/Akt-mediated survival pathway and suppressing Bax/Bak dependent apoptotic pathway. Environ. Toxicol., 2018, 33(7), 789-797.
[http://dx.doi.org/10.1002/tox.22565] [PMID: 29708300]
[37]
Zhao, L.; Cheng, G.; Jin, R.; Afzal, M.R.; Samanta, A.; Xuan, Y.T.; Girgis, M.; Elias, H.K.; Zhu, Y.; Davani, A.; Yang, Y.; Chen, X.; Ye, S.; Wang, O.L.; Chen, L.; Hauptman, J.; Vincent, R.J.; Dawn, B. Deletion of interleukin-6 attenuates pressure overload-induced left ventricular hypertrophy and dysfunction. Circ. Res., 2016, 118(12), 1918-1929.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308688] [PMID: 27126808]
[38]
Ricottini, E.; Madonna, R.; Grieco, D.; Zoccoli, A.; Stampachiacchiere, B.; Patti, G.; Tonini, G.; De Caterina, R.; Di Sciascio, G. Effect of high-dose atorvastatin reload on the release of endothelial progenitor cells in patients on long-term statin treatment who underwent percutaneous coronary intervention (from the ARMYDA-EPC Study). Am. J. Cardiol., 2016, 117(2), 165-171.
[http://dx.doi.org/10.1016/j.amjcard.2015.10.043] [PMID: 26743348]
[39]
Xu, G.R.; Zhang, C.; Yang, H.X.; Sun, J.H.; Zhang, Y.; Yao, T.; Li, Y.; Ruan, L.; An, R.; Li, A.Y. Modified citrus pectin ameliorates myocardial fibrosis and inflammation via suppressing galectin-3 and TLR4/MyD88/NF-κB signaling pathway. Biomed. Pharmacother., 2020, 126, 110071-110084.
[http://dx.doi.org/10.1016/j.biopha.2020.110071] [PMID: 32172066]
[40]
Mao, J.Y.; Zhang, J.; Zhu, M.J. Clinical application guide of Chinese patent medicine in the treatment of heart failure. Chin. J. Integr. Med., 2022, 42(3), 261-275.
[41]
Han, Y.; Huang, L.; Zhong, G.; Chang, X.; Zhu, Q.; Xu, M.; Mingtai, C.; Men, L.; Wang, L. Evaluation of the safety and efficacy of Zhenwu decoction as adjuvant therapy for the treatment of heart failure with reduced ejection fraction. Medicine, 2022, 101(4), e28672-e28677.
[http://dx.doi.org/10.1097/MD.0000000000028672] [PMID: 35089212]
[42]
Carvalho, C.; Santos, R.; Cardoso, S.; Correia, S.; Oliveira, P.; Santos, M.; Moreira, P. Doxorubicin: The good, the bad and the ugly effect. Curr. Med. Chem., 2009, 16(25), 3267-3285.
[http://dx.doi.org/10.2174/092986709788803312] [PMID: 19548866]
[43]
Wang, Y.; Gao, W.; Shi, X.; Ding, J.; Liu, W.; He, H.; Wang, K.; Shao, F. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature, 2017, 547(7661), 99-103.
[http://dx.doi.org/10.1038/nature22393] [PMID: 28459430]
[44]
Zhou, N.Q.; Fang, Z.X.; Huang, N.; Zuo, Y.; Qiu, Y.; Guo, L.J.; Song, P.; Xu, J.; Wan, G.; Tian, X.Q.; Yin, Y.; Li, P. aFGF targeted mediated by novel nanoparticles-microbubble complex combined with ultrasound-targeted microbubble destruction attenuates doxorubicin-induced heart failure via anti-apoptosis and promoting cardiac angiogenesis. Front. Pharmacol., 2021, 12, 607785-607799.
[http://dx.doi.org/10.3389/fphar.2021.607785] [PMID: 33986662]
[45]
Feher, A.; Boutagy, N.E.; Stendahl, J.C.; Hawley, C.; Guerrera, N.; Booth, C.J.; Romito, E.; Wilson, S.; Liu, C.; Sinusas, A.J. Computed tomographic angiography assessment of epicardial coronary vasoreactivity for early detection of doxorubicin-induced cardiotoxicity. JACC: Cardio Oncol., 2020, 2(2), 207-219.
[http://dx.doi.org/10.1016/j.jaccao.2020.05.007] [PMID: 34396230]
[46]
Blanter, J.B.; Frishman, W.H. The preventive role of angiotensin converting enzyme inhibitors/Angiotensin-II receptor blockers and β-adrenergic blockers in anthracycline- and trastuzumab-induced cardiotoxicity. Cardiol. Rev., 2019, 27(5), 256-259.
[http://dx.doi.org/10.1097/CRD.0000000000000252] [PMID: 31008768]
[47]
Cappetta, D.; Rossi, F.; Piegari, E.; Quaini, F.; Berrino, L.; Urbanek, K.; De Angelis, A. Doxorubicin targets multiple players: A new view of an old problem. Pharmacol. Res., 2018, 127, 4-14.
[http://dx.doi.org/10.1016/j.phrs.2017.03.016] [PMID: 28336372]
[48]
Guo, Y.; Gupte, M.; Umbarkar, P.; Singh, A.P.; Sui, J.Y.; Force, T.; Lal, H. Entanglement of GSK-3β β-catenin and TGF-β1 signaling network to regulate myocardial fibrosis. J. Mol. Cell. Cardiol., 2017, 110, 109-120.
[http://dx.doi.org/10.1016/j.yjmcc.2017.07.011] [PMID: 28756206]
[49]
Hata, A.; Chen, Y.G. TGF-β signaling from receptors to smads. Cold Spring Harb. Perspect. Biol., 2016, 8(9), a022061-a022093.
[http://dx.doi.org/10.1101/cshperspect.a022061] [PMID: 27449815]
[50]
Dobaczewski, M.; Chen, W.; Frangogiannis, N.G. Transforming growth factor (TGF)-β signaling in cardiac remodeling. J. Mol. Cell. Cardiol., 2011, 51(4), 600-606.
[http://dx.doi.org/10.1016/j.yjmcc.2010.10.033] [PMID: 21059352]
[51]
Rahimi, O.; Kirby, J.; Varagic, J.; Westwood, B.; Tallant, E.A.; Gallagher, P.E. Angiotensin-(1–7) reduces doxorubicin-induced cardiac dysfunction in male and female Sprague-Dawley rats through antioxidant mechanisms. Am. J. Physiol. Heart Circ. Physiol., 2020, 318(4), H883-H894.
[http://dx.doi.org/10.1152/ajpheart.00224.2019] [PMID: 32083974]
[52]
Hou, K.; Shen, J.; Yan, J.; Zhai, C.; Zhang, J.; Pan, J.A.; Zhang, Y.; Jiang, Y.; Wang, Y.; Lin, R.Z.; Cong, H.; Gao, S.; Zong, W.X. Loss of TRIM21 alleviates cardiotoxicity by suppressing ferroptosis induced by the chemotherapeutic agent doxorubicin. EBioMedicine, 2021, 69, 103456-103469.
[http://dx.doi.org/10.1016/j.ebiom.2021.103456] [PMID: 34233258]
[53]
Li, X.; Zhong, J.; Zeng, Z.; Wang, H.; Li, J.; Liu, X.; Yang, X. MiR-181c protects cardiomyocyte injury by preventing cell apoptosis through PI3K/Akt signaling pathway. Cardiovasc. Diagn. Ther., 2020, 10(4), 849-858.
[http://dx.doi.org/10.21037/cdt-20-490] [PMID: 32968640]
[54]
Tay, K.C.; Tan, L.T.H.; Chan, C.K.; Hong, S.L.; Chan, K.G.; Yap, W.H.; Pusparajah, P.; Lee, L.H.; Goh, B.H. Formononetin: A review of its anticancer potentials and mechanisms. Front. Pharmacol., 2019, 10, 820-839.
[http://dx.doi.org/10.3389/fphar.2019.00820] [PMID: 31402861]
[55]
Singla, D.; Johnson, T.; Tavakoli Dargani, Z. Exosome treatment enhances anti-inflammatory M2 macrophages and reduces inflammation-induced pyroptosis in doxorubicin-induced cardiomyopathy. Cells, 2019, 8(10), 1224-1245.
[http://dx.doi.org/10.3390/cells8101224] [PMID: 31600901]
[56]
Zhang, Q.L.; Yang, J.J.; Zhang, H.S. Carvedilol (CAR) combined with carnosic acid (CAA) attenuates doxorubicin-induced cardiotoxicity by suppressing excessive oxidative stress, inflammation, apoptosis and autophagy. Biomed. Pharmacother., 2019, 109, 71-83.
[http://dx.doi.org/10.1016/j.biopha.2018.07.037] [PMID: 30396094]
[57]
Frangogiannis, N.G. The inflammatory response in myocardial injury, repair, and remodelling. Nat. Rev. Cardiol., 2014, 11(5), 255-265.
[http://dx.doi.org/10.1038/nrcardio.2014.28] [PMID: 24663091]
[58]
Ghizzoni, M.; Haisma, H.J.; Maarsingh, H.; Dekker, F.J. Histone acetyltransferases are crucial regulators in NF-κB mediated inflammation. Drug Discov. Today, 2011, 16(11-12), 504-511.
[http://dx.doi.org/10.1016/j.drudis.2011.03.009] [PMID: 21477662]
[59]
Nozaki, N.; Shishido, T.; Takeishi, Y.; Kubota, I. Modulation of doxorubicin-induced cardiac dysfunction in toll-like receptor-2-knockout mice. Circulation, 2004, 110(18), 2869-2874.
[http://dx.doi.org/10.1161/01.CIR.0000146889.46519.27] [PMID: 15505089]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy