Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Reprogramming of Lipid Metabolism in Cancer: New Insight into Pathogenesis and Therapeutic Strategies

Author(s): Surovi Saikia, Firdush Ahmed, Bhupendra G. Prajapati*, V. Vijaya Padma, Mehul R. Chorawala, Humzah I. Postwala and Sankha Bhattacharya

Volume 24, Issue 15, 2023

Published on: 04 May, 2023

Page: [1847 - 1858] Pages: 12

DOI: 10.2174/1389201024666230413084603

Price: $65

conference banner
Abstract

Lipids have received less attention than nucleic acids and proteins, which play a major role in building up the cell. They are a complex group of biomolecules varying in structure and function whose complexity can only be revealed by refining the present analytical tools. Lipogenesis is critical for tumor growth as it has been observed that FA (Fatty Acid) synthesis increases in many cancers. In this review, we have detailed the causes and concerns for considering lipids as a trademark for cancer, including other events such as mutations, epigenetic changes, chromosomal rearrangements, and hormonal stimulations. The process of biomarker development can be heightened from the critical changes observed in lipid profiling that occur in the reprogramming of lipid metabolism. The cancer alterations that occur during lipid metabolism and the expression of various genes during this process have been discussed in detail. The routes through which cancer cells source lipids for their nourishment and energy need and how FA synthesis contributes to this are discussed. The various pathways involved in the metabolism of lipid, which has the potential to be therapeutic targets, are highlighted. Also, the various driving factors critical for lipid metabolism alterations and the major role played by lipids in cancer and ways of targeting it are critically analyzed.

Next »
Graphical Abstract

[1]
Tumanov, S.; Kamphorst, J.J. Recent advances in expanding the coverage of the lipidome. Curr. Opin. Biotechnol., 2017, 43, 127-133.
[http://dx.doi.org/10.1016/j.copbio.2016.11.008]
[2]
Augustine, D.; Khan, W.; Rao, R.; Patil, S.; Awan, K.; Sowmya, S.; Haragannavar, V.; Prasad, K. Lipid metabolism in cancer: A systematic review. J. Carcinog., 2021, 20(1), 4.
[http://dx.doi.org/10.4103/jcar.JCar_15_20]
[3]
Huang, C.; Freter, C. Lipid metabolism, apoptosis and cancer therapy. Int. J. Mol. Sci., 2015, 16(1), 924-949.
[http://dx.doi.org/10.3390/ijms16010924]
[4]
Fu, Y.; Zou, T.; Shen, X.; Nelson, P.J.; Li, J.; Wu, C.; Yang, J.; Zheng, Y.; Bruns, C.; Zhao, Y.; Qin, L.; Dong, Q. Lipid metabolism in cancer progression and therapeutic strategies. MedComm, 2021, 2(1), 27-59.
[http://dx.doi.org/10.1002/mco2.27]
[5]
Chen, M.; Huang, J. The expanded role of fatty acid metabolism in cancer: New aspects and targets. Precis. Clin. Med., 2019, 2(3), 183-191.
[http://dx.doi.org/10.1093/pcmedi/pbz017]
[6]
Röhrig, F.; Schulze, A. The multifaceted roles of fatty acid synthesis in cancer. Nat. Rev. Cancer, 2016, 16(11), 732-749.
[http://dx.doi.org/10.1038/nrc.2016.89]
[7]
Berwick, D.C.; Hers, I.; Heesom, K.J.; Moule, S.K.; Tavareá, J.M. The identification of ATP-citrate lyase as a protein kinase B (Akt) substrate in primary adipocytes. J. Biol. Chem., 2002, 277(37), 33895-33900.
[http://dx.doi.org/10.1074/jbc.M204681200]
[8]
Furuhashi, M.; Hotamisligil, G.S. Fatty acid-binding proteins: Role in metabolic diseases and potential as drug targets. Nat. Rev. Drug Discov., 2008, 7(6), 489-503.
[http://dx.doi.org/10.1038/nrd2589]
[9]
Ferro, M.; Terracciano, D.; Buonerba, C.; Lucarelli, G.; Bottero, D.; Perdonà, S.; Autorino, R.; Serino, A.; Cantiello, F.; Damiano, R.; Andras, I.; De Placido, S.; Di Lorenzo, G.; Battaglia, M.; Jereczek-Fossa, B.A.; Mirone, V.; De Cobelli, O. The emerging role of obesity, diet and lipid metabolism in prostate cancer. Future Oncol., 2017, 13(3), 285-293.
[http://dx.doi.org/10.2217/fon-2016-0217]
[10]
Ilter, D.; Drapela, S.; Schild, T.; Ward, N.P.; Adhikari, E.; Low, V.; Asara, J.; Oskarsson, T.; Lau, E.K.; DeNicola, G.M.; McReynolds, M.R.; Gomes, A.P. NADK-mediated de novo NADP(H) synthesis is a metabolic adaptation essential for breast cancer metastasis. Redox Biol., 2023, 61, 102627.
[http://dx.doi.org/10.1016/j.redox.2023.102627]
[11]
Hao, Y.; Li, D.; Xu, Y.; Ouyang, J.; Wang, Y.; Zhang, Y.; Li, B.; Xie, L.; Qin, G. Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data. BMC Bioinformatics, 2019, 20(S7), 195.
[http://dx.doi.org/10.1186/s12859-019-2734-4]
[12]
Sagini, K.; Urbanelli, L.; Buratta, S.; Emiliani, C.; Llorente, A. Lipid biomarkers in liquid biopsies: Novel opportunities for cancer diagnosis. Pharmaceutics, 2023, 15(2), 437.
[http://dx.doi.org/10.3390/pharmaceutics15020437]
[13]
Fernández, L.P.; Gómez de Cedrón, M.; Ramírez de Molina, A. Alterations of lipid metabolism in cancer: Implications in prognosis and treatment. Front. Oncol., 2020, 10, 577420.
[http://dx.doi.org/10.3389/fonc.2020.577420]
[14]
Ookhtens, M.; Kannan, R.; Lyon, I.; Baker, N. Liver and adipose tissue contributions to newly formed fatty acids in an ascites tumor. Am. J. Physiol. Regul. Integr. Comp. Physiol., 1984, 247(1), R146-R153.
[http://dx.doi.org/10.1152/ajpregu.1984.247.1.R146]
[15]
Zaidi, N.; Royaux, I.; Swinnen, J.V.; Smans, K. ATP citrate lyase knockdown induces growth arrest and apoptosis through different cell- and environment-dependent mechanisms. Mol. Cancer Ther., 2012, 11(9), 1925-1935.
[http://dx.doi.org/10.1158/1535-7163.MCT-12-0095]
[16]
Zadra, G.; Photopoulos, C.; Tyekucheva, S.; Heidari, P.; Weng, Q.P.; Fedele, G.; Liu, H.; Scaglia, N.; Priolo, C.; Sicinska, E.; Mahmood, U.; Signoretti, S.; Birnberg, N.; Loda, M. A novel direct activator of AMPK inhibits prostate cancer growth by blocking lipogenesis. EMBO Mol. Med., 2014, 6(4), 519-538.
[http://dx.doi.org/10.1002/emmm.201302734]
[17]
Allott, E.H.; Ebot, E.M.; Stopsack, K.H.; Gonzalez-Feliciano, A.G.; Markt, S.C.; Wilson, K.M.; Ahearn, T.U.; Gerke, T.A.; Downer, M.K.; Rider, J.R.; Freedland, S.J.; Lotan, T.L.; Kantoff, P.W.; Platz, E.A.; Loda, M.; Stampfer, M.J.; Giovannucci, E.; Sweeney, C.J.; Finn, S.P.; Mucci, L.A. Statin use is associated with lower risk of PTEN-Null and lethal prostate cancer. Clin. Cancer Res., 2020, 26(5), 1086-1093.
[http://dx.doi.org/10.1158/1078-0432.CCR-19-2853]
[18]
Beloribi-Djefaflia, S.; Vasseur, S.; Guillaumond, F. Lipid metabolic reprogramming in cancer cells. Oncogenesis, 2016, 5(1), e189.
[http://dx.doi.org/10.1038/oncsis.2015.49]
[19]
Yoshii, Y.; Furukawa, T.; Saga, T.; Fujibayashi, Y. Acetate/acetylCoA metabolism associated with cancer fatty acid synthesis: Overview and application. Cancer Lett., 2015, 356(2), 211-216.
[http://dx.doi.org/10.1016/j.canlet.2014.02.019]
[20]
Chen, W.L.; Jin, X.; Wang, M.; Liu, D.; Luo, Q.; Tian, H.; Cai, L.; Meng, L.; Bi, R.; Wang, L.; Xie, X.; Yu, G.; Li, L.; Dong, C.; Cai, Q.; Jia, W.; Wei, W.; Jia, L. GLUT5-mediated fructose utilization drives lung cancer growth by stimulating fatty acid synthesis and AMPK/mTORC1 signaling. JCI Insight, 2020, 5(3), e131596.
[http://dx.doi.org/10.1172/jci.insight.131596]
[21]
Rombout, A.; Stamatopoulos, B.; Lagneaux, L.; Lust, S.; Offner, F.; Naessens, E.; Vanderstraeten, H.; Verhasselt, B.; Philippé, J. Lipoprotein lipase SNPs rs13702 and rs301 correlate with clinical outcome in chronic lymphocytic leukemia patients. PLoS One, 2015, 10(3), e0121526.
[http://dx.doi.org/10.1371/journal.pone.0121526]
[22]
Antalis, C.J.; Arnold, T.; Rasool, T.; Lee, B.; Buhman, K.K.; Siddiqui, R.A. High ACAT1 expression in estrogen receptor negative basal-like breast cancer cells is associated with LDL-induced proliferation. Breast Cancer Res. Treat., 2010, 122(3), 661-670.
[http://dx.doi.org/10.1007/s10549-009-0594-8]
[23]
Nassar, Z.D.; Aref, A.T.; Miladinovic, D.; Mah, C.Y.; Raj, G.V.; Hoy, A.J.; Butler, L.M. Peri‐prostatic adipose tissue: The metabolic microenvironment of prostate cancer. BJU Int., 2018, 121(S3), 9-21.
[http://dx.doi.org/10.1111/bju.14173]
[24]
Blücher, C.; Stadler, S.C. Obesity and breast cancer: Current insights on the role of fatty acids and lipid metabolism in promoting breast cancer growth and progression. Front. Endocrinol., 2017, 8, 293.
[http://dx.doi.org/10.3389/fendo.2017.00293]
[25]
Tang, Y.; Zhou, J.; Hooi, S.; Jiang, Y.M.; Lu, G.D. Fatty acid activation in carcinogenesis and cancer development: Essential roles of long-chain acyl-CoA synthetases (Review). Oncol. Lett., 2018, 16, 1390-1396.
[http://dx.doi.org/10.3892/ol.2018.8843]
[26]
Swinnen, J.V.; Vanderhoydonc, F.; Elgamal, A.A.; Eelen, M.; Vercaeren, I.; Joniau, S.; Van Poppel, H.; Baert, L.; Goossens, K.; Heyns, W.; Verhoeven, G. Selective activation of the fatty acid synthesis pathway in human prostate cancer. Int. J. Cancer, 2000, 88(2), 176-179.
[http://dx.doi.org/10.1002/1097-0215(20001015)88:2<176::AIDIJC5>3.0.CO;2-3]
[27]
Butler, L.M.; Perone, Y.; Dehairs, J.; Lupien, L.E.; de Laat, V.; Talebi, A.; Loda, M.; Kinlaw, W.B.; Swinnen, J.V. Lipids and cancer: Emerging roles in pathogenesis, diagnosis and therapeutic intervention. Adv. Drug Deliv. Rev., 2020, 159, 245-293.
[http://dx.doi.org/10.1016/j.addr.2020.07.013]
[28]
Amiri, M.; Yousefnia, S.; Seyed Forootan, F.; Peymani, M.; Ghaedi, K.; Nasr Esfahani, M.H. Diverse roles of fatty acid binding proteins (FABPs) in development and pathogenesis of cancers. Gene, 2018, 676, 171-183.
[http://dx.doi.org/10.1016/j.gene.2018.07.035]
[29]
Lass, A.; Zimmermann, R.; Oberer, M.; Zechner, R. Lipolysis – A highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog. Lipid Res., 2011, 50(1), 14-27.
[http://dx.doi.org/10.1016/j.plipres.2010.10.004]
[30]
Das, R.; Hammamieh, R.; Neill, R.; Melhem, M.; Jett, M. Expression pattern of fatty acid-binding proteins in human normal and cancer prostate cells and tissues. Clin. Cancer Res., 2001, 7, 1706-1715.
[31]
de Wit, N.J.W.; Rijntjes, J.; Diepstra, J.H.S.; van Kuppevelt, T.H.; Weidle, U.H.; Ruiter, D.J.; van Muijen, G.N.P. Analysis of differential gene expression in human melanocytic tumour lesions by custom made oligonucleotide arrays. Br. J. Cancer, 2005, 92(12), 2249-2261.
[http://dx.doi.org/10.1038/sj.bjc.6602612]
[32]
Mika, A.; Kobiela, J.; Pakiet, A.; Czumaj, A.; Sokołowska, E.; Makarewicz, W.; Chmielewski, M.; Stepnowski, P.; Marino-Gammazza, A.; Sledzinski, T. Preferential uptake of polyunsaturated fatty acids by colorectal cancer cells. Sci. Rep., 2020, 10(1), 1954.
[http://dx.doi.org/10.1038/s41598-020-58895-7]
[33]
Tamura, K.; Makino, A.; Hullin-Matsuda, F.; Kobayashi, T.; Furihata, M.; Chung, S.; Ashida, S.; Miki, T.; Fujioka, T.; Shuin, T.; Nakamura, Y.; Nakagawa, H. Novel lipogenic enzyme ELOVL7 is involved in prostate cancer growth through saturated long-chain fatty acid metabolism. Cancer Res., 2009, 69(20), 8133-8140.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0775]
[34]
Dai, X.; Zhang, S.; Cheng, H.; Cai, D.; Chen, X.; Huang, Z. FA2H exhibits tumor suppressive roles on breast cancers via cancer stemness control. Front. Oncol., 2019, 9, 1089.
[http://dx.doi.org/10.3389/fonc.2019.01089]
[35]
Cheng, M.; Bhujwalla, Z.M.; Glunde, K. Targeting phospholipid metabolism in cancer. Front. Oncol., 2016, 6, 266.
[http://dx.doi.org/10.3389/fonc.2016.00266]
[36]
Meana, C.; García-Rostán, G.; Peña, L.; Lordén, G.; Cubero, Á.; Orduña, A.; Győrffy, B.; Balsinde, J.; Balboa, M.A. The phosphatidic acid phosphatase lipin-1 facilitates inflammation-driven colon carcinogenesis. JCI Insight, 2018, 3(18), e97506.
[http://dx.doi.org/10.1172/jci.insight.97506]
[37]
Park, J.B.; Lee, C.S.; Jang, J.H.; Ghim, J.; Kim, Y.J.; You, S.; Hwang, D.; Suh, P.G.; Ryu, S.H. Phospholipase signalling networks in cancer. Nat. Rev. Cancer, 2012, 12(11), 782-792.
[http://dx.doi.org/10.1038/nrc3379]
[38]
Shi, C.; Qiao, S.; Wang, S.; Wu, T.; Ji, G. Recent progress of lysophosphatidylcholine acyltransferases in metabolic disease and cancer. Int. J. Clin. Exp. Med., 2018, 11(9), 8941-8953. [https://e-century.us/files/ijcem/11/9/ijcem0072481.pdf]
[39]
Ma, Y.; Temkin, S.M.; Hawkridge, A.M.; Guo, C.; Wang, W.; Wang, X.Y.; Fang, X. Fatty acid oxidation: An emerging facet of metabolic transformation in cancer. Cancer Lett., 2018, 435, 92-100.
[http://dx.doi.org/10.1016/j.canlet.2018.08.006]
[40]
Cotte, A.K.; Aires, V.; Fredon, M.; Limagne, E.; Derangère, V.; Thibaudin, M.; Humblin, E.; Scagliarini, A.; de Barros, J.P.P.; Hillon, P.; Ghiringhelli, F.; Delmas, D. Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance. Nat. Commun., 2018, 9(1), 322.
[http://dx.doi.org/10.1038/s41467-017-02732-5]
[41]
Huang, P.; Chandra, V.; Rastinejad, F. Structural overview of the nuclear receptor superfamily: insights into physiology and therapeutics. Annu. Rev. Physiol., 2010, 72(1), 247-272.
[http://dx.doi.org/10.1146/annurev-physiol-021909-135917]
[42]
Baranowski, M. Biological role of liver X receptors. J. Physiol. Pharmacol., 2008, 59(S7), 31-55.
[43]
Eberlé, D.; Hegarty, B.; Bossard, P.; Ferré, P.; Foufelle, F. SREBP transcription factors: Master regulators of lipid homeostasis. Biochimie, 2004, 86(11), 839-848.
[http://dx.doi.org/10.1016/j.biochi.2004.09.018]
[44]
Weroha, S.J.; Haluska, P. The insulin-like growth factor system in cancer. Endocrinol Metab Clin North Am, 2012, 41, 335-350.
[http://dx.doi.org/10.1016/j.ecl.2012.04.014]
[45]
Labbé, D.P.; Zadra, G.; Yang, M.; Reyes, J.M.; Lin, C.Y.; Cacciatore, S.; Ebot, E.M.; Creech, A.L.; Giunchi, F.; Fiorentino, M.; Elfandy, H.; Syamala, S.; Karoly, E.D.; Alshalalfa, M.; Erho, N.; Ross, A.; Schaeffer, E.M.; Gibb, E.A.; Takhar, M.; Den, R.B.; Lehrer, J.; Karnes, R.J.; Freedland, S.J.; Davicioni, E.; Spratt, D.E.; Ellis, L.; Jaffe, J.D.; DʼAmico, A.V.; Kantoff, P.W.; Bradner, J.E.; Mucci, L.A.; Chavarro, J.E.; Loda, M.; Brown, M. High-fat diet fuels prostate cancer progression by rewiring the metabolome and amplifying the MYC program. Nat. Commun., 2019, 10(1), 4358.
[http://dx.doi.org/10.1038/s41467-019-12298-z]
[46]
Yahagi, N.; Shimano, H.; Matsuzaka, T.; Najima, Y.; Sekiya, M.; Nakagawa, Y.; Ide, T.; Tomita, S.; Okazaki, H.; Tamura, Y.; Iizuka, Y.; Ohashi, K.; Gotoda, T.; Nagai, R.; Kimura, S.; Ishibashi, S.; Osuga, J.; Yamada, N. p53 Activation in adipocytes of obese mice. J. Biol. Chem., 2003, 278(28), 25395-25400.
[http://dx.doi.org/10.1074/jbc.M302364200]
[47]
Muranaka, H.; Hayashi, A.; Minami, K.; Kitajima, S.; Kohno, S.; Nishimoto, Y.; Nagatani, N.; Suzuki, M.; Kulathunga, L A N.; Sasaki, N.; Okada, N.; Matsuzaka, T.; Shimano, H.; Tada, H.; Takahashi, C. A distinct function of the retinoblastoma protein in the control of lipid composition identified by lipidomic profiling. Oncogenesis, 2017, 6(6), e350.
[http://dx.doi.org/10.1038/oncsis.2017.51]
[48]
Flavin, R.; Zadra, G.; Loda, M. Metabolic alterations and targeted therapies in prostate cancer. J. Pathol., 2011, 223(2), 284-295.
[http://dx.doi.org/10.1002/path.2809]
[49]
Cai, Y.; Crowther, J.; Pastor, T.; Abbasi Asbagh, L.; Baietti, M.F.; De Troyer, M.; Vazquez, I.; Talebi, A.; Renzi, F.; Dehairs, J.; Swinnen, J.V.; Sablina, A.A. Loss of chromosome 8p governs tumor progression and drug response by altering lipid metabolism. Cancer Cell, 2016, 29(5), 751-766.
[http://dx.doi.org/10.1016/j.ccell.2016.04.003]
[50]
Lu, W.; Takahashi, H.; Furusato, B.; Maekawa, S.; Ikegami, M.; Sudo, A.; Egawa, S.; Hano, H. Allelotyping analysis at chromosome arm 8p of high-grade prostatic intraepithelial neoplasia and incidental, latent, and clinical prostate cancers. Genes Chromosomes Cancer, 2006, 45(5), 509-515.
[http://dx.doi.org/10.1002/gcc.20314]
[51]
Gholami, M.; Larijani, B.; Zahedi, Z.; Mahmoudian, F.; Bahrami, S.; Omran, S.P.; Saadatian, Z.; Hasani-Ranjbar, S.; Taslimi, R.; Bastami, M.; Amoli, M.M. Inflammation related miRNAs as an important player between obesity and cancers. J. Diabetes Metab. Disord., 2019, 18(2), 675-692.
[http://dx.doi.org/10.1007/s40200-019-00459-2]
[52]
Lu, J.; Getz, G.; Miska, E.A.; Alvarez-Saavedra, E.; Lamb, J.; Peck, D.; Sweet-Cordero, A.; Ebert, B.L.; Mak, R.H.; Ferrando, A.A.; Downing, J.R.; Jacks, T.; Horvitz, H.R.; Golub, T.R. microRNA expression profiles classify human cancers. Nature, 2005, 435(7043), 834-838.
[http://dx.doi.org/10.1038/nature03702]
[53]
Swinnen, J.V.; Van Veldhoven, P.P.; Esquenet, M.; Heyns, W.; Verhoeven, G. Androgens markedly stimulate the accumulation of neutral lipids in the human prostatic adenocarcinoma cell line LNCaP. Endocrinology, 1996, 137(10), 4468-4474.
[http://dx.doi.org/10.1210/endo.137.10.8828509]
[54]
Filippatos, T.D.; Liberopoulos, E.N.; Pavlidis, N.; Elisaf, M.S.; Mikhailidis, D.P. Effects of hormonal treatment on lipids in patients with cancer. Cancer Treat. Rev., 2009, 35(2), 175-184.
[http://dx.doi.org/10.1016/j.ctrv.2008.09.007]
[55]
Daniëls, V.W.; Smans, K.; Royaux, I.; Chypre, M.; Swinnen, J.V.; Zaidi, N. Cancer cells differentially activate and thrive on de novo lipid synthesis pathways in a low-lipid environment. PLoS One, 2014, 9(9), e106913.
[http://dx.doi.org/10.1371/journal.pone.0106913]
[56]
Beckers, A.; Organe, S.; Timmermans, L.; Scheys, K.; Peeters, A.; Brusselmans, K.; Verhoeven, G.; Swinnen, J.V. Chemical inhibition of acetyl-CoA carboxylase induces growth arrest and cytotoxicity selectively in cancer cells. Cancer Res., 2007, 67(17), 8180-8187.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0389]
[57]
Tabe, Y.; Yamamoto, S.; Saitoh, K.; Sekihara, K.; Monma, N.; Ikeo, K.; Mogushi, K.; Shikami, M.; Ruvolo, V.; Ishizawa, J.; Hail, N., Jr; Kazuno, S.; Igarashi, M.; Matsushita, H.; Yamanaka, Y.; Arai, H.; Nagaoka, I.; Miida, T.; Hayashizaki, Y.; Konopleva, M.; Andreeff, M. Bone marrow adipocytes facilitate fatty acid oxidation activating AMPK and a transcriptional network supporting survival of acute monocytic leukemia cells. Cancer Res., 2017, 77(6), 1453-1464.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-1645]
[58]
Sok, M.; Šentjurc, M.; Schara, M.; Stare, J.; Rott, T. Cell membrane fluidity and prognosis of lung cancer. Ann. Thorac. Surg., 2002, 73(5), 1567-1571.
[http://dx.doi.org/10.1016/S0003-4975(02)03458-6]
[59]
Viswanathan, V.S.; Ryan, M.J.; Dhruv, H.D.; Gill, S.; Eichhoff, O.M.; Seashore-Ludlow, B.; Kaffenberger, S.D.; Eaton, J.K.; Shimada, K.; Aguirre, A.J.; Viswanathan, S.R.; Chattopadhyay, S.; Tamayo, P.; Yang, W.S.; Rees, M.G.; Chen, S.; Boskovic, Z.V.; Javaid, S.; Huang, C.; Wu, X.; Tseng, Y-Y.; Roider, E.M.; Gao, D.; Cleary, J.M.; Wolpin, B.M.; Mesirov, J.P.; Haber, D.A.; Engelman, J.A.; Boehm, J.S.; Kotz, J.D.; Hon, C.S.; Chen, Y.; Hahn, W.C.; Levesque, M.P.; Doench, J.G.; Berens, M.E.; Shamji, A.F.; Clemons, P.A.; Stockwell, B.R.; Schreiber, S.L. Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature, 2017, 547(7664), 453-457.
[http://dx.doi.org/10.1038/nature23007]
[60]
Zou, Y.; Palte, M.J.; Deik, A.A.; Li, H.; Eaton, J.K.; Wang, W.; Tseng, Y.Y.; Deasy, R.; Kost-Alimova, M.; Dančík, V.; Leshchiner, E.S.; Viswanathan, V.S.; Signoretti, S.; Choueiri, T.K.; Boehm, J.S.; Wagner, B.K.; Doench, J.G.; Clish, C.B.; Clemons, P.A.; Schreiber, S.L. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat. Commun., 2019, 10(1), 1617.
[http://dx.doi.org/10.1038/s41467-019-09277-9]
[61]
Théry, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol., 2002, 2(8), 569-579.
[http://dx.doi.org/10.1038/nri855]
[62]
Goossens, P.; Rodriguez-Vita, J.; Etzerodt, A.; Masse, M.; Rastoin, O.; Gouirand, V.; Ulas, T.; Papantonopoulou, O.; Van Eck, M.; Auphan-Anezin, N.; Bebien, M.; Verthuy, C.; Vu Manh, T.P.; Turner, M.; Dalod, M.; Schultze, J.L.; Lawrence, T. Membrane cholesterol efflux drives tumor-associated macrophage reprogramming and tumor progression. Cell Metab., 2019, 29(6), 1376-1389.e4.
[http://dx.doi.org/10.1016/j.cmet.2019.02.016]
[63]
Wang, Y.; Kuhajda, F.P.; Sokoll, L.J.; Chan, D.W. Two-site ELISA for the quantitative determination of fatty acid synthase. Clin Chim Acta, 2001, 304, 107-115.
[http://dx.doi.org/10.1016/S0009-8981(00)00404-6]
[64]
Bandu, R.; Mok, H.J.; Kim, K.P. Phospholipids as cancer biomarkers: Mass spectrometry-based analysis. Mass Spectrom. Rev., 2018, 37(2), 107-138.
[http://dx.doi.org/10.1002/mas.21510]
[65]
Hänel, L.; Kwiatkowski, M.; Heikaus, L.; Schlüter, H. Mass spectrometry-based intraoperative tumor diagnostics. Future Sci. OA, 2019, 5(3), FSO373.
[http://dx.doi.org/10.4155/fsoa-2018-0087]
[66]
Ruiz-Vela, A.; Aguilar-Gallardo, C.; Simón, C. Building a framework for embryonic microenvironments and cancer stem cells. Stem Cell Rev., 2009, 5(4), 319-327.
[http://dx.doi.org/10.1007/s12015-009-9096-7]
[67]
Zaremberg, V.; Ganesan, S.; Mahadeo, M. Lipids and membrane microdomains: The glycerolipid and alkylphosphocholine class of cancer chemotherapeutic drugs. Handb. Exp. Pharmacol., 2019, 259, 261-288.
[http://dx.doi.org/10.1007/164_2019_222]
[68]
Vallabhapurapu, S.D.; Blanco, V.M.; Sulaiman, M.K.; Vallabhapurapu, S.L.; Chu, Z.; Franco, R.S.; Qi, X. Variation in human cancer cell external phosphatidylserine is regulated by flippase activity and intracellular calcium. Oncotarget, 2015, 6(33), 34375-34388.
[http://dx.doi.org/10.18632/oncotarget.6045]
[69]
Bowman, A.P.; Bogie, J.F.J.; Hendriks, J.J.A.; Haidar, M.; Belov, M.; Heeren, R.M.A.; Ellis, S.R. Evaluation of lipid coverage and high spatial resolution MALDI-imaging capabilities of oversampling combined with laser post-ionisation. Anal. Bioanal. Chem., 2020, 412(10), 2277-2289.
[http://dx.doi.org/10.1007/s00216-019-02290-3]
[70]
Wu, H.; Volponi, J.V.; Oliver, A.E.; Parikh, A.N.; Simmons, B.A.; Singh, S. In vivo lipidomics using single-cell Raman spectroscopy. Proc. Natl. Acad. Sci., 2011, 108(9), 3809-3814.
[http://dx.doi.org/10.1073/pnas.1009043108]
[71]
Koundouros, N.; Poulogiannis, G. Reprogramming of fatty acid metabolism in cancer. Br. J. Cancer, 2020, 122(1), 4-22.
[http://dx.doi.org/10.1038/s41416-019-0650-z]
[72]
Zhang, H.; Liu, S.; Cai, Z.; Dong, W.; Ye, J.; Cai, Z.; Han, Z.; Liang, Y.; Zhuo, Y.; Luo, Y.; Zhu, X.; Deng, Y.; Zhang, Y.; Liu, R.; Feng, Y.; Lai, J.; Zhou, R.; Tan, H.; Zhong, W. Downregulation of ACACA suppresses the malignant progression of Prostate Cancer through inhibiting mitochondrial potential. J. Cancer, 2021, 12(1), 232-243.
[http://dx.doi.org/10.7150/jca.49560]
[73]
Ly, N.P.; Han, H.S.; Kim, M.; Park, J.H.; Choi, K.Y. Plant-derived nanovesicles: Current understanding and applications for cancer therapy. Bioact. Mater., 2023, 22, 365-383.
[http://dx.doi.org/10.1016/j.bioactmat.2022.10.005]
[74]
Svensson, R.U.; Parker, S.J.; Eichner, L.J.; Kolar, M.J.; Wallace, M.; Brun, S.N.; Lombardo, P.S.; Van Nostrand, J.L.; Hutchins, A.; Vera, L.; Gerken, L.; Greenwood, J.; Bhat, S.; Harriman, G.; Westlin, W.F.; Harwood, H.J., Jr; Saghatelian, A.; Kapeller, R.; Metallo, C.M.; Shaw, R.J. Inhibition of acetyl-CoA carboxylase suppresses fatty acid synthesis and tumor growth of non-small-cell lung cancer in preclinical models. Nat. Med., 2016, 22(10), 1108-1119.
[http://dx.doi.org/10.1038/nm.4181]
[75]
Lally, JSV; Ghoshal, S; DePeralta, DK; Moaven, O; Wei, L; Masia, R; Erstad, DJ; Fujiwara, N; Leong, V; Houde, VP; Anagnostopoulos, AE; Wang, A; Broadfield, LA; Ford, RJ; Foster, RA; Bates, J; Sun, H; Wang, T; Liu, H; Ray, AS; Saha, AK; Greenwood, J; Bhat, S; Harriman, G; Miao, W; Rocnik, JL; Westlin, WF; Muti, P; Tsakiridis, T; Harwood, HJ Jr; Kapeller, R; Hoshida, Y; Tanabe, KK; Steinberg, GR; Fuchs, BC Inhibition of Acetyl-CoA Carboxylase by Phosphorylation or the Inhibitor ND-654 Suppresses Lipogenesis and Hepatocellular Carcinoma. Cell Metab., 2019, 29(1), 174-182.e5. Epub 2018 Sep 20.
[http://dx.doi.org/10.1016/j.cmet.2018.08.020.] [PMID: 30244972]
[76]
Fhu, C.W.; Ali, A. Fatty acid synthase: An emerging target in cancer. Molecules, 2020, 25(17), 3935.
[http://dx.doi.org/10.3390/molecules25173935]
[77]
Mashima, T.; Seimiya, H.; Tsuruo, T. De novo fatty-acid synthesis and related pathways as molecular targets for cancer therapy. Br. J. Cancer, 2009, 100(9), 1369-1372.
[http://dx.doi.org/10.1038/sj.bjc.6605007]
[78]
Ventura, R.; Mordec, K.; Waszczuk, J.; Wang, Z.; Lai, J.; Fridlib, M.; Buckley, D.; Kemble, G.; Heuer, T.S. Inhibition of de novo palmitate synthesis by fatty acid synthase induces apoptosis in tumor cells by remodeling cell membranes, inhibiting signaling pathways, and reprogramming gene expression. EBioMedicine, 2015, 2(8), 808-824.
[http://dx.doi.org/10.1016/j.ebiom.2015.06.020]
[79]
Aquino, I.G.; Bastos, D.C.; Cuadra-Zelaya, F.J.M.; Teixeira, I.F.; Salo, T.; Coletta, R.D.; Graner, E. Anticancer properties of the fatty acid synthase inhibitor TVB-3166 on oral squamous cell carcinoma cell lines. Arch. Oral Biol., 2020, 113, 104707.
[http://dx.doi.org/10.1016/j.archoralbio.2020.104707]
[80]
Khwairakpam, A.; Shyamananda, M.; Sailo, B.; Rathnakaram, S.; Padmavathi, G.; Kotoky, J.; Kunnumakkara, A. ATP citrate lyase (ACLY): A promising target for cancer prevention and treatment. Curr. Drug Targets, 2015, 16(2), 156-163.
[http://dx.doi.org/10.2174/1389450115666141224125117]
[81]
Schiliro, C.; Firestein, B.L. Mechanisms of metabolic reprogramming in cancer cells supporting enhanced growth and proliferation. Cells, 2021, 10(5), 1056.
[http://dx.doi.org/10.3390/cells10051056]
[82]
Bilen, O.; Ballantyne, C.M. Bempedoic Acid (ETC-1002): An investigational inhibitor of ATP citrate lyase. Curr. Atheroscler. Rep., 2016, 18(10), 61.
[http://dx.doi.org/10.1007/s11883-016-0611-4]
[83]
Tracz-Gaszewska, Z.; Dobrzyn, P. Stearoyl-CoA desaturase 1 as a therapeutic target for the treatment of cancer. Cancers, 2019, 11(7), 948.
[http://dx.doi.org/10.3390/cancers11070948]
[84]
Tesfay, L.; Paul, B.T.; Konstorum, A.; Deng, Z.; Cox, A.O.; Lee, J.; Furdui, C.M.; Hegde, P.; Torti, F.M.; Torti, S.V. Stearoyl-CoA desaturase 1 protects ovarian cancer cells from ferroptotic cell death. Cancer Res., 2019, 79(20), 5355-5366.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0369]
[85]
Oballa, R.M.; Belair, L.; Black, W.C.; Bleasby, K.; Chan, C.C.; Desroches, C.; Du, X.; Gordon, R.; Guay, J.; Guiral, S.; Hafey, M.J.; Hamelin, E.; Huang, Z.; Kennedy, B.; Lachance, N.; Landry, F.; Li, C.S.; Mancini, J.; Normandin, D.; Pocai, A.; Powell, D.A.; Ramtohul, Y.K.; Skorey, K.; Sørensen, D.; Sturkenboom, W.; Styhler, A.; Waddleton, D.M.; Wang, H.; Wong, S.; Xu, L.; Zhang, L. Development of a liver-targeted stearoyl-CoA desaturase (SCD) inhibitor (MK-8245) to establish a therapeutic window for the treatment of diabetes and dyslipidemia. J. Med. Chem., 2011, 54(14), 5082-5096.
[http://dx.doi.org/10.1021/jm200319u]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy