Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

General Review Article

Monoamine Oxidase: A Potential Link in Papez Circuit to Generalized Anxiety Disorders

Author(s): Ravikant Sharma, Murali Kumarasamy, Vipan Kumar Parihar, V. Ravichandiran and Nitesh Kumar*

Volume 23, Issue 5, 2024

Published on: 22 May, 2023

Page: [638 - 655] Pages: 18

DOI: 10.2174/1871527322666230412105711

Price: $65

Abstract

Anxiety is a common mental illness that affects a large number of people around the world, and its treatment is often based on the use of pharmacological substances such as benzodiazepines, serotonin, and 5-hydroxytyrosine (MAO) neurotransmitters. MAO neurotransmitters levels are deciding factors in the biological effects. This review summarizes the current understanding of the MAO system and its role in the modulation of anxiety-related brain circuits and behavior. The MAO-A polymorphisms have been implicated in the susceptibility to generalized anxiety disorder (GAD) in several investigations. The 5-HT system is involved in a wide range of physiological and behavioral processes, involving anxiety, aggressiveness, stress reactions, and other elements of emotional intensity. Among these, 5-HT, NA, and DA are the traditional 5-HT neurons that govern a range of biological activities, including sleep, alertness, eating, thermoregulation, pains, emotion, and memory, as anticipated considering their broad projection distribution in distinct brain locations. The DNMTs (DNA methyltransferase) protein family, which increasingly leads a prominent role in epigenetics, is connected with lower transcriptional activity and activates DNA methylation. In this paper, we provide an overview of the current state of the art in the elucidation of the brain's complex functions in the regulation of anxiety.

[1]
Bishop SJ. Neurocognitive mechanisms of anxiety: An integrative account. Trends Cogn Sci 2007; 11(7): 307-16.
[http://dx.doi.org/10.1016/j.tics.2007.05.008] [PMID: 17553730]
[2]
Grupe DW, Nitschke JB. Uncertainty and Anticipation in Anxiety: An Integrated Neurobiological and Psychological Perspective. Nat Rev Neurosci 2013; 14: 488-501.
[http://dx.doi.org/10.1038/nrn3524] [PMID: 23783199]
[3]
Hardiman O, Al-Chalabi A, Chio A, et al. Amyotrophic Lateral Sclerosis. Nat Rev Dis Primers 2017; 31(3): 1-19.
[4]
Hoffman DL, Dukes EM, Wittchen HU. Human and economic burden of generalized anxiety disorder. Depress Anxiety 2008; 25(1): 72-90.
[http://dx.doi.org/10.1002/da.20257] [PMID: 17146763]
[5]
Gordon RP, Brandish EK, Baldwin DS. Anxiety disorders, post-traumatic stress disorder, and obsessive-compulsive disorder. Medicine 2016; 44(11): 664-71.
[http://dx.doi.org/10.1016/j.mpmed.2016.08.010]
[6]
Pizzinat N, Copin N, Vindis C, Parini A, Cambon C. Reactive oxygen species production by monoamine oxidases in intact cells. Naunyn Schmiedebergs Arch Pharmacol 1999; 359: 428-31.
[http://dx.doi.org/10.1007/pl00005371]
[7]
Herraiz T, Guillén H, Galisteo J. Metabolite Profile Resulting from the Activation/Inactivation of 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine and 2-Methyltetrahydro- β -Carboline by Oxidative Enzymes. BioMed Res Int 2013; 2013: 248608.
[http://dx.doi.org/10.1155/2013/248608] [PMID: 23984327]
[8]
Ben-Shachar D, Riederer P, Youdim MBH. Iron-melanin interaction and lipid peroxidation: implications for Parkinson’s disease. J Neurochem 1991; 57(5): 1609-14.
[http://dx.doi.org/10.1111/j.1471-4159.1991.tb06358.x] [PMID: 1919577]
[9]
Jian C, Yan J, Zhang H, Zhu J. Recent advances of small molecule fluorescent probes for distinguishing monoamine oxidase-A and monoamine oxidase-B in vitro and in vivo. Mol Cell Probes 2021; 55: 101686.
[http://dx.doi.org/10.1016/j.mcp.2020.101686] [PMID: 33279529]
[10]
Floris G, Cadeddu R, Bortolato M. The effects of serotonin degradation on psychopathology: role of monoamine oxidase. Handbook Behavioral Neurosci 2020; 31: 267-78.
[http://dx.doi.org/10.1016/B978-0-444-64125-0.00014-1]
[11]
Di Giovanni G, Svob Strac D, Sole M, et al. Monoaminergic and Histaminergic Strategies and Treatments in Brain Diseases. Front Neurosci 2016; 10: 541.
[http://dx.doi.org/10.3389/fnins.2016.00541] [PMID: 27932945]
[12]
Torres GE, Gainetdinov RR, Caron MG. Plasma membrane monoamine transporters: Structure, regulation and function. Nat Rev Neurosci 2003; 4(1): 13-25.
[http://dx.doi.org/10.1038/nrn1008] [PMID: 12511858]
[13]
Tadic A, Rujescu D, Szegedi A, et al. Association of a MAOA Gene Variant with Generalized Anxiety Disorder, but Not with Panic Disorder or Major Depression. Am J Med Genet - Neuropsychiatr Genet 2003; 117B: 1-6.
[14]
Larson CL, Taubitz LE, Robinson JS. MAOA T941G polymorphism and the time course of emotional recovery following unpleasant pictures. Psychophysiology 2010; 47(5): 857-62.
[http://dx.doi.org/10.1111/j.1469-8986.2010.01005.x] [PMID: 20374544]
[15]
Voltas N, Aparicio E, Arija V, Canals J. Association study of monoamine oxidase-A gene promoter polymorphism (MAOA-uVNTR) with self-reported anxiety and other psychopathological symptoms in a community sample of early adolescents. J Anxiety Disord 2015; 31: 65-72.
[http://dx.doi.org/10.1016/j.janxdis.2015.02.004] [PMID: 25747527]
[16]
Freudenberg F, Fedele G, Wilkinson R, et al. Nitric Oxide Interacts with Monoamine Oxidase to Modulate Aggression and Anxiety-like Behaviour. Eur Neuropsychopharmacol 2020; 30: 30-43.
[17]
Lorenc-Koci E, Czarnecka A, Lenda T. Kamińska K, Konieczny J. Molsidomine, a nitric oxide donor, modulates rotational behavior and monoamine metabolism in 6-OHDA lesioned rats treated chronically with L-DOPA. Neurochem Int 2013; 63(8): 790-804.
[http://dx.doi.org/10.1016/j.neuint.2013.09.021] [PMID: 24090640]
[18]
Karolewicz B, Paul IA, Antkiewicz-Michaluk L. Effect of NOS Inhibitor on Forced Swim Test and Neurotransmitters Turnover in the Mouse Brain. Pol J Pharmacol 2001; 53: 587-96.
[19]
Chen K, Holschneider DP, Wu W, Rebrin I, Shih JC. A spontaneous point mutation produces monoamine oxidase A/B knock-out mice with greatly elevated monoamines and anxiety-like behavior. J Biol Chem 2004; 279(38): 39645-52.
[http://dx.doi.org/10.1074/jbc.M405550200] [PMID: 15272015]
[20]
Hotamisligil GS, Breakefield XO. Human monoamine oxidase A gene determines levels of enzyme activity. Am J Hum Genet 1991; 49(2): 383-92.
[PMID: 1678250]
[21]
Bortolato M, Godar SC, Davarian S, Chen K, Shih JC. Behavioral disinhibition and reduced anxiety-like behaviors in monoamine oxidase B-deficient mice. Neuropsychopharmacology 2009; 34(13): 2746-57.
[http://dx.doi.org/10.1038/npp.2009.118] [PMID: 19710633]
[22]
Cases O, Seif I, Grimsby J, et al. Aggressive behavior and altered amounts of brain serotonin and norepinephrine in mice lacking MAOA. Science 1995; 268(5218): 1763-6.
[http://dx.doi.org/10.1126/science.7792602] [PMID: 7792602]
[23]
Scott AL, Bortolato M, Chen K, Shih JC. Novel monoamine oxidase A knock out mice with human-like spontaneous mutation. Neuroreport 2008; 19(7): 739-43.
[http://dx.doi.org/10.1097/WNR.0b013e3282fd6e88] [PMID: 18418249]
[24]
Tarantino L. Bućan M. Dissection of behavior and psychiatric disorders using the mouse as a model. Hum Mol Genet 2000; 9(6): 953-65.
[http://dx.doi.org/10.1093/hmg/9.6.953] [PMID: 10767319]
[25]
Binda C, Aldeco M, Mattevi A, Edmondson DE. Interactions of monoamine oxidases with the antiepileptic drug zonisamide: specificity of inhibition and structure of the human monoamine oxidase B complex. J Med Chem 2011; 54(3): 909-12.
[http://dx.doi.org/10.1021/jm101359c] [PMID: 21175212]
[26]
Lotufo-Neto F, Trivedi M, Thase ME. Meta-analysis of the reversible inhibitors of monoamine oxidase type A moclobemide and brofaromine for the treatment of depression. Neuropsychopharmacology 1999; 20(3): 226-47.
[http://dx.doi.org/10.1016/S0893-133X(98)00075-X] [PMID: 10063483]
[27]
Finberg JPM, Rabey JM. Inhibitors of MAO-A and MAO-B in Psychiatry and Neurology. Front Pharmacol 2016; 7: 340.
[http://dx.doi.org/10.3389/fphar.2016.00340] [PMID: 27803666]
[28]
Almeida S, Filipe A, Bessa MMJM, et al. The effects of chronic stress on hippocampal adult neurogenesis and dendritic plasticity are reversed by selective mao-a inhibition. J Psychopharmacol 2014; 17: 1-6.
[29]
Alda M, McKinnon M, Blagdon R, et al. Methylene blue treatment for residual symptoms of bipolar disorder: Randomised crossover study. Br J Psychiatry 2017; 210(1): 54-60.
[http://dx.doi.org/10.1192/bjp.bp.115.173930] [PMID: 27284082]
[30]
Fowler JS, Logan J, Azzaro AJ, et al. Reversible inhibitors of monoamine oxidase-A (RIMAs): Robust, reversible inhibition of human brain MAO-A by CX157. Neuropsychopharmacol 2009; 35: 623-31.
[31]
Weinreb O, Amit T. Ladostigil: A novel multimodal neuroprotective drug with cholinesterase and brain-selective monoamine oxidase inhibitory activities for Alzheimer’s disease treatment. Curr Drug Targets 2012; 13(4): 483-94.
[32]
De Colibus L, Li M, Binda C, Lustig A, Edmondson DE, Mattevi A. Three-dimensional structure of human monoamine oxidase A (MAO A): Relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci 2005; 102(36): 12684-9.
[http://dx.doi.org/10.1073/pnas.0505975102] [PMID: 16129825]
[33]
Son SY, Ma J, Kondou Y, Yoshimura M, Yamashita E, Tsukihara T. Structure of human monoamine oxidase A at 2.2-Å resolution: The control of opening the entry for substrates/inhibitors. Proc Natl Acad Sci 2008; 105(15): 5739-44.
[http://dx.doi.org/10.1073/pnas.0710626105] [PMID: 18391214]
[34]
Grimsby J, Toth M, Chen K, et al. Increased stress response and β-phenylethylamine in maob-deficient mice. Nat Genet 1997; 17: 206-10.
[35]
Garrick NA, Murphy DL. Species differences in the deamination of dopamine and other substrates for monoamine oxidase in brain. Psychopharmacology 1980; 72(1): 27-33.
[http://dx.doi.org/10.1007/BF00433804] [PMID: 6781004]
[36]
Chen L, He M, Sibille E, et al. Adaptive changes in postsynaptic dopamine receptors despite unaltered dopamine dynamics in mice lacking monoamine oxidase B. J Neurochem 1999; 73(2): 647-55.
[http://dx.doi.org/10.1046/j.1471-4159.1999.0730647.x] [PMID: 10428061]
[37]
Bunzow JR, Sonders MS, Arttamangkul S, et al. Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol Pharmacol 2001; 60(6): 1181-8.
[http://dx.doi.org/10.1124/mol.60.6.1181] [PMID: 11723224]
[38]
Berry MD. Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J Neurochem 2004; 90(2): 257-71.
[http://dx.doi.org/10.1111/j.1471-4159.2004.02501.x] [PMID: 15228583]
[39]
Risner ME, Jones BE. Characteristics of β-phenethylamine self-administration by dog. Pharmacol Biochem Behav 1977; 6(6): 689-96.
[http://dx.doi.org/10.1016/0091-3057(77)90096-X] [PMID: 263551]
[40]
Bortolato M, Chen K. Monoamine oxidase inactivation: From pathophysiology to therapeutics. Adv Drug Deliv Rev 2008; 60(13-14): 1527-33.
[http://dx.doi.org/10.1016/j.addr.2008.06.002] [PMID: 18652859]
[41]
Stiedl O, Pappa E, Konradsson-Geuken Ã. Ã-gren SO. The role of the serotonin receptor subtypes 5-HT1A and 5-HT7 and its interaction in emotional learning and memory. Front Pharmacol 2015; 6: 162.
[http://dx.doi.org/10.3389/fphar.2015.00162] [PMID: 26300776]
[42]
Artigas F. Developments in the field of antidepressants, where do we go now? Eur Neuropsychopharmacol 2015; 25(5): 657-70.
[http://dx.doi.org/10.1016/j.euroneuro.2013.04.013] [PMID: 23706576]
[43]
Hoyer D, Hannon J. Molecular, Pharmacological and Functional Diversity of 5-HT Receptors. Pharmacol Biochem Behav 2002; 71(4): 533-54.
[44]
Heils A, Teufel A, Petri S, et al. Allelic variation of human serotonin transporter gene expression. J Neurochem 1996; 66(6): 2621-4.
[http://dx.doi.org/10.1046/j.1471-4159.1996.66062621.x] [PMID: 8632190]
[45]
Reimold M, Knobel A, Rapp MA, et al. Central serotonin transporter levels are associated with stress hormone response and anxiety. Psychopharmacology 2011; 213(2-3): 563-72.
[http://dx.doi.org/10.1007/s00213-010-1903-y] [PMID: 20585760]
[46]
Brunello N, Blier P, Judd LL, et al. Noradrenaline in mood and anxiety disorders: basic and clinical studies. Int Clin Psychopharmacol 2003; 18(4): 191-202.
[http://dx.doi.org/10.1097/01.yic.0000073880.93678.68] [PMID: 12817153]
[47]
Emoto H, Tanaka M, Koga C, Yokoo H, Tsuda A, Yoshida M. Corticotropin-releasing factor activates the noradrenergic neuron system in the rat brain. Pharmacol Biochem Behav 1993; 45(2): 419-22.
[http://dx.doi.org/10.1016/0091-3057(93)90259-V] [PMID: 8327547]
[48]
Emoto H, Koga C, Ishii H, Yokoo H, Yoshida M, Tanaka M. A CRF antagonist attenuates stress-induced increases in NA turnover in extended brain regions in rats. Brain Res 1993; 627(1): 171-6.
[http://dx.doi.org/10.1016/0006-8993(93)90762-C] [PMID: 8293299]
[49]
Smith KS, Rudolph U. Anxiety and depression: Mouse genetics and pharmacological approaches to the role of GABAA receptor subtypes. Neuropharmacology 2012; 62(1): 54-62.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.026] [PMID: 21810433]
[50]
Rudolph U, Möhler H. GABAA receptor subtypes: Therapeutic potential in Down syndrome, affective disorders, schizophrenia, and autism. Annu Rev Pharmacol Toxicol 2014; 54(1): 483-507.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-135947] [PMID: 24160694]
[51]
Prager EM, Bergstrom HC, Wynn GH, Braga MFM. The basolateral amygdala γ-aminobutyric acidergic system in health and disease. J Neurosci Res 2016; 94(6): 548-67.
[http://dx.doi.org/10.1002/jnr.23690] [PMID: 26586374]
[52]
Babaev O, Piletti Chatain C, Krueger-Burg D. Inhibition in the Amygdala Anxiety Circuitry. Exp Mol Med 2018; 50: 1-16.
[53]
Gafford GM, Guo J-D, Flandreau EI, Hazra R, Rainnie DG, Ressler KJ. Cell-type specific deletion of GABA (A) Α1 in corticotropin-releasing factor-containing neurons enhances anxiety and disrupts fear extinction. Natl Acad Sci 2012; 109(40): 16330-5.
[54]
Kumar K, Sharma S, Kumar P, Deshmukh R. Therapeutic potential of GABAB receptor ligands in drug addiction, anxiety, depression and other CNS disorders. Pharmacol Biochem Behav 2013; 110: 174-84.
[http://dx.doi.org/10.1016/j.pbb.2013.07.003] [PMID: 23872369]
[55]
Felice D, O’Leary OF, Cryan JF. Targeting the GABAB Receptor for the Treatment of Depression and Anxiety Disorders. Receptors 2016; 29: 219-50.
[56]
Rauch SL, Shin LM, Wright C. Neuroimaging studies of amygdala function in anxiety disorders. Ann N Y Acad Sci 2003; 985(1): 389-410.
[http://dx.doi.org/10.1111/j.1749-6632.2003.tb07096.x] [PMID: 12724173]
[57]
Möhler H. The GABA system in anxiety and depression and its therapeutic potential. Neuropharmacology 2012; 62(1): 42-53.
[http://dx.doi.org/10.1016/j.neuropharm.2011.08.040] [PMID: 21889518]
[58]
Robin LA, Martin PP. Neural systems underlying approach and avoidance in anxiety disorders. Dialogues Clin Neurosci 2010; 12(4): 517-31.
[http://dx.doi.org/10.31887/DCNS.2010.12.4/raupperle] [PMID: 21319496]
[59]
Bhattacharyya KB. James Wenceslaus Papez, His Circuit, and Emotion. Ann Indian Acad Neurol 2017; 20(3): 207-10.
[PMID: 28904449]
[60]
Nuss P. Anxiety disorders and GABA neurotransmission: A disturbance of modulation. Neuropsychiatr Dis Treat 2015; 11: 165-75.
[PMID: 25653526]
[61]
Vann SD. Dismantling the papez circuit for memory in rats. eLife 2013; 2013: e00736.
[http://dx.doi.org/10.7554/eLife.00736]
[62]
The Limbic Brain | SpringerLink. 2001; pp: 1-18. https://link.springer.com/book/10.1007/b111894
[63]
Taylor JM, Whalen PJ. Neuroimaging and anxiety: The neural substrates of pathological and non-pathological anxiety. Curr Psychiatry Rep 2015; 76(17): 1-10.
[64]
Knight D, Nguyen H, Neuroimage PB. The role of the human amygdala in the production of conditioned fear responses. Neuroimage 2005; Jul 15; 26(4): 1193-200.
[65]
Hariri AR, Holmes A. Genetics of emotional regulation: The role of the serotonin transporter in neural function. Trends Cogn Sci 2006; 10(4): 182-91.
[http://dx.doi.org/10.1016/j.tics.2006.02.011] [PMID: 16530463]
[66]
Furmark T, Tillfors M, Garpenstrand H, et al. Serotonin transporter polymorphism related to amygdala excitability and symptom severity in patients with social phobia. Neurosci Lett 2004; 362(3): 189-92.
[http://dx.doi.org/10.1016/j.neulet.2004.02.070] [PMID: 15158011]
[67]
Forster GL, Novick AM, Scholl JL, Watt MJ. The role of the amygdala in anxiety disorders Amygdala - A Discret Multitask Manag. InTech 2012; pp. 1-43.
[http://dx.doi.org/10.5772/50323]
[68]
Lockwood PL, Wittmann MK. Ventral anterior cingulate cortex and social decision-making. Neurosci Biobehav Rev 2018; 92: 187-91.
[http://dx.doi.org/10.1016/j.neubiorev.2018.05.030] [PMID: 29886177]
[69]
Devinsky O, Morrell MJ, Vogt BA. Contributions of anterior cingulate cortex to behaviour. Brain 1995; 118(1): 279-306.
[http://dx.doi.org/10.1093/brain/118.1.279] [PMID: 7895011]
[70]
Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 2000; 4(6): 215-22.
[http://dx.doi.org/10.1016/S1364-6613(00)01483-2] [PMID: 10827444]
[71]
Cheng DT, Knight DC, Smith CN, Helmstetter FJ. Human amygdala activity during the expression of fear responses. Behav Neurosci 2006; 120(6): 1187-95.
[http://dx.doi.org/10.1037/0735-7044.120.5.1187]
[72]
Etkin A, Egner T, Peraza DM, Kandel ER, Hirsch J. Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron 2006; 51(6): 871-82.
[http://dx.doi.org/10.1016/j.neuron.2006.07.029] [PMID: 16982430]
[73]
Sarinopoulos I, Grupe DW, Mackiewicz KL, et al. Uncertainty during anticipation modulates neural responses to aversion in human insula and amygdala. Cereb Cortex 2010; 20(4): 929-40.
[http://dx.doi.org/10.1093/cercor/bhp155] [PMID: 19679543]
[74]
Daffre C, Oliver KI, Pace-Schott EF. Neurocircuitry of Anxiety Disorders Clinical Handbook of Anxiety Disorders. Springer 2020; pp. 15-41.
[http://dx.doi.org/10.1007/978-3-030-30687-8_2]
[75]
Bannerman DM, Rawlins JNP, McHugh SB, et al. Regional dissociations within the hippocampus—memory and anxiety. Neurosci Biobehav Rev 2004; 28(3): 273-83.
[http://dx.doi.org/10.1016/j.neubiorev.2004.03.004] [PMID: 15225971]
[76]
Myers-Schulz B, Koenigs M. Functional anatomy of ventromedial prefrontal cortex: implications for mood and anxiety disorders. Mol Psychiatry 2012; 17(2): 132-41.
[http://dx.doi.org/10.1038/mp.2011.88] [PMID: 21788943]
[77]
Papez JW. A PROPOSED MECHANISM OF EMOTION. Arch Neurol Psychiatry 1937; 38(4): 725-43.
[http://dx.doi.org/10.1001/archneurpsyc.1937.02260220069003]
[78]
Thomas AG, Koumellis P, Dineen RA. The fornix in health and disease: An imaging review. Radiographics 2011; 31(4): 1107-21.
[http://dx.doi.org/10.1148/rg.314105729] [PMID: 21768242]
[79]
Degroot A, Treit D. Anxiety is functionally segregated within the septo-hippocampal system. Brain Res 2004; 1001(1-2): 60-71.
[http://dx.doi.org/10.1016/j.brainres.2003.10.065] [PMID: 14972654]
[80]
Yu ST, Lee KS, Lee SH. Fornix microalterations associated with early trauma in panic disorder. J Affect Disord 2017; 220: 139-46.
[http://dx.doi.org/10.1016/j.jad.2017.05.043] [PMID: 28622552]
[81]
Modi S, Trivedi R, Singh K, et al. Individual differences in trait anxiety are associated with white matter tract integrity in fornix and uncinate fasciculus: Preliminary evidence from a DTI based tractography study. Behav Brain Res 2013; 238: 188-92.
[http://dx.doi.org/10.1016/j.bbr.2012.10.007] [PMID: 23085341]
[82]
Montag C, Reuter M, Weber B, Markett S, Schoene-Bake JC. Individual differences in trait anxiety are associated with white matter tract integrity in the left temporal lobe in healthy males but not females. Neuroscience 2012; 217: 77-83.
[http://dx.doi.org/10.1016/j.neuroscience.2012.05.017] [PMID: 22609931]
[83]
Qi C, Roseboom PH, Nanda SA, Lane JC, Speers JM, Kalin NH. Anxiety-related behavioral inhibition in rats: a model to examine mechanisms underlying the risk to develop stress-related psychopathology. Genes Brain Behav 2010; 9(8): 974-84.
[http://dx.doi.org/10.1111/j.1601-183X.2010.00636.x] [PMID: 20738409]
[84]
Yadin E, Thomas E, Grishkat HL, Strickland CE. The role of the lateral septum in anxiolysis. Physiol Behav 1993; 53(6): 1077-83.
[http://dx.doi.org/10.1016/0031-9384(93)90362-J] [PMID: 8346290]
[85]
Neuroanatomy of Head Direction Cell Circuits. 2005. Available from: books.google.com
[86]
Vann S, Neuroscience JA-NR. The mammillary bodies: Two memory systems in one? Nat Rev Neurosci 2004; 5(1): 35-44.
[http://dx.doi.org/10.1038/nrn1299] [PMID: 14708002]
[87]
Gudden H. Klinische und anatomische Beiträge zur Kenntniss der multiplen Alkoholneuritis nebst Bemerkungen über die Regenerationsvorgänge im peripheren Nervensystem. Arch Psychiatr Nervenkr 1896; 28(3): 643-741.
[http://dx.doi.org/10.1007/BF01988269]
[88]
Bartlett AA, Singh R, Hunter RG. Anxiety and Epigenetics. Adv Exp Med Biol 2017; 978: 145-66.
[http://dx.doi.org/10.1007/978-3-319-53889-1_8] [PMID: 28523545]
[89]
Schiele MA, Domschke K. Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes Brain Behav 2018; 17(3): e12423.
[http://dx.doi.org/10.1111/gbb.12423] [PMID: 28873274]
[90]
Cheng D, Lin E, Hong C-J, et al. Gene-Gene Interactions of the Brain-Derived Neurotrophic-Factor and Neurotrophic Tyrosine Kinase Receptor 2 Genes in Geriatric Depression. Rejuvenation Res 2009; 12(6): 387-93.
[http://dx.doi.org/10.1089/rej.2009.0871] [PMID: 20014955]
[91]
Kaufman J, Yang BZ, Douglas-Palumberi H, et al. Brain-derived neurotrophic factor-5-HTTLPR gene interactions and environmental modifiers of depression in children. Biol Psychiatry 2006; 59(8): 673-80.
[http://dx.doi.org/10.1016/j.biopsych.2005.10.026] [PMID: 16458264]
[92]
Martin L, Hemmings SMJ, Kidd M, Seedat S. No gene-by-environment interaction of BDNF Val66Met polymorphism and childhood maltreatment on anxiety sensitivity in a mixed race adolescent sample. Eur J Psychotraumatol 2018; 9(1): 1472987.
[http://dx.doi.org/10.1080/20008198.2018.1472987] [PMID: 29805780]
[93]
Sharma S, Powers A, Bradley B, Ressler KJ. Gene × environment determinants of stress- and anxiety-related disorders. Annu Rev Psychol 2016; 67(1): 239-61.
[http://dx.doi.org/10.1146/annurev-psych-122414-033408] [PMID: 26442668]
[94]
Gibb BE, McGeary JE, Beevers CG, Miller IW. Serotonin transporter (5-HTTLPR) genotype, childhood abuse, and suicide attempts in adult psychiatric inpatients. Suicide Life Threat Behav 2006; 36(6): 687-93.
[http://dx.doi.org/10.1521/suli.2006.36.6.687] [PMID: 17250473]
[95]
Caspi A, Sugden K, Moffitt TE, et al. Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 2003; 301(5631): 386-9.
[http://dx.doi.org/10.1126/science.1083968] [PMID: 12869766]
[96]
Stein MB, Schork NJ, Gelernter J. Gene-by-environment (serotonin transporter and childhood maltreatment) interaction for anxiety sensitivity, an intermediate phenotype for anxiety disorders. Neuropsychopharmacology 2008; 33(2): 312-9.
[http://dx.doi.org/10.1038/sj.npp.1301422] [PMID: 17460615]
[97]
Maglione JE, Nievergelt CM, Parimi N, et al. Associations of PER3 and RORA circadian gene polymorphisms and depressive symptoms in older adults. Am J Geriatr Psychiatry 2015; 23(10): 1075-87.
[http://dx.doi.org/10.1016/j.jagp.2015.03.002] [PMID: 25892098]
[98]
Min JA, Lee HJ, Lee SH, et al. RORA Polymorphism interacts with childhood maltreatment in determining anxiety sensitivity by sex: A preliminary study in healthy young adults. Clin Psychopharmacol Neurosci 2017; 15(4): 402-6.
[http://dx.doi.org/10.9758/cpn.2017.15.4.402] [PMID: 29073752]
[99]
Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 2006; 31(2): 89-97.
[http://dx.doi.org/10.1016/j.tibs.2005.12.008] [PMID: 16403636]
[100]
Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet 2012; 13(7): 484-92.
[http://dx.doi.org/10.1038/nrg3230] [PMID: 22641018]
[101]
Lin E, Tsai SJ. Genome-wide microarray analysis of gene expression profiling in major depression and antidepressant therapy. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64: 334-40.
[http://dx.doi.org/10.1016/j.pnpbp.2015.02.008] [PMID: 25708651]
[102]
Lutz PE, Turecki G. DNA methylation and childhood maltreatment: From animal models to human studies. Neuroscience 2014; 264: 142-56.
[http://dx.doi.org/10.1016/j.neuroscience.2013.07.069] [PMID: 23933308]
[103]
Gross C, Hen R. The developmental origins of anxiety. Nat Rev Neurosci 2004; 5(7): 545-52.
[http://dx.doi.org/10.1038/nrn1429] [PMID: 15208696]
[104]
Champagne FA, Weaver ICG, Diorio J, Dymov S, Szyf M, Meaney MJ. Maternal care associated with methylation of the estrogen receptor-alpha1b promoter and estrogen receptor-alpha expression in the medial preoptic area of female offspring. Endocrinology 2006; 147(6): 2909-15.
[http://dx.doi.org/10.1210/en.2005-1119] [PMID: 16513834]
[105]
Kinnally EL, Capitanio JP, Leibel R, et al. Epigenetic regulation of serotonin transporter expression and behavior in infant rhesus macaques. Genes Brain Behav 2010; 9(6): 575-82.
[http://dx.doi.org/10.1111/j.1601-183X.2010.00588.x] [PMID: 20398062]
[106]
Murgatroyd C, Patchev AV, Wu Y, et al. Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 2009; 12(12): 1559-66.
[http://dx.doi.org/10.1038/nn.2436] [PMID: 19898468]
[107]
Uchida S, Hara K, Kobayashi A, et al. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron 2011; 69(2): 359-72.
[http://dx.doi.org/10.1016/j.neuron.2010.12.023] [PMID: 21262472]
[108]
Weaver ICG, D’Alessio AC, Brown SE, et al. The transcription factor nerve growth factor-inducible protein a mediates epigenetic programming: altering epigenetic marks by immediate-early genes. J Neurosci 2007; 27(7): 1756-68.
[http://dx.doi.org/10.1523/JNEUROSCI.4164-06.2007] [PMID: 17301183]
[109]
Zhang TY, Hellstrom IC, Bagot RC, Wen X, Diorio J, Meaney MJ. Maternal care and DNA methylation of a glutamic acid decarboxylase 1 promoter in rat hippocampus. J Neurosci 2010; 30(39): 13130-7.
[http://dx.doi.org/10.1523/JNEUROSCI.1039-10.2010] [PMID: 20881131]
[110]
Kouzarides T. Chromatin modifications and their function. Cell 2007; 128(4): 693-705.
[http://dx.doi.org/10.1016/j.cell.2007.02.005] [PMID: 17320507]
[111]
Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293(5532): 1074-80.
[http://dx.doi.org/10.1126/science.1063127] [PMID: 11498575]
[112]
Bredy TW, Wu H, Crego C, Zellhoefer J, Sun YE, Barad M. Histone modifications around individual BDNF gene promoters in prefrontal cortex are associated with extinction of conditioned fear. Learn Mem 2007; 14(4): 268-76.
[http://dx.doi.org/10.1101/lm.500907] [PMID: 17522015]
[113]
Ranjan V, Singh S, Siddiqui SA, Tripathi S, Khan MY, Prakash A. Differential histone acetylation in sub-regions of bed nucleus of the stria terminalis underlies fear consolidation and extinction. Psychiatry Investig 2017; 14(3): 350-9.
[http://dx.doi.org/10.4306/pi.2017.14.3.350] [PMID: 28539954]
[114]
Whittle N, Maurer V, Murphy C, et al. Enhancing dopaminergic signaling and histone acetylation promotes long-term rescue of deficient fear extinction. Transl Psychiatry 2016; 6(12): e974.
[http://dx.doi.org/10.1038/tp.2016.231] [PMID: 27922638]
[115]
Siddiqui SA, Singh S, Ranjan V, Ugale R, Saha S, Prakash A. Enhanced histone acetylation in the infralimbic prefrontal cortex is associated with fear extinction. Cell Mol Neurobiol 2017; 37(7): 1287-301.
[http://dx.doi.org/10.1007/s10571-017-0464-6] [PMID: 28097489]
[116]
Aten S, Page CE, Kalidindi A, et al. miR-132/212 is induced by stress and its dysregulation triggers anxiety-related behavior. Neuropharmacology 2019; 144: 256-70.
[http://dx.doi.org/10.1016/j.neuropharm.2018.10.020] [PMID: 30342060]
[117]
Cohen J. Identification of the MicroRNA MiR-101a and Its Target Ezh2 as Contributors to Rodent Anxiety-Like Behavior 2017.
[118]
Mannironi C, Biundo A, Rajendran S, et al. MiR-135a Regulates Synaptic Transmission and Anxiety-like Behavior in Amygdala 2018; 55: 3301-15.
[119]
Zhu J, Chen Z, Tian J, et al. miR-34b attenuates trauma-induced anxiety-like behavior by targeting CRHR1. Int J Mol Med 2017; 40(1): 90-100.
[http://dx.doi.org/10.3892/ijmm.2017.2981] [PMID: 28498394]
[120]
Hettema JM, Neale MC, Kendler KS. A review and meta-analysis of the genetic epidemiology of anxiety disorders. Am J Psychiatry 2001; 158(10): 1568-78.
[http://dx.doi.org/10.1176/appi.ajp.158.10.1568] [PMID: 11578982]
[121]
Vieland VJ, Goodman DW, Chapman T, Fyer AJ. New Segregation Analysis of Panic Disorder. Wiley Online Libr 1996; 67: 147-53.
[122]
Bandelow B, Baldwin D, Abelli M, et al. Biological markers for anxiety disorders, OCD and PTSD - a consensus statement. Part I: Neuroimaging and genetics. World J Biol Psychiatry 2016; 17(5): 321-65.
[http://dx.doi.org/10.1080/15622975.2016.1181783] [PMID: 27403679]
[123]
Janak PH, Tye KM. From circuits to behaviour in the amygdala. Nat 2015; 517: 284-92.
[http://dx.doi.org/10.1038/nature14188]
[124]
Gilpin NW, Herman MA, Roberto M. The central amygdala as an integrative hub for anxiety and alcohol use disorders. Biol Psychiatry 2015; 77(10): 859-69.
[http://dx.doi.org/10.1016/j.biopsych.2014.09.008] [PMID: 25433901]
[125]
Robinson OJ, Pike AC, Cornwell B, Grillon C. The translational neural circuitry of anxiety. J Neurol Neurosurg Psychiatry 2019; 90(12): 1353-60.
[PMID: 31256001]
[126]
Yang Y, Herrup K. Cell division in the CNS: Protective response or lethal event in post-mitotic neurons? Biochim Biophys Acta Mol Basis Dis 2007; 1772(4): 457-66.
[http://dx.doi.org/10.1016/j.bbadis.2006.10.002] [PMID: 17158035]
[127]
Friedman J. Why Is the Nervous System Vulnerable to Oxidative Stress?. Oxidative Stress Free Radic. Damage Neurol 2011; pp. 19-27.
[http://dx.doi.org/10.1007/978-1-60327-514-9_2]
[128]
Mason JW, Wang S, Yehuda R, et al. Marked lability in urinary cortisol levels in subgroups of combat veterans with posttraumatic stress disorder during an intensive exposure treatment program. Psychosom Med 2002; 64(2): 238-46.
[http://dx.doi.org/10.1097/00006842-200203000-00006]
[129]
Wilkinson BL, Landreth GE. The microglial NADPH oxidase complex as a source of oxidative stress in Alzheimer’s disease. J Neuroinflammation 2006; 3(1): 30.
[http://dx.doi.org/10.1186/1742-2094-3-30] [PMID: 17094809]
[130]
Choi SH, Lee DY, Kim SU, Jin BK. Thrombin-induced oxidative stress contributes to the death of hippocampal neurons in vivo: role of microglial NADPH oxidase. J Neurosci 2005; 25(16): 4082-90.
[http://dx.doi.org/10.1523/JNEUROSCI.4306-04.2005] [PMID: 15843610]
[131]
Ding Q, Keller JN. Proteasomes and proteasome inhibition in the central nervous system. Free Radic Biol Med 2001; 31(5): 574-84.
[http://dx.doi.org/10.1016/S0891-5849(01)00635-9] [PMID: 11522442]
[132]
Davies KJA. Degradation of oxidized proteins by the 20S proteasome. Biochimie 2001; 83(3-4): 301-10.
[http://dx.doi.org/10.1016/S0300-9084(01)01250-0] [PMID: 11295490]
[133]
Raynes R, Pomatto LCD, Davies KJA. Degradation of oxidized proteins by the proteasome: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways. Mol Aspects Med 2016; 50: 41-55.
[http://dx.doi.org/10.1016/j.mam.2016.05.001] [PMID: 27155164]
[134]
Bulfin LJ, Clarke MA, Buller KM, Spencer SJ. Anxiety and hypothalamic-pituitary-adrenal axis responses to psychological stress are attenuated in male rats made lean by large litter rearing. Psychoneuroendocrinology 2011; 36(7): 1080-91.
[http://dx.doi.org/10.1016/j.psyneuen.2011.01.006] [PMID: 21349647]
[135]
Chen F, Zhou L, Bai Y, Zhou R, Chen L. Hypothalamic-pituitary-adrenal axis hyperactivity accounts for anxiety- and depression-like behaviors in rats perinatally exposed to bisphenol A. J Biomed Res 2015; 29(3): 250-8.
[PMID: 26060449]
[136]
Costantini D, Marasco V, Møller AP. A meta-analysis of glucocorticoids as modulators of oxidative stress in vertebrates. J Comp Physiol B 2011; 181(4): 447-56.
[http://dx.doi.org/10.1007/s00360-011-0566-2] [PMID: 21416253]
[137]
Streit WJ. Microglial activation and neuroinflammation in Alzheimer’s disease: A critical examination of recent history. Front Aging Neurosci 2010; 2: 22.
[http://dx.doi.org/10.3389/fnagi.2010.00022] [PMID: 20577641]
[138]
Svenungsson E, Andersson M, Brundin L, et al. Increased levels of proinflammatory cytokines and nitric oxide metabolites in neuropsychiatric lupus erythematosus. Ann Rheum Dis 2001; 60(4): 372-9.
[http://dx.doi.org/10.1136/ard.60.4.372]
[139]
Patki G, Solanki N, Atrooz F, Allam F, Salim S. Depression, anxiety-like behavior and memory impairment are associated with increased oxidative stress and inflammation in a rat model of social stress. Brain Res 2013; 1539: 73-86.
[http://dx.doi.org/10.1016/j.brainres.2013.09.033] [PMID: 24096214]
[140]
Brocardo PS, Boehme F, Patten A, Cox A, Gil-Mohapel J, Christie BR. Anxiety- and depression-like behaviors are accompanied by an increase in oxidative stress in a rat model of fetal alcohol spectrum disorders: Protective effects of voluntary physical exercise. Neuropharmacology 2012; 62(4): 1607-18.
[http://dx.doi.org/10.1016/j.neuropharm.2011.10.006] [PMID: 22019722]
[141]
Bouayed J, Rammal H, Soulimani R. Oxidative stress and anxiety: Relationship and cellular pathways. Oxid Med Cell Longev 2009; 2(2): 63-7.
[http://dx.doi.org/10.4161/oxim.2.2.7944] [PMID: 20357926]
[142]
Filiou MD, Asara JM, Nussbaumer M, Teplytska L, Landgraf R, Turck CW. Behavioral extremes of trait anxiety in mice are characterized by distinct metabolic profiles. J Psychiatr Res 2014; 58: 115-22.
[http://dx.doi.org/10.1016/j.jpsychires.2014.07.019] [PMID: 25124548]
[143]
Filiou MD, Zhang Y, Teplytska L, et al. Proteomics and metabolomics analysis of a trait anxiety mouse model reveals divergent mitochondrial pathways. Biol Psychiatry 2011; 70(11): 1074-82.
[http://dx.doi.org/10.1016/j.biopsych.2011.06.009] [PMID: 21791337]
[144]
Krömer SA, Kessler MS, Milfay D, et al. Identification of glyoxalase-I as a protein marker in a mouse model of extremes in trait anxiety. J Neurosci 2005; 25(17): 4375-84.
[http://dx.doi.org/10.1523/JNEUROSCI.0115-05.2005] [PMID: 15858064]
[145]
Kooij M. van der, Hollis F, Lozano L. Diazepam actions in the VTA enhance social dominance and mitochondrial function in the nucleus accumbens by activation of dopamine d1 receptors. Mol Psychiatry 2018; 23(3): 569-78.
[http://dx.doi.org/10.1038/mp.2017.135] [PMID: 28727688]
[146]
Lener MS, Niciu MJ, Ballard ED, et al. Glutamate and Gamma-Aminobutyric Acid Systems in the Pathophysiology of Major Depression and Antidepressant Response to Ketamine. Biol Psychiatry 2017; 81(10): 886-97.
[http://dx.doi.org/10.1016/j.biopsych.2016.05.005] [PMID: 27449797]
[147]
Miyaoka H, Suzuki Y, Taniyama M. Mental disorders in diabetic patients with mitochondrial transfer RNALeu (UUR) mutation at position 3243. Biol Psychiatry 1997; 42(6): 524-6.
[http://dx.doi.org/10.1016/S0006-3223(97)00280-1] [PMID: 9285090]
[148]
Boles RG, Burnett BB, Gleditsch K, et al. A High Predisposition to Depression and Anxiety in Mothers and Other Matrilineal Relatives of Children with Presumed Maternally Inherited Mitochondrial Disorders. Am J Med Genet - Neuropsychiatr Genet 2005; 137B(1): 20-4.
[http://dx.doi.org/10.1002/ajmg.b.30199] [PMID: 15965966]
[149]
Weiss L. The interaction of drugs and stress on the behavior of the central nervous system. Ohio State University: University of Michigan 1962; pp. 1-190.
[150]
van den Ameele S, Fuchs D, Coppens V, et al. Markers of Inflammation and Monoamine Metabolism Indicate Accelerated Aging in Bipolar Disorder. Front Psychiatry 2018; 9: 250.
[http://dx.doi.org/10.3389/fpsyt.2018.00250] [PMID: 29962973]
[151]
Bui E, King F, Melaragno A. Pharmacotherapy of Anxiety Disorders in the 21st Century: A Call for Novel Approaches. Gen psychiatry 2019; 32(6): e100136.
[http://dx.doi.org/10.1136/gpsych-2019-100136]
[152]
Żmudzka E, Sałaciak K, Sapa J, Pytka K. Serotonin receptors in depression and anxiety: Insights from animal studies. Life Sci 2018; 210: 106-24.
[http://dx.doi.org/10.1016/j.lfs.2018.08.050] [PMID: 30144453]
[153]
Ravindran LN, Stein MB. The pharmacologic treatment of anxiety disorders: a review of progress. J Clin Psychiatry 2010; 71(7): 839-54.
[http://dx.doi.org/10.4088/JCP.10r06218blu] [PMID: 20667290]
[154]
Roy-Byrne P. Treatment-refractory anxiety; definition, risk factors, and treatment challenges. Dialogues Clin Neurosci 2015; 17(2): 191-206.
[http://dx.doi.org/10.31887/DCNS.2015.17.2/proybyrne] [PMID: 26246793]
[155]
Pecknold JC, Swinson RP, Kuch K, Lewis CP. Alprazolam in panic disorder and agoraphobia: results from a multicenter trial. III. Discontinuation effects. Arch Gen Psychiatry 1988; 45(5): 429-36.
[http://dx.doi.org/10.1001/archpsyc.1988.01800290043006] [PMID: 3282479]
[156]
Murrough JW, Yaqubi S, Sayed S, Charney DS. Emerging drugs for the treatment of anxiety. Expert Opin Emerg Drugs 2015; 20(3): 393-406.
[http://dx.doi.org/10.1517/14728214.2015.1049996] [PMID: 26012843]
[157]
Pitman RK, Rasmusson AM, Koenen KC, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci 2012; 13(11): 769-87.
[http://dx.doi.org/10.1038/nrn3339] [PMID: 23047775]
[158]
Demyttenaere K, Bruffaerts R, Posada-Villa J, et al. Prevalence, severity, and unmet need for treatment of mental disorders in the World Health Organization World Mental Health Surveys. JAMA 2004; 291(21): 2581-90.
[http://dx.doi.org/10.1001/jama.291.21.2581] [PMID: 15173149]
[159]
Ipser JC, Stein DJ, Hawkridge S, Hoppe L. Pharmacotherapy for anxiety disorders in children and adolescents. Cochrane Libr 2009; (3): CD005170.
[http://dx.doi.org/10.1002/14651858.CD005170.pub2] [PMID: 19588367]
[160]
Lenze EJ, Rollman BL, Shear MK, et al. Escitalopram for older adults with generalized anxiety disorder: a randomized controlled trial. JAMA 2009; 301(3): 295-303.
[http://dx.doi.org/10.1001/jama.2008.977] [PMID: 19155456]
[161]
Shah A, Jhawar SS, Goel A. Analysis of the anatomy of the Papez circuit and adjoining limbic system by fiber dissection techniques. J Clin Neurosci 2012; 19(2): 289-98.
[http://dx.doi.org/10.1016/j.jocn.2011.04.039] [PMID: 22209397]
[162]
Jongen-Rêlo AL, Amaral DG. Evidence for a GABAergic projection from the central nucleus of the amygdala to the brainstem of the macaque monkey: a combined retrograde tracing and in situ hybridization study. Eur J Neurosci 1998; 10(9): 2924-33.
[http://dx.doi.org/10.1111/j.1460-9568.1998.00299.x] [PMID: 9758162]
[163]
Etkin A. Functional neuroanatomy of anxiety: a neural circuit perspective. Curr Top Behav Neurosci 2009; 2: 251-77.
[http://dx.doi.org/10.1007/7854_2009_5] [PMID: 21309113]
[164]
Kober H, Barrett LF, Joseph J, Bliss-Moreau E, Lindquist K, Wager TD. Functional grouping and cortical-subcortical interactions in emotion: A meta-analysis of neuroimaging studies. Neuroimage 2008; 42(2): 998-1031.
[http://dx.doi.org/10.1016/j.neuroimage.2008.03.059] [PMID: 18579414]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy