Generic placeholder image

Current Bioinformatics

Editor-in-Chief

ISSN (Print): 1574-8936
ISSN (Online): 2212-392X

Review Article

Advances in Peptide/Protein Structure Prediction Tools and their Relevance for Structural Biology in the Last Decade

Author(s): Samilla B. Rezende, Lucas R. Lima, Maria L. R. Macedo, Octávio L. Franco and Marlon H. Cardoso*

Volume 18, Issue 7, 2023

Published on: 12 June, 2023

Page: [559 - 575] Pages: 17

DOI: 10.2174/1574893618666230412080702

Price: $65

Abstract

Peptides and proteins are involved in several biological processes at a molecular level. In this context, three-dimensional structure characterization and determination of peptides and proteins have helped researchers unravel the chemical and biological role of these macromolecules. Over 50 years, peptide and protein structures have been determined by experimental methods, including nuclear magnetic resonance (NMR), X-ray crystallography, and cryo-electron microscopy (cryo-EM). Therefore, an increasing number of atomic coordinates for peptides and proteins have been deposited in public databases, thus assisting the development of computational tools for predicting unknown 3D structures. In the last decade, a race for innovative methods has arisen in computational sciences, including more complex biological activity and structure prediction algorithms. As a result, peptide/protein theoretical models have achieved a new level of structure prediction accuracy compared with experimentally determined structures. Machine learning and deep learning approaches, for instance, incorporate fundamental aspects of peptide/protein geometry and include physical/biological knowledge about these macromolecules' experimental structures to build more precise computational models. Additionally, computational strategies have helped structural biology, including comparative, threading, and ab initio modeling and, more recently, prediction tools based on machine learning and deep learning. Bearing this in mind, here we provide a retrospective of protein and peptide structure prediction tools, highlighting their advances and obstacles and how they have assisted researchers in answering crucial biological questions.

Graphical Abstract

[1]
Torres MDT, de la Fuente-Nunez C. Toward computer-made artificial antibiotics. Curr Opin Microbiol 2019; 51: 30-8.
[http://dx.doi.org/10.1016/j.mib.2019.03.004] [PMID: 31082661]
[2]
Setiawan D, Brender J, Zhang Y. Recent advances in automated protein design and its future challenges. Expert Opin Drug Discov 2018; 13(7): 587-604.
[http://dx.doi.org/10.1080/17460441.2018.1465922] [PMID: 29695210]
[3]
Cardoso MH, Oshiro KGN, Rezende SB, Cândido ES, Franco OL. The structure/function relationship in antimicrobial peptides: what can we obtain from structural data? Adv Protein Chem Struct Biol 2018; 112: 359-84.
[http://dx.doi.org/10.1016/bs.apcsb.2018.01.008] [PMID: 29680241]
[4]
Nygaard R, Kim J, Mancia F. Cryo-electron microscopy analysis of small membrane proteins. Curr Opin Struct Biol 2020; 64: 26-33.
[http://dx.doi.org/10.1016/j.sbi.2020.05.009] [PMID: 32603877]
[5]
Masrati G, Landau M, Ben-Tal N, Lupas A, Kosloff M, Kosinski J. Integrative structural biology in the era of accurate structure prediction. J Mol Biol 2021; 433(20): 167127.
[http://dx.doi.org/10.1016/j.jmb.2021.167127] [PMID: 34224746]
[6]
Skolnick J, Gao M, Zhou H, Singh S. AlphaFold 2: Why it works and its implications for understanding the relationships of protein sequence, structure, and function. J Chem Inf Model 2021; 61(10): 4827-31.
[http://dx.doi.org/10.1021/acs.jcim.1c01114] [PMID: 34586808]
[7]
Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. Critical assessment of methods of protein structure prediction (CASP)—Round XIV. Proteins 2021; 89(12): 1607-17.
[http://dx.doi.org/10.1002/prot.26237] [PMID: 34533838]
[8]
Tunyasuvunakool K, Adler J, Wu Z, et al. Highly accurate protein structure prediction for the human proteome. Nature 2021; 596(7873): 590-6.
[http://dx.doi.org/10.1038/s41586-021-03828-1] [PMID: 34293799]
[9]
Cardoso MH, Orozco RQ, Rezende SB, et al. Computer-aided design of antimicrobial peptides: Are we generating effective drug candidates? Front Microbiol 2020; 10: 3097.
[http://dx.doi.org/10.3389/fmicb.2019.03097] [PMID: 32038544]
[10]
Schneider G, Fechner U. Computer-based de novo design of drug-like molecules. Nat Rev Drug Discov 2005; 4(8): 649-63.
[http://dx.doi.org/10.1038/nrd1799] [PMID: 16056391]
[11]
Renaud N, Geng C, Georgievska S, et al. DeepRank: A deep learning framework for data mining 3D protein-protein interfaces. Nat Commun 2021; 12(1): 7068.
[http://dx.doi.org/10.1038/s41467-021-27396-0] [PMID: 34862392]
[12]
Zaki MJ, Nadimpally V, Bardhan D, Bystroff C. Predicting protein folding pathways. Bioinformatics 2004; 20(S1): i386-93.
[http://dx.doi.org/10.1093/bioinformatics/bth935] [PMID: 15262824]
[13]
Bragg WL. The specular reflection of x-rays. Nature 1912; 90(2250): 410.
[http://dx.doi.org/10.1038/090410b0]
[14]
Dobson CM. Biophysical techniques in structural biology. Annu Rev Biochem 2019; 88(1): 25-33.
[http://dx.doi.org/10.1146/annurev-biochem-013118-111947] [PMID: 30986087]
[15]
Einstein A. On a heuristic point of view concerning the production and transformation of light. Ann Phys 1905; 322(6): 4.
[http://dx.doi.org/10.1002/andp.19053220607]
[16]
Hoover DM, Rajashankar KR, Blumenthal R, et al. The structure of human β-defensin-2 shows evidence of higher order oligomerization. J Biol Chem 2000; 275(42): 32911-8.
[http://dx.doi.org/10.1074/jbc.M006098200] [PMID: 10906336]
[17]
Cowtan K. Phase problem in x-ray crystallography, and its solution. In: eLS Hoboken, New Jersey: Wiley. 2001.
[http://dx.doi.org/10.1038/npg.els.0002722]
[18]
Patterson AL. A Fourier series method for the determination of the components of interatomic distances in crystals. Phys Rev 1934; 46(5): 372-6.
[http://dx.doi.org/10.1103/PhysRev.46.372]
[19]
Gemmi M, Mugnaioli E, Gorelik TE, et al. 3D electron diffraction: The nanocrystallography revolution. ACS Cent Sci 2019; 5(8): 1315-29.
[http://dx.doi.org/10.1021/acscentsci.9b00394] [PMID: 31482114]
[20]
Kent SBH. Racemic & quasi-racemic protein crystallography enabled by chemical protein synthesis. Curr Opin Chem Biol 2018; 46: 1-9.
[http://dx.doi.org/10.1016/j.cbpa.2018.03.012] [PMID: 29626784]
[21]
Huang YC, Chen CC, Gao S, et al. Synthesis of l‐and d‐ubiquitin by one‐pot ligation and metal‐free desulfurization. Chemistry 2016; 22(22): 7623-8.
[http://dx.doi.org/10.1002/chem.201600101] [PMID: 27075969]
[22]
Okamoto R, Mandal K, Sawaya MR, Kajihara Y, Yeates TO, Kent SBH. (Quasi-)racemic X-ray structures of glycosylated and non-glycosylated forms of the chemokine Ser-CCL1 prepared by total chemical synthesis. Angew Chem Int Ed 2014; 53(20): 5194-8.
[http://dx.doi.org/10.1002/anie.201400679] [PMID: 24692304]
[23]
Brooks-Bartlett JC, Garman EF. The nobel science: One hundred years of crystallography. Interdiscip Sci Rev 2015; 40(3): 244-64.
[http://dx.doi.org/10.1179/0308018815Z.000000000116]
[24]
Aue WP, Bartholdi E, Ernst RR. Two‐dimensional spectroscopy. Application to nuclear magnetic resonance. J Chem Phys 1976; 64(5): 2229-46.
[http://dx.doi.org/10.1063/1.432450]
[25]
Bai X, McMullan G, Scheres SHW. How cryo-EM is revolutionizing structural biology. Trends Biochem Sci 2015; 40(1): 49-57.
[http://dx.doi.org/10.1016/j.tibs.2014.10.005] [PMID: 25544475]
[26]
Cressey D, Callaway E. Cryo-electron microscopy wins chemistry Nobel. Nature 2017; 550(7675): 167.
[http://dx.doi.org/10.1038/nature.2017.22738] [PMID: 29022937]
[27]
Liu T, Tang GW, Capriotti E. Comparative modeling: The state of the art and protein drug target structure prediction. Comb Chem 2011; 14(6): 532-47.
[PMID: 21521153]
[28]
Zheng W, Zhang C, Li Y, Pearce R, Bell EW, Zhang Y. Folding non-homologous proteins by coupling deep-learning contact maps with I-TASSER assembly simulations. Cell Reports Methods 2021; 1(3): 100014.
[http://dx.doi.org/10.1016/j.crmeth.2021.100014] [PMID: 34355210]
[29]
Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021; 596(7873): 583-9.
[http://dx.doi.org/10.1038/s41586-021-03819-2] [PMID: 34265844]
[30]
Nakano S, Megro S, Hase T, et al. Computational molecular docking and X-ray crystallographic studies of catechins in new drug design strategies. Molecules 2018; 23(8): 2020.
[http://dx.doi.org/10.3390/molecules23082020] [PMID: 30104534]
[31]
Li M, Hagerman AE. Role of the flavan-3-ol and galloyl moieties in the interaction of (-)-epigallocatechin gallate with serum albumin. J Agric Food Chem 2014; 62(17): 3768-75.
[http://dx.doi.org/10.1021/jf500246m] [PMID: 24712545]
[32]
Riley BT, Wankowicz SA, Oliveira SHP, et al. qFit 3: Protein and ligand multiconformer modeling for X‐ray crystallographic and single‐particle cryo‐EM density maps. Protein Sci 2021; 30(1): 270-85.
[http://dx.doi.org/10.1002/pro.4001] [PMID: 33210433]
[33]
Callaway E. ‘It opens up a whole new universe’: Revolutionary microscopy technique sees individual atoms for first time. Nature 2020; 582(7811): 156-7.
[http://dx.doi.org/10.1038/d41586-020-01658-1] [PMID: 32518336]
[34]
Dalvit C. NMR methods in fragment screening: Theory and a comparison with other biophysical techniques. Drug Discov Today 2009; 14(21-22): 1051-7.
[http://dx.doi.org/10.1016/j.drudis.2009.07.013] [PMID: 19716431]
[35]
Rosengren KJ, Daly NL, Plan MR, Waine C, Craik DJ. Twists, knots, and rings in proteins. Structural definition of the cyclotide framework. J Biol Chem 2003; 278(10): 8606-16.
[http://dx.doi.org/10.1074/jbc.M211147200] [PMID: 12482868]
[36]
Resende JM, Moraes CM, Prates MV, et al. Solution NMR structures of the antimicrobial peptides phylloseptin-1, -2, and -3 and biological activity: The role of charges and hydrogen bonding interactions in stabilizing helix conformations. Peptides 2008; 29(10): 1633-44.
[http://dx.doi.org/10.1016/j.peptides.2008.06.022] [PMID: 18656510]
[37]
Campagna S, Saint N, Molle G, Aumelas A. Structure and mechanism of action of the antimicrobial peptide piscidin. Biochemistry 2007; 46(7): 1771-8.
[http://dx.doi.org/10.1021/bi0620297] [PMID: 17253775]
[38]
Sekhar A, Kay LE. An NMR view of protein dynamics in health and disease. Annu Rev Biophys 2019; 48(1): 297-319.
[http://dx.doi.org/10.1146/annurev-biophys-052118-115647] [PMID: 30901260]
[39]
ElGamacy M, Riss M, Zhu H, Truffault V, Coles M. Mapping local conformational landscapes of proteins in solution. Structure 2019; 27(5): 853-65.
[http://dx.doi.org/10.1016/j.str.2019.03.005]
[40]
Kavousi K, Bagheri M, Behrouzi S, et al. IAMPE: NMR-assisted computational prediction of antimicrobial peptides. J Chem Inf Model 2020; 60(10): 4691-701.
[http://dx.doi.org/10.1021/acs.jcim.0c00841] [PMID: 32946226]
[41]
Cole CA, Daigham NS, Liu G, Montelione GT, Valafar H. REDCRAFT: A computational platform using residual dipolar coupling NMR data for determining structures of perdeuterated proteins in solution. PLOS Comput Biol 2021; 17(2): e1008060.
[http://dx.doi.org/10.1371/journal.pcbi.1008060] [PMID: 33524015]
[42]
Marzolf DR, Seffernick JT, Lindert S. Protein structure prediction from NMR hydrogen–deuterium exchange data. J Chem Theory Comput 2021; 17(4): 2619-29.
[http://dx.doi.org/10.1021/acs.jctc.1c00077] [PMID: 33780620]
[43]
Cole C, Parks C, Rachele J, Valafar H. Increased usability, algorithmic improvements and incorporation of data mining for structure calculation of proteins with REDCRAFT software package. BMC Bioinformatics 2020; 21(S9) (Suppl. 9): 204.
[http://dx.doi.org/10.1186/s12859-020-3522-x] [PMID: 33272215]
[44]
Robertson JC, Nassar R, Liu C, Brini E, Dill KA, Perez A. NMR‐assisted protein structure prediction with MELDxMD. Proteins 2019; 87(12): 1333-40.
[http://dx.doi.org/10.1002/prot.25788] [PMID: 31350773]
[45]
Fowler NJ, Sljoka A, Williamson MP. A method for validating the accuracy of NMR protein structures. Nat Commun 2020; 11(1): 6321.
[http://dx.doi.org/10.1038/s41467-020-20177-1] [PMID: 33339822]
[46]
Cheng Y, Grigorieff N, Penczek PA, Walz T. A primer to single-particle cryo-electron microscopy. Cell 2015; 161(3): 438-49.
[http://dx.doi.org/10.1016/j.cell.2015.03.050] [PMID: 25910204]
[47]
Kühlbrandt W. Biochemistry. The resolution revolution. Science 2014; 343(6178): 1443-4.
[http://dx.doi.org/10.1126/science.1251652] [PMID: 24675944]
[48]
Boge L, Bysell H, Ringstad L, et al. Lipid-based liquid crystals as carriers for antimicrobial peptides: Phase behavior and antimicrobial effect. Langmuir 2016; 32(17): 4217-28.
[http://dx.doi.org/10.1021/acs.langmuir.6b00338] [PMID: 27033359]
[49]
Bonomi M, Vendruscolo M. Determination of protein structural ensembles using cryo-electron microscopy. Curr Opin Struct Biol 2019; 56: 37-45.
[http://dx.doi.org/10.1016/j.sbi.2018.10.006] [PMID: 30502729]
[50]
van den Bedem H, Fraser JS. Integrative, dynamic structural biology at atomic resolution—it’s about time. Nat Methods 2015; 12(4): 307-18.
[http://dx.doi.org/10.1038/nmeth.3324] [PMID: 25825836]
[51]
Ward AB, Sali A, Wilson IA. Biochemistry. Integrative structural biology. Science 2013; 339(6122): 913-5.
[http://dx.doi.org/10.1126/science.1228565] [PMID: 23430643]
[52]
Pfab J, Phan NM, Si D. DeepTracer for fast de novo cryo-EM protein structure modeling and special studies on CoV-related complexes. Proc Natl Acad Sci 2021; 118(2): e2017525118.
[http://dx.doi.org/10.1073/pnas.2017525118] [PMID: 33361332]
[53]
Cossio P, Rohr D, Baruffa F, et al. BioEM: GPU-accelerated computing of Bayesian inference of electron microscopy images. Comput Phys Commun 2017; 210: 163-71.
[http://dx.doi.org/10.1016/j.cpc.2016.09.014]
[54]
Cossio P, Allegretti M, Mayer F, Müller V, Vonck J, Hummer G. Bayesian inference of rotor ring stoichiometry from electron microscopy images of archaeal ATP synthase. Microscopy 2018; 67(5): 266-73.
[http://dx.doi.org/10.1093/jmicro/dfy033] [PMID: 30032235]
[55]
Zhang B, Zhang X, Pearce R, Shen HB, Zhang Y. A new protocol for atomic-level protein structure modeling and refinement using low-to-medium resolution cryo-EM density maps. J Mol Biol 2020; 432(19): 5365-77.
[http://dx.doi.org/10.1016/j.jmb.2020.07.027] [PMID: 32771523]
[56]
Bystroff C, Shao Y. Fully automated ab initio protein structure prediction using I-SITES, HMMSTR and ROSETTA. Bioinformatics 2002; 18(S1): S54-61.
[http://dx.doi.org/10.1093/bioinformatics/18.suppl_1.S54] [PMID: 12169531]
[57]
Zhang Y, Kolinski A, Skolnick J. TOUCHSTONE II: A new approach to ab initio protein structure prediction. Biophys J 2003; 85(2): 1145-64.
[http://dx.doi.org/10.1016/S0006-3495(03)74551-2] [PMID: 12885659]
[58]
Zhang Y, Skolnick J. Automated structure prediction of weakly homologous proteins on a genomic scale. Proc Natl Acad Sci 2004; 101(20): 7594-9.
[http://dx.doi.org/10.1073/pnas.0305695101] [PMID: 15126668]
[59]
Zhang Y, Skolnick J. SPICKER: A clustering approach to identify near-native protein folds. J Comput Chem 2004; 25(6): 865-71.
[http://dx.doi.org/10.1002/jcc.20011] [PMID: 15011258]
[60]
Torrisi M, Pollastri G, Le Q. Deep learning methods in protein structure prediction. Comput Struct Biotechnol J 2020; 18: 1301-10.
[http://dx.doi.org/10.1016/j.csbj.2019.12.011] [PMID: 32612753]
[61]
Osguthorpe D. Ab initio protein folding. Curr Opin Struct Biol 2000; 10(2): 146-52.
[http://dx.doi.org/10.1016/S0959-440X(00)00067-1] [PMID: 10753815]
[62]
Lee EY, Lee MW, Fulan BM, Ferguson AL, Wong GCL. What can machine learning do for antimicrobial peptides, and what can antimicrobial peptides do for machine learning? Interface Focus 2017; 7(6): 20160153.
[http://dx.doi.org/10.1098/rsfs.2016.0153] [PMID: 29147555]
[63]
Zhang Y, Kihara D, Skolnick J. Local energy landscape flattening: Parallel hyperbolic Monte Carlo sampling of protein folding. Proteins 2002; 48(2): 192-201.
[http://dx.doi.org/10.1002/prot.10141] [PMID: 12112688]
[64]
Guex N, Peitsch MC, Schwede T. Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: A historical perspective. Electrophoresis 2009; 30(S1): S162-73.
[http://dx.doi.org/10.1002/elps.200900140] [PMID: 19517507]
[65]
Guex N, Peitsch MC. SWISS-MODEL and the swiss-Pdb viewer: An environment for comparative protein modeling. Electrophoresis 1997; 18(15): 2714-23.
[http://dx.doi.org/10.1002/elps.1150181505] [PMID: 9504803]
[66]
Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990; 215(3): 403-10.
[http://dx.doi.org/10.1016/S0022-2836(05)80360-2] [PMID: 2231712]
[67]
Eddy SR. Profile hidden markov models. Bioinformatics 1998; 14(9): 755-63.
[http://dx.doi.org/10.1093/bioinformatics/14.9.755] [PMID: 9918945]
[68]
Söding J. Protein homology detection by HMM–HMM comparison. Bioinformatics 2005; 21(7): 951-60.
[http://dx.doi.org/10.1093/bioinformatics/bti125] [PMID: 15531603]
[69]
Wallner B, Elofsson A. Prediction of global and local model quality in CASP7 using Pcons and ProQ. Proteins 2007; 69(S8): 184-93.
[http://dx.doi.org/10.1002/prot.21774] [PMID: 17894353]
[70]
Syed R, Rani R, Sabeena , Masoodi TA, Shafi G, Alharbi K. Functional analysis and structure determination of alkaline protease from Aspergillus flavus. Bioinformation 2012; 8(4): 175-80.
[http://dx.doi.org/10.6026/97320630008175] [PMID: 22419836]
[71]
Sahay A, Piprodhe A, Pise M. In silico analysis and homology modeling of strictosidine synthase involved in alkaloid biosynthesis in catharanthus roseus. J Genet Eng Biotechnol 2020; 18(1): 44.
[http://dx.doi.org/10.1186/s43141-020-00049-3] [PMID: 32857261]
[72]
Khan FI, Govender A, Permaul K, Singh S, Bisetty K. Thermostable chitinase II from Thermomyces lanuginosus SSBP: Cloning, structure prediction and molecular dynamics simulations. J Theor Biol 2015; 374: 107-14.
[http://dx.doi.org/10.1016/j.jtbi.2015.03.035] [PMID: 25861869]
[73]
Khan FI, Nizami B, Anwer R, et al. Structure prediction and functional analyses of a thermostable lipase obtained from Shewanella putrefaciens. J Biomol Struct Dyn 2017; 35(10): 2123-35.
[http://dx.doi.org/10.1080/07391102.2016.1206837] [PMID: 27366981]
[74]
Eswar N, Eramian D, Webb B, Shen MY, Sali A. Protein structure modeling with MODELLER. Mol Biol 2014; 1137: 1-15.
[http://dx.doi.org/10.1007/978-1-60327-058-8_8]
[75]
Šali A, Blundell TL. Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 1993; 234(3): 779-815.
[http://dx.doi.org/10.1006/jmbi.1993.1626] [PMID: 8254673]
[76]
Brooks BR, Brooks CL III, Mackerell AD Jr, et al. CHARMM: The biomolecular simulation program. J Comput Chem 2009; 30(10): 1545-614.
[http://dx.doi.org/10.1002/jcc.21287] [PMID: 19444816]
[77]
Shen M, Sali A. Statistical potential for assessment and prediction of protein structures. Protein Sci 2006; 15(11): 2507-24.
[http://dx.doi.org/10.1110/ps.062416606] [PMID: 17075131]
[78]
Song Y, DiMaio F, Wang RYR, et al. High-resolution comparative modeling with RosettaCM. Structure 2013; 21(10): 1735-42.
[http://dx.doi.org/10.1016/j.str.2013.08.005] [PMID: 24035711]
[79]
Chen Y, Shang Y, Xu D, Eds. Multi-dimensional scaling and MODELLER-based evolutionary algorithms for protein model refinement. Proc Congr Evol Comput2014 2014; 1038-45.
[http://dx.doi.org/10.1109/CEC.2014.6900443]
[80]
Simons KT, Kooperberg C, Huang E, Baker D. Assembly of protein tertiary structures from fragments with similar local sequences using simulated annealing and bayesian scoring functions. J Mol Biol 1997; 268(1): 209-25.
[http://dx.doi.org/10.1006/jmbi.1997.0959] [PMID: 9149153]
[81]
Karplus K, Barrett C, Hughey R. Hidden Markov models for detecting remote protein homologies. Bioinformatics 1998; 14(10): 846-56.
[http://dx.doi.org/10.1093/bioinformatics/14.10.846] [PMID: 9927713]
[82]
Bonetta R, Valentino G. Machine learning techniques for protein function prediction. Proteins 2020; 88(3): 397-413.
[http://dx.doi.org/10.1002/prot.25832] [PMID: 31603244]
[83]
Goodfellow I, Bengio Y, Courville A. Deep learning. Cambridge, USA: MIT press 2016.
[84]
Liebschner D, Afonine PV, Baker ML, et al. Macromolecular structure determination using X-rays, neutrons and electrons: Recent developments in Phenix. Acta Crystallogr D Struct Biol 2019; 75(10): 861-77.
[http://dx.doi.org/10.1107/S2059798319011471] [PMID: 31588918]
[85]
Wang S, Sun S, Li Z, Zhang R, Xu J. Accurate de novo prediction of protein contact map by ultra-deep learning model. PLOS Comput Biol 2017; 13(1): e1005324.
[http://dx.doi.org/10.1371/journal.pcbi.1005324] [PMID: 28056090]
[86]
Adhikari B, Hou J, Cheng J. DNCON2: Improved protein contact prediction using two-level deep convolutional neural networks. Bioinformatics 2018; 34(9): 1466-72.
[http://dx.doi.org/10.1093/bioinformatics/btx781] [PMID: 29228185]
[87]
Liu Y, Palmedo P, Ye Q, Berger B, Peng J. Enhancing evolutionary couplings with deep convolutional neural networks. Cell Syst 2018; 6(1): 65-74.e3.
[http://dx.doi.org/10.1016/j.cels.2017.11.014]
[88]
Senior AW, Evans R, Jumper J, et al. Improved protein structure prediction using potentials from deep learning. Nature 2020; 577(7792): 706-10.
[http://dx.doi.org/10.1038/s41586-019-1923-7] [PMID: 31942072]
[89]
Michel M, Menéndez HD, Elofsson A. PconsC4: Fast, accurate and hassle-free contact predictions. Bioinformatics 2019; 35(15): 2677-9.
[http://dx.doi.org/10.1093/bioinformatics/bty1036] [PMID: 30590407]
[90]
Li Y, Zhang C, Bell EW, Yu DJ, Zhang Y. Ensembling multiple raw coevolutionary features with deep residual neural networks for contact‐map prediction in CASP13. Proteins 2019; 87(12): 1082-91.
[http://dx.doi.org/10.1002/prot.25798] [PMID: 31407406]
[91]
Kryshtafovych A, Schwede T, Topf M, Fidelis K, Moult J. Critical assessment of methods of protein structure prediction (CASP)—Round XIII. Proteins 2019; 87(12): 1011-20.
[http://dx.doi.org/10.1002/prot.25823] [PMID: 31589781]
[92]
Akdel M, Pires DE, Pardo EP, et al. A structural biology community assessment of AlphaFold 2 applications. bioRxiv 2021.
[http://dx.doi.org/10.1101/2021.09.26.461876]
[93]
Laurents DV. AlphaFold 2 and NMR spectroscopy: Partners to understand protein structure, dynamics and function. Front Mol Biosci 2022; 9: 906437.
[http://dx.doi.org/10.3389/fmolb.2022.906437] [PMID: 35655760]
[94]
Lam JH, Li Y, Zhu L, et al. A deep learning framework to predict binding preference of RNA constituents on protein surface. Nat Commun 2019; 10(1): 4941.
[http://dx.doi.org/10.1038/s41467-019-12920-0] [PMID: 31666519]
[95]
Li H, Tian S, Li Y, et al. Modern deep learning in bioinformatics. J Mol Cell Biol 2021; 12(11): 823-7.
[http://dx.doi.org/10.1093/jmcb/mjaa030] [PMID: 32573721]
[96]
Wei J, Chen S, Zong L, Gao X, Li Y. Protein–RNA interaction prediction with deep learning: Structure matters. Brief Bioinform 2022; 23(1): bbab540.
[http://dx.doi.org/10.1093/bib/bbab540] [PMID: 34929730]
[97]
Cole C, Ott C, Valdes D, Valafar H, Eds. Pdbmine: A reformulation of the protein data bank to facilitate structural data mining. 2019 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, USA 1458-63.2019;
[http://dx.doi.org/10.1109/CSCI49370.2019.00272]
[98]
Lasfar M, Bouden H. A method of data mining using Hidden Markov Models (HMMs) for protein secondary structure prediction. Procedia Comput Sci 2018; 127: 42-51.
[http://dx.doi.org/10.1016/j.procs.2018.01.096]
[99]
Lan K, Wang D, Fong S, Liu L, Wong KKL, Dey N. A survey of data mining and deep learning in bioinformatics. J Med Syst 2018; 42(8): 139.
[http://dx.doi.org/10.1007/s10916-018-1003-9] [PMID: 29956014]
[100]
Shi Q, Chen W, Huang S, Wang Y, Xue Z. Deep learning for mining protein data. Brief Bioinform 2021; 22(1): 194-218.
[http://dx.doi.org/10.1093/bib/bbz156] [PMID: 31867611]
[101]
Kulmanov M, Hoehndorf R. DeepGOPlus: Improved protein function prediction from sequence. Bioinformatics 2021; 37(8): 1187.
[http://dx.doi.org/10.1093/bioinformatics/btaa763] [PMID: 34009304]
[102]
Sureyya Rifaioglu A, Doğan T, Jesus Martin M, Cetin-Atalay R, Atalay V. DEEPred: Automated protein function prediction with multi-task feed-forward deep neural networks. Sci Rep 2019; 9(1): 7344.
[http://dx.doi.org/10.1038/s41598-019-43708-3] [PMID: 31089211]
[103]
Seo S, Oh M, Park Y, Kim S. DeepFam: Deep learning based alignment-free method for protein family modeling and prediction. Bioinformatics 2018; 34(13): i254-62.
[http://dx.doi.org/10.1093/bioinformatics/bty275] [PMID: 29949966]
[104]
Yedvabny E, Nerenberg PS, So C, Head-Gordon T. Disordered structural ensembles of vasopressin and oxytocin and their mutants. J Phys Chem B 2015; 119(3): 896-905.
[http://dx.doi.org/10.1021/jp505902m] [PMID: 25231121]
[105]
Mardia KV. Statistical approaches to three key challenges in protein structural bioinformatics. Appl Stat 2013; 62(3): 487-514.
[http://dx.doi.org/10.1111/rssc.12003]
[106]
Zhang Y. Protein structure prediction: When is it useful? Curr Opin Struct Biol 2009; 19(2): 145-55.
[http://dx.doi.org/10.1016/j.sbi.2009.02.005] [PMID: 19327982]
[107]
Kang W, Jiang F, Wu YD. Universal implementation of a residue-specific force field based on CMAP potentials and free energy decomposition. J Chem Theory Comput 2018; 14(8): 4474-86.
[http://dx.doi.org/10.1021/acs.jctc.8b00285] [PMID: 29906395]
[108]
Porto WF, Silva ON, Franco OL. Prediction and rational design of antimicrobial peptides.In: Protein Structure. London, UK: InTech Open 2012; pp. 1-22.
[http://dx.doi.org/10.5772/38023]
[109]
Bowie JU, Eisenberg D. An evolutionary approach to folding small alpha-helical proteins that uses sequence information and an empirical guiding fitness function. Proc Natl Acad Sci 1994; 91(10): 4436-40.
[http://dx.doi.org/10.1073/pnas.91.10.4436] [PMID: 8183927]
[110]
Alder BJ, Wainwright TE. Studies in molecular dynamics. II. Behavior of a small number of elastic spheres. J Chem Phys 1960; 33(5): 1439-51.
[http://dx.doi.org/10.1063/1.1731425]
[111]
Westbrook JD, Burley SK. How structural biologists and the Protein Data Bank contributed to recent FDA new drug approvals. Structure 2019; 27(2): 211-7.
[http://dx.doi.org/10.1016/j.str.2018.11.007] [PMID: 30595456]
[112]
Lindorff-Larsen K, Piana S, Dror RO, Shaw DE. How fast-folding proteins fold. Science 2011; 334(6055): 517-20.
[http://dx.doi.org/10.1126/science.1208351] [PMID: 22034434]
[113]
Geng H, Chen F, Ye J, Jiang F. Applications of molecular dynamics simulation in structure prediction of peptides and proteins. Comput Struct Biotechnol J 2019; 17: 1162-70.
[http://dx.doi.org/10.1016/j.csbj.2019.07.010] [PMID: 31462972]
[114]
Chen J, Brooks CL III. Can molecular dynamics simulations provide high-resolution refinement of protein structure? Proteins 2007; 67(4): 922-30.
[http://dx.doi.org/10.1002/prot.21345] [PMID: 17373704]
[115]
Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem Phys Lett 1999; 314(1-2): 141-51.
[http://dx.doi.org/10.1016/S0009-2614(99)01123-9]
[116]
Wu S, Skolnick J, Zhang Y. Ab initio modeling of small proteins by iterative TASSER simulations. BMC Biol 2007; 5(1): 17.
[http://dx.doi.org/10.1186/1741-7007-5-17] [PMID: 17488521]
[117]
McHugh SM, Rogers JR, Yu H, Lin YS. Insights into how cyclic peptides switch conformations. J Chem Theory Comput 2016; 12(5): 2480-8.
[http://dx.doi.org/10.1021/acs.jctc.6b00193] [PMID: 27031286]
[118]
Lee MR, Baker D, Kollman PA. 2.1 and 1.8 A average C(α) RMSD structure predictions on two small proteins, HP-36 and s15. J Am Chem Soc 2001; 123(6): 1040-6.
[http://dx.doi.org/10.1021/ja003150i] [PMID: 11456657]
[119]
Mirjalili V, Noyes K, Feig M. Physics-based protein structure refinement through multiple molecular dynamics trajectories and structure averaging. Proteins 2014; 82(S2): 196-207.
[http://dx.doi.org/10.1002/prot.24336] [PMID: 23737254]
[120]
Zhou H, Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 2002; 11(11): 2714-26.
[http://dx.doi.org/10.1110/ps.0217002] [PMID: 12381853]
[121]
Raval A, Piana S, Eastwood MP, Dror RO, Shaw DE. Refinement of protein structure homology models via long, all-atom molecular dynamics simulations. Proteins 2012; 80(8): 2071-9.
[http://dx.doi.org/10.1002/prot.24098] [PMID: 22513870]
[122]
Mu J, Liu H, Zhang J, Luo R, Chen HF. Recent force field strategies for intrinsically disordered proteins. J Chem Inf Model 2021; 61(3): 1037-47.
[http://dx.doi.org/10.1021/acs.jcim.0c01175] [PMID: 33591749]
[123]
Rohl CA, Strauss CE, Misura KM, Baker D. Protein structure prediction using Rosetta. Methods Enzymol 2004; 383: 66-93.
[http://dx.doi.org/10.1016/S0076-6879(04)83004-0] [PMID: 15063647]
[124]
Hildebrand A, Remmert M, Biegert A, Söding J. Fast and accurate automatic structure prediction with HHpred. Proteins 2009; 77(S9): 128-32.
[http://dx.doi.org/10.1002/prot.22499] [PMID: 19626712]
[125]
Wang S, Li W, Liu S, Xu J. RaptorX-Property: A web server for protein structure property prediction. Nucleic Acids Res 2016; 44(W1): W430-5.
[http://dx.doi.org/10.1093/nar/gkw306] [PMID: 27112573]
[126]
Jones DT, Kandathil SM. High precision in protein contact prediction using fully convolutional neural networks and minimal sequence features. Bioinformatics 2018; 34(19): 3308-15.
[http://dx.doi.org/10.1093/bioinformatics/bty341] [PMID: 29718112]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy