Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Electrochemical Protein-based Bioanalytical Devices for Drug Analysis

Author(s): Caroline G. Sanz and Victor C. Diculescu*

Volume 23, Issue 15, 2023

Published on: 15 May, 2023

Page: [1448 - 1463] Pages: 16

DOI: 10.2174/1568026623666230411152640

Price: $65

Abstract

Proteins are vital components of living cells and the loss of their native functions has been associated with a wide variety of medical conditions. From this point of view, investigation of the protein microenvironment is crucial to support the development of therapeutic approaches capable of ensuring cellular functions. Therefore, analytical assays for the detection, quantification, and characterization of proteins, drugs, and protein-drug complexes play an essential role in fundamental research and clinical applications. Electrochemistry arises as an alternative methodology for fast assessment of proteins and drugs and is attractive due to the adaptability to miniaturization and scalability of electroanalytical devices, which then can be further employed as strategies towards personalized medical care. Thus, this review summarizes electrochemical investigations in the past 10 years on protein-based analytical devices and biosensors. A general overview of electrochemical assays that integrate proteins with nanostructured materials and conductive polymers is presented. Applications of electrochemical assays and biosensors were divided into four categories. First, those designed for drug screening strategies that focus on targeting specific intracellular, extracellular, or membrane protein subdomains to modulate their functions, aggregation/misfolding of proteins, and protein degradation pathways. Then, drug metabolism assays that involve mimicking natural metabolic pathways to identify potential safety and efficacy issues related to a drug or its metabolites. The third was dedicated to electrochemical drug delivery systems with anchored drugs in the form of bioconjugates, while the fourth was dedicated to electroanalytical methodologies for quantitative drug assays, where the electroactivity of the target species is often used to correlate the electrochemical signal to their concentration.

Graphical Abstract

[1]
Gonçalves, A.; Pedro, A.; Santos, F.; Martins, L.; Maia, C.; Queiroz, J.; Passarinha, L. Trends in protein-based biosensor assemblies for drug screening and pharmaceutical kinetic studies. Molecules, 2014, 19(8), 12461-12485.
[http://dx.doi.org/10.3390/molecules190812461] [PMID: 25153865]
[2]
Gonzalez, M.W.; Kann, M.G. Chapter 4: Protein interactions and disease. PLOS Comput. Biol., 2012, 8(12), e1002819.
[http://dx.doi.org/10.1371/journal.pcbi.1002819] [PMID: 23300410]
[3]
Zhu, H.; Hamachi, I. Fluorescence imaging of drug target proteins using chemical probes. J. Pharm. Anal., 2020, 10(5), 426-433.
[http://dx.doi.org/10.1016/j.jpha.2020.05.013] [PMID: 33133726]
[4]
Roda, A.; Guardigli, M.; Pasini, P.; Mirasoli, M. Bioluminescence and chemiluminescence in drug screening. Anal. Bioanal. Chem., 2003, 377(5), 826-833.
[http://dx.doi.org/10.1007/s00216-003-2096-6] [PMID: 12879192]
[5]
Shortridge, M.D.; Powers, R. NMR Screening Methods for Drug Discovery. Adv. Biomed. Spectrosc., 2011, 3, 381-412.
[6]
Sanavio, B.; Krol, S. On the slow diffusion of point-of-care systems in therapeutic drug monitoring. Front. Bioeng. Biotechnol., 2015, 3, 20.
[http://dx.doi.org/10.3389/fbioe.2015.00020] [PMID: 25767794]
[7]
Liang, W.; Wang, S.; Festa, F.; Wiktor, P.; Wang, W.; Magee, M.; LaBaer, J.; Tao, N. Measurement of small molecule binding kinetics on a protein microarray by plasmonic-based electrochemical impedance imaging. Anal. Chem., 2014, 86(19), 9860-9865.
[http://dx.doi.org/10.1021/ac5024556] [PMID: 25153794]
[8]
Büter, L.; Vogel, M.; Karst, U. Adduct formation of electrochemically generated reactive intermediates with biomolecules. Trends Analyt. Chem., 2015, 70, 74-91.
[http://dx.doi.org/10.1016/j.trac.2015.03.009]
[9]
de Almeida Ribeiro, R.S.; Bojorge Ramirez, N.I.; Semaan, F.S.; Alhadeff, E.M. Bionanopolymeric film for the electroanalytical detection of zinc, cadmium and lead ions. Mater. Res. Innov., 2021, 25(3), 138-146.
[http://dx.doi.org/10.1080/14328917.2020.1747185]
[10]
Leote, R.J.B.; Ghica, M.E.; Brett, C.M.A. Pyruvate oxidase biosensors based on glassy carbon electrodes modified with carbon nanotubes and poly(neutral red) synthesized in ethaline deep eutectic solvent. Electroanalysis, 2022, 34(4), 724-734.
[http://dx.doi.org/10.1002/elan.202100164]
[11]
Jain, A.; Trindade, G.F.; Hicks, J.M.; Potts, J.C.; Rahman, R.; Hague, R.J.M.; Amabilino, D.B.; Pérez-García, L.; Rawson, F.J. Modulating the biological function of protein by tailoring the adsorption orientation on nanoparticles. J. Colloid Interface Sci., 2021, 587, 150-161.
[http://dx.doi.org/10.1016/j.jcis.2020.12.025] [PMID: 33360888]
[12]
Shao, L.; Gao, Y.; Yan, F. Semiconductor quantum dots for biomedicial applications. Sensors (Basel), 2011, 11(12), 11736-11751.
[http://dx.doi.org/10.3390/s111211736] [PMID: 22247690]
[13]
Shafiei-Irannejad, V.; Soleymani, J.; Azizi, S. KhoubnasabJafari, M.; Jouyban, A.; Hasanzadeh, M. Advanced nanomaterials towards biosensing of insulin: Analytical approaches. Trends Analyt. Chem., 2019, 116, 1-12.
[http://dx.doi.org/10.1016/j.trac.2019.04.020]
[14]
Hassanpour, S.; Hasanzadeh, M.; Saadati, A.; Shadjou, N.; Soleymani, J.; Jouyban, A. A novel paper based immunoassay of breast cancer specific carbohydrate (CA 15.3) using silver nanoparticles-reduced graphene oxide nano-ink technology: A new platform to construction of microfluidic paper-based analytical devices (μPADs) towards biomedical analysis. Microchem. J., 2019, 146, 345-358.
[http://dx.doi.org/10.1016/j.microc.2019.01.018]
[15]
Peng, X.; Liu, Y.; Bentley, W.E.; Payne, G.F. Electrochemical fabrication of functional gelatin-based bioelectronic interface. Biomacromolecules, 2016, 17(2), 558-563.
[http://dx.doi.org/10.1021/acs.biomac.5b01491] [PMID: 26752426]
[16]
Jagur-Grodzinski, J. Biomedical applications of electrically conductive polymeric systems. E-Polymers, 2012, 12(1), 1-19.
[http://dx.doi.org/10.1515/epoly.2012.12.1.722]
[17]
Tiefenauer, L.; Demarche, S. Challenges in the Development of Functional Assays of Membrane Proteins. Materials (Basel), 2012, 5(11), 2205-2242.
[http://dx.doi.org/10.3390/ma5112205]
[18]
Geng, T.; Lu, C. Microfluidic electroporation for cellular analysis and delivery. Lab Chip, 2013, 13(19), 3803-3821.
[http://dx.doi.org/10.1039/C3LC50566A] [PMID: 23917998]
[19]
Oliveira-Brett, A.M.; Diculescu, V.C.; Enache, T.A.; Fernandes, I.P.G.; Chiorcea-Paquim, A.M.; Oliveira, S.C.B. Bioelectrochemistry for sensing amino acids, peptides, proteins and DNA interactions. Curr. Opin. Electrochem., 2019, 14, 173-179.
[http://dx.doi.org/10.1016/j.coelec.2019.03.008]
[20]
Jalalvand, A.R.; Ghobadi, S.; Goicoechea, H.C.; Gu, H.W.; Sanchooli, E. Investigation of interactions of Comtan with human serum albumin by mathematically modeled voltammetric data: A study from bio-interaction to biosensing. Bioelectrochemistry, 2018, 123, 162-172.
[http://dx.doi.org/10.1016/j.bioelechem.2018.05.008] [PMID: 29778043]
[21]
Rezaeinasab, M.; Benvidi, A.; Gharaghani, S.; Zare, H.R. Chemometrics approaches based on electrochemical methods for the investigation of interaction between bovine serum albumin and carvacrol with the aim of its application to protein sensing. J. Electroanal. Chem. (Lausanne), 2019, 845, 48-56.
[http://dx.doi.org/10.1016/j.jelechem.2019.05.040]
[22]
Mohammadi, G.; Faramarzi, E.; Mahmoudi, M.; Ghobadi, S.; Ghiasvand, A.R.; Goicoechea, H.C.; Jalalvand, A.R. Chemometrics-assisted investigation of interactions of Tasmar with human serum albumin at a glassy carbon disk: Application to electrochemical biosensing of electro-inactive serum albumin. J. Pharm. Biomed. Anal., 2018, 156, 23-35.
[http://dx.doi.org/10.1016/j.jpba.2018.04.021] [PMID: 29684908]
[23]
Büter, L.; Faber, H.; Wigger, T.; Vogel, M.; Karst, U. Differential protein labeling based on electrochemically generated reactive intermediates. Anal. Chem., 2015, 87(19), 9931-9938.
[http://dx.doi.org/10.1021/acs.analchem.5b02497] [PMID: 26327615]
[24]
Chen, J.H.; Zhang, X.; Cai, S.; Wu, D.; Lin, J.; Li, C.; Zhang, J. Label-free electrochemical biosensor using home-made 10-methyl-3-nitro-acridone as indicator for picomolar detection of nuclear factor kappa B. Biosens. Bioelectron., 2014, 53, 12-17.
[http://dx.doi.org/10.1016/j.bios.2013.09.038] [PMID: 24103574]
[25]
Tadini-Buoninsegni, F.; Palchetti, I. Label-free bioelectrochemical methods for evaluation of anticancer drug effects at a molecular level. Sensors, 2020, 2020(20), 1812.
[26]
Hasanzadeh, M. baghban, H.N.; Mokhtarzadeh, A.; Shadjou, N.; Mahboob, S. An innovative immunosensor for detection of tumor suppressor protein p53 in unprocessed human plasma and cancer cell lysates. Int. J. Biol. Macromol., 2017, 105(Pt 1), 1337-1348.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.07.165] [PMID: 28774804]
[27]
Xu, L.; Zhu, L.; Jia, N.; Huang, B.; Tan, L.; Yang, S.; Tang, H.; Xie, Q.; Yao, S. Quantification of Bax protein on tumor cells based on electrochemical immunoassay. Sens. Actuators B Chem., 2013, 186, 506-514.
[http://dx.doi.org/10.1016/j.snb.2013.06.047]
[28]
Sloan, J.H.; Ackermann, B.L.; Carpenter, J.W.; Nguyen, H.T.; Stopa, K.; Siegel, R.W.; Konrad, R.J. A novel, high-sensitivity and drug-tolerant sandwich immunoassay for the quantitative measurement of circulating proteins. Bioanalysis, 2012, 4(3), 241-248.
[http://dx.doi.org/10.4155/bio.11.312] [PMID: 22303828]
[29]
Verch, T.; Bakhtiar, R. Miniaturized immunoassays: moving beyond the microplate. Bioanalysis, 2012, 4(2), 177-188.
[http://dx.doi.org/10.4155/bio.11.301] [PMID: 22250800]
[30]
Carlucci, L.; Favero, G.; Tortolini, C.; Di Fusco, M.; Romagnoli, E.; Minisola, S.; Mazzei, F. Several approaches for vitamin D determination by surface plasmon resonance and electrochemical affinity biosensors. Biosens. Bioelectron., 2013, 40(1), 350-355.
[http://dx.doi.org/10.1016/j.bios.2012.07.077] [PMID: 23021843]
[31]
Diculescu, V.C.; Vivan, M.; Brett, A.M.O. Voltammetric behavior of antileukemia drug glivec. Part III: In Situ DNA oxidative damage by the glivec electrochemical metabolite. Electroanalysis, 2006, 18(19-20), 1963-1970.
[http://dx.doi.org/10.1002/elan.200603602]
[32]
Diculescu, V.C.; Vivan, M.; Brett, A.M.O. Voltammetric behavior of antileukemia drug glivec. Electroanalysis, 2006, 18(18), 1800-1807.
[http://dx.doi.org/10.1002/elan.200603591]
[33]
Diculescu, V.C.; Vivan, M.; Brett, A.M.O. Voltammetric behavior of antileukemia drug glivec. Part II-redox processes of glivec electrochemical metabolite. Electroanalysis, 2006, 18(18), 1808-1814.
[http://dx.doi.org/10.1002/elan.200603592]
[34]
Caratelli, V.; Ciampaglia, A.; Guiducci, J.; Sancesario, G.; Moscone, D.; Arduini, F. Precision medicine in Alzheimer’s disease: An origami paper-based electrochemical device for cholinesterase inhibitors. Biosens. Bioelectron., 2020, 165, 112411.
[http://dx.doi.org/10.1016/j.bios.2020.112411] [PMID: 32729530]
[35]
Yin, H.; Zhou, Y.; Xu, Z.; Wang, M.; Ai, S. Ultrasensitive electrochemical immunoassay for DNA methyltransferase activity and inhibitor screening based on methyl binding domain protein of MeCP2 and enzymatic signal amplification. Biosens. Bioelectron., 2013, 49, 39-45.
[http://dx.doi.org/10.1016/j.bios.2013.04.040] [PMID: 23708816]
[36]
Hu, D.; Hu, Y.; Zhan, T.; Zheng, Y.; Ran, P.; Liu, X.; Guo, Z.; Wei, W.; Wang, S. Coenzyme A-aptamer-facilitated label-free electrochemical stripping strategy for sensitive detection of histone acetyltransferase activity. Biosens. Bioelectron., 2020, 150, 111934.
[http://dx.doi.org/10.1016/j.bios.2019.111934] [PMID: 31818759]
[37]
Cho, C.H.; Son, S.Y.; Bang, J.K.; Jeon, Y.H.; Park, J.P. Biophysical and electrochemical approaches for studying molecular recognition of IL-33 binding peptides identified via phage display. Anal. Chim. Acta, 2022, 1197, 339522.
[http://dx.doi.org/10.1016/j.aca.2022.339522] [PMID: 35168735]
[38]
Zitka, O.; Kominkova, M.; Skalickova, S.; Skutkova, H.; Provaznik, I.; Eckschlager, T.; Stiborova, M.; Trnkova, L.; Adam, V.; Kizek, R. Single amino acid change in metallothionein metal-binding cluster influences interaction with cisplatin. Int. J. Electrochem. Sci., 2013, 8, 2625-2634.
[39]
Zitka, O.; Kominkova, M.; Skalickova, S.; Skutkova, H.; Provaznik, I.; Eckschlager, T.; Stiborova, M.; Adam, V.; Trnkova, L.; Kizek, R. Hydrodynamic Voltammograms Profiling Of Metallothionein Fragment. Int. J. Electrochem. Sci., 2012, 7, 10544-10561.
[40]
Renata, K.; Monimkamm, K.; Kristyna, S.; Ondrej, Z.; David, H.; Vojtech, A.; Miroslava, B.; Libuse, T.; Marie, S.; Tomas, E.; Jaromir, H.; Rene, K. Interactions of platinum-based cytostatics with metallothionein revealed by electrochemistry. Int. J. Electrochem. Sci., 2013, 8, 4472-4484.
[41]
von Ahsen, O.; Bömer, U. High-throughput screening for kinase inhibitors. ChemBioChem, 2005, 6(3), 481-490.
[http://dx.doi.org/10.1002/cbic.200400211] [PMID: 15742384]
[42]
Bhalla, N.; Formisano, N.; Miodek, A.; Jain, A.; Di Lorenzo, M.; Pula, G.; Estrela, P. Plasmonic ruler on field-effect devices for kinase drug discovery applications. Biosens. Bioelectron., 2015, 71, 121-128.
[http://dx.doi.org/10.1016/j.bios.2015.04.020] [PMID: 25897881]
[43]
Diculescu, V.C.; Enache, T.A. Electrochemical evaluation of Abelson tyrosine-protein kinase 1 activity and inhibition by imatinib mesylate and danusertib. Anal. Chim. Acta, 2014, 845, 23-29.
[http://dx.doi.org/10.1016/j.aca.2014.06.025] [PMID: 25201268]
[44]
Yang, Y.; Guo, L.H.; Qu, N.; Wei, M.Y.; Zhao, L.X.; Wan, B. Label-free electrochemical measurement of protein tyrosine kinase activity and inhibition based on electro-catalyzed tyrosine signaling. Biosens. Bioelectron., 2011, 28(1), 284-290.
[http://dx.doi.org/10.1016/j.bios.2011.07.033] [PMID: 21820892]
[45]
Ou, L.; Chen, Y.; Xia, N. Electrochemical detection of kinase activity by measuring the surface charge change of peptide substrate on gold electrode. Int. J. Electrochem. Sci., 2021, 16, ArticleID: 210740.
[http://dx.doi.org/10.20964/2021.07.70]
[46]
Yi, F.; Huang, X.; Ren, J. Simple and sensitive method for determination of protein kinase activity based on surface charge change of peptide-modified gold nanoparticles as substrates. Anal. Chem., 2018, 90(6), 3871-3877.
[http://dx.doi.org/10.1021/acs.analchem.7b04569] [PMID: 29468867]
[47]
Yin, H.; Wang, X.; Guo, Y.; Zhou, Y.; Ai, S. Electrochemical detection of protein kinase activity based on carboxypeptidase Y digestion triggered signal amplification. Biosens. Bioelectron., 2015, 66, 77-83.
[http://dx.doi.org/10.1016/j.bios.2014.11.014] [PMID: 25460885]
[48]
Sun, K.; Chang, Y.; Zhou, B.; Wang, X.; Liu, L. Gold nanoparticles-based electrochemical method for the detection of protein kinase with a peptide-like inhibitor as the bioreceptor. Int. J. Nanomedicine, 2017, 12, 1905-1915.
[http://dx.doi.org/10.2147/IJN.S127957] [PMID: 28331314]
[49]
Jia, L.P.; Zhao, R.N.; Wang, L.J.; Ma, R.N.; Zhang, W.; Shang, L.; Wang, H.S. Aptamer based electrochemical assay for protein kinase activity by coupling hybridization chain reaction. Biosens. Bioelectron., 2018, 117, 690-695.
[http://dx.doi.org/10.1016/j.bios.2018.06.067] [PMID: 30014942]
[50]
Yoetz-Kopelman, T.; Porat-Ophir, C.; Shacham-Diamand, Y.; Freeman, A. Whole-cell amperometric biosensor for screening of cytochrome P450 inhibitors. Sens. Actuators B Chem., 2016, 223, 392-399.
[http://dx.doi.org/10.1016/j.snb.2015.09.111]
[51]
Zhang, G.; Shi, L.; Selke, M.; Wang, X 2011.
[52]
Wei, T.; Tu, W.; Zhao, B.; Lan, Y.; Bao, J.; Dai, Z. Electrochemical monitoring of an important biomarker and target protein: VEGFR2 in cell lysates. Sci. Rep., 2014, 41, 1-7.
[53]
Lundahl, M.L.E.; Fogli, S.; Colavita, P.E.; Scanlan, E.M. Aggregation of protein therapeutics enhances their immunogenicity: causes and mitigation strategies. RSC Chem. Biol., 2021, 2(4), 1004-1020.
[http://dx.doi.org/10.1039/D1CB00067E] [PMID: 34458822]
[54]
Vasilescu, A.; Boulahneche, S.; Chekin, F.; Gáspár, S.; Medjram, M.S.; Diagne, A.A.; Singh, S.K.; Kurungot, S.; Boukherroub, R.; Szunerits, S. Porous reduced graphene oxide modified electrodes for the analysis of protein aggregation. Part 1: Lysozyme aggregation at pH 2 and 7.4. Electrochim. Acta, 2017, 254, 375-383.
[http://dx.doi.org/10.1016/j.electacta.2017.09.083]
[55]
Vasilescu, A.; Ye, R.; Boulahneche, S.; Lamraoui, S.; Jijie, R.; Medjram, M.S.; Gáspár, S.; Singh, S.K.; Kurungot, S.; Melinte, S.; Boukherroub, R.; Szunerits, S. Porous reduced graphene oxide modified electrodes for the analysis of protein aggregation. Part 2: Application to the analysis of calcitonin containing pharmaceutical formulation. Electrochim. Acta, 2018, 266, 364-372.
[http://dx.doi.org/10.1016/j.electacta.2018.02.038]
[56]
Yu, Y.; Yin, T.; Peng, Q.; Kong, L.; Li, C.; Tang, D.; Yin, X. Simultaneous monitoring of amyloid-β (Aβ) oligomers and fibrils for effectively evaluating the dynamic process of Aβ aggregation. ACS Sens., 2019, 4(2), 471-478.
[http://dx.doi.org/10.1021/acssensors.8b01493] [PMID: 30693761]
[57]
Yu, Y.; Zhang, L.; Li, C.; Sun, X.; Tang, D.; Shi, G. A method for evaluating the level of soluble β-amyloid(1-40/1-42) in Alzheimer’s disease based on the binding of gelsolin to β-amyloid peptides. Angew. Chem. Int. Ed., 2014, 53(47), 12832-12835.
[http://dx.doi.org/10.1002/anie.201405001] [PMID: 25244702]
[58]
Enache, T.A.; Oliveira-Brett, A.M. Alzheimer’s disease amyloid beta peptides in vitro electrochemical oxidation. Bioelectrochemistry, 2017, 114, 13-23.
[http://dx.doi.org/10.1016/j.bioelechem.2016.11.003] [PMID: 27855361]
[59]
Veloso, A.J.; Kerman, K. Modulation of fibril formation by a beta-sheet breaker peptide ligand: An electrochemical approach. Bioelectrochemistry, 2012, 84, 49-52.
[http://dx.doi.org/10.1016/j.bioelechem.2011.08.007] [PMID: 21967982]
[60]
Qu, F.; Yang, M.; Rasooly, A. Dual signal amplification electrochemical biosensor for monitoring the activity and inhibition of the alzheimer’s related protease β-secretase. Anal. Chem., 2016, 88(21), 10559-10565.
[http://dx.doi.org/10.1021/acs.analchem.6b02659] [PMID: 27650354]
[61]
Lopes, P.; Dyrnesli, H.; Lorenzen, N.; Otzen, D.; Ferapontova, E.E. Electrochemical analysis of the fibrillation of Parkinson’s disease α-synuclein. Analyst (Lond.), 2014, 139(4), 749-756.
[http://dx.doi.org/10.1039/C3AN01616A] [PMID: 24343298]
[62]
Li, S.; Noroozifar, M.; Zhou, J.; Kerman, K. Electrochemical flow injection analysis of the interaction between pyrroloquinoline quinone (PQQ) and α-synuclein peptides related to Parkinson’s disease. Analyst (Lond.), 2021, 146(14), 4545-4556.
[http://dx.doi.org/10.1039/D1AN00698C] [PMID: 34251376]
[63]
Chan, T.; Chow, A.M.; Tang, D.W.F.; Li, Q.; Wang, X.; Brown, I.R.; Kerman, K. Interaction of baicalein and copper with α-synuclein: Electrochemical approach to Parkinson’s Disease. J. Electroanal. Chem. (Lausanne), 2010, 648(2), 151-155.
[http://dx.doi.org/10.1016/j.jelechem.2010.07.015]
[64]
Feng, Y.; Liu, G.; La, M.; Liu, L. Colorimetric and electrochemical methods for the detection of SARS-CoV-2 main protease by peptide-triggered assembly of gold nanoparticles. Molecules, 2022, 27(3), 615.
[http://dx.doi.org/10.3390/molecules27030615] [PMID: 35163874]
[65]
Ehrnhoefer, D.E.; Skotte, N.H.; Savill, J.; Nguyen, Y.T.N.; Ladha, S.; Cao, L.P.; Dullaghan, E.; Hayden, M.R. A quantitative method for the specific assessment of caspase-6 activity in cell culture. PLoS One, 2011, 6(11), e27680.
[http://dx.doi.org/10.1371/journal.pone.0027680] [PMID: 22140457]
[66]
Ong, I.L.H.; Yang, K.L. Recent developments in protease activity assays and sensors. Analyst (Lond.), 2017, 142(11), 1867-1881.
[http://dx.doi.org/10.1039/C6AN02647H] [PMID: 28487913]
[67]
Palomar, Q.; Xu, X.; Selegård, R.; Aili, D.; Zhang, Z. Peptide decorated gold nanoparticle/carbon nanotube electrochemical sensor for ultrasensitive detection of matrix metalloproteinase-7. Sens. Actuators B Chem., 2020, 325, 128789.
[http://dx.doi.org/10.1016/j.snb.2020.128789]
[68]
Deng, D.; Hao, Y.; Yang, S.; Han, Q.; Liu, L.; Xiang, Y.; Tu, F.; Xia, N. A signal-on electrochemical biosensor for evaluation of caspase-3 activity and cell apoptosis by the generation of molecular electrocatalysts on graphene electrode surface for water oxidation. Sens. Actuators B Chem., 2019, 286, 415-420.
[http://dx.doi.org/10.1016/j.snb.2019.01.137]
[69]
Xia, N.; Huang, Y.; Cui, Z.; Liu, S.; Deng, D.; Liu, L.; Wang, J. Impedimetric biosensor for assay of caspase-3 activity and evaluation of cell apoptosis using self-assembled biotin-phenylalanine network as signal enhancer. Sens. Actuators B Chem., 2020, 320, 128436.
[http://dx.doi.org/10.1016/j.snb.2020.128436]
[70]
Mahmoud, K.A.; Luong, J.H.T. Impedance method for detecting HIV-1 protease and screening for its inhibitors using ferrocene-peptide conjugate/Au nanoparticle/single-walled carbon nanotube modified electrode. Anal. Chem., 2008, 80(18), 7056-7062.
[http://dx.doi.org/10.1021/ac801174r] [PMID: 18707132]
[71]
Feng, Y.; Liu, G.; Zhang, F.; Liu, J.; La, M.; Xia, N.A. General, label-free and homogeneous electrochemical strategy for probing of protease activity and screening of inhibitor. Micromachines, 2022, 13, 803.
[72]
Ciechanover, A. The ubiquitin-proteasome pathway: on protein death and cell life. EMBO J., 1998, 17(24), 7151-7160.
[http://dx.doi.org/10.1093/emboj/17.24.7151] [PMID: 9857172]
[73]
Isoda, A.; Murayama, K.; Ito, S.; Kohara, Y.; Iino, M.; Miyazawa, Y.; Matsumoto, M.; Handa, H.; Imai, Y.; Ishiguro, T.; Izumita, W.; Kitano, K.; Hirabayashi, Y.; Nakazawa, H.; Ishida, F.; Mitsumori, T.; Kirito, K.; Chou, T.; Murakami, H. Bortezomib maintenance therapy in transplant-ineligible myeloma patients who plateaued after bortezomib-based induction therapy: A multicenter phase II clinical trial. Int. J. Hematol., 2018, 108(1), 39-46.
[http://dx.doi.org/10.1007/s12185-018-2448-9] [PMID: 29594921]
[74]
Golea, D.A.; Diculescu, V.C.; Tugulea, L.; Oliveira Brett, A.M. Proteasome inhibitor anticancer drug bortezomib redox behaviour at a glassy carbon electrode. Electroanalysis, 2012, 24(10), 1915-1921.
[http://dx.doi.org/10.1002/elan.201200307]
[75]
Teicher, B.A.; Tomaszewski, J.E. Proteasome inhibitors. Biochem. Pharmacol., 2015, 96(1), 1-9.
[http://dx.doi.org/10.1016/j.bcp.2015.04.008] [PMID: 25935605]
[76]
de Jesus, C.S.H.; Enache, T.A.; Diculescu, V.C. Charge transfer reaction mechanisms of epoxyketone and boronated peptides at glassy carbon and boron doped diamond electrodes. J. Electroanal. Chem. (Lausanne), 2020, 878, 114733.
[http://dx.doi.org/10.1016/j.jelechem.2020.114733] [PMID: 33020701]
[77]
Vega Valdez, I.R.; Santiago-Quintana, J.M. Theoretical evaluation of bortezomib and other boron-containing compounds as inhibitors of SARS-CoV-2 main protease. ChemRxiv, 2020.
[78]
Henriques de Jesus, C.S.; Chiorcea Paquim, A.M.; Diculescu, V.C. Voltammetric and atomic force microscopy characterization of chymotrypsin, trypsin and caspase activities of proteasome. Catal. Today, 2018, 306, 287-293.
[http://dx.doi.org/10.1016/j.cattod.2017.01.012]
[79]
Henriques de Jesus, C.S.; Chiorcea-Paquim, A.M.; Barsan, M.M.; Diculescu, V.C. Electrochemical assay for 20S proteasome activity and inhibition with anti-cancer drugs. Talanta, 2019, 199, 32-39.
[http://dx.doi.org/10.1016/j.talanta.2019.02.052] [PMID: 30952265]
[80]
Barsan, M.M.; Diculescu, V.C. An antibody-based amperometric biosensor for 20S proteasome activity and inhibitor screening. Analyst (Lond.), 2021, 146(10), 3216-3224.
[http://dx.doi.org/10.1039/D0AN02426K] [PMID: 33999049]
[81]
Barsan, M.M.; Sanz, C.G.; Onea, M.; Diculescu, V.C. Immobilized antibodies on mercaptophenylboronic acid monolayers for dual-strategy detection of 20s proteasome. Sensors (Basel), 2021, 21(8), 2702.
[http://dx.doi.org/10.3390/s21082702] [PMID: 33921330]
[82]
Martínez-Rojas, F.; Diculescu, V.C.; Armijo, F. Electrochemical immunosensing platform for the determination of the 20s proteasome using an aminophenylboronic/poly-indole-6-carboxylic acid-modified electrode. ACS Appl. Bio Mater., 2020, 3(8), 4941-4948.
[http://dx.doi.org/10.1021/acsabm.0c00478] [PMID: 35021738]
[83]
Bandookwala, M.; Nemani, K.S.; Chatterjee, B.; Sengupta, P. Reactive metabolites: Generation and estimation with electrochemistry based analytical strategy as an emerging screening tool. Curr. Anal. Chem., 2020, 16(7), 811-825.
[http://dx.doi.org/10.2174/1573411016666200131154202]
[84]
Chrastina, A.; Welsh, J.; Rondeau, G.; Abedinpour, P.; Borgström, P.; Baron, V.T. Plumbagin‐serum albumin interaction: Spectral, electrochemical, structure‐binding analysis, antiproliferative and cell signaling aspects with implications for anticancer therapy. ChemMedChem, 2020, 15(14), 1338-1347.
[http://dx.doi.org/10.1002/cmdc.202000157] [PMID: 32410390]
[85]
Patridge, E.V.; Eriksson, E.S.E.; Penketh, P.G.; Baumann, R.P.; Zhu, R.; Shyam, K.; Eriksson, L.A.; Sartorelli, A.C. 7-Nitro-4-(phenylthio)benzofurazan is a potent generator of superoxide and hydrogen peroxide. Arch. Toxicol., 2012, 86(10), 1613-1625.
[http://dx.doi.org/10.1007/s00204-012-0872-9] [PMID: 22669514]
[86]
Zheng, K.; Liu, F.; Xu, X.M.; Li, Y.T.; Wu, Z.Y.; Yan, C.W. Synthesis, structure and molecular docking studies of dicopper(II) complexes bridged by N-phenolato-N′-[2-(dimethylamino)ethyl]] oxamide: the influence of terminal ligands on cytotoxicity and reactivity towards DNA and protein BSA. New J. Chem., 2014, 38(7), 2964-2978.
[http://dx.doi.org/10.1039/C4NJ00092G]
[87]
Fu, L.; Liu, X.; Zhou, Q.; Zhang, J.; Dong, J.; Wang, J. Characterization of the interactions of human serum albumin (HSA), gatifloxacin, and metronidazole using spectroscopic and electrochemical methods. J. Lumin., 2014, 149, 208-214.
[http://dx.doi.org/10.1016/j.jlumin.2014.01.023]
[88]
Rajendiran, N.; Thulasidhasan, J. Effects of Interaction between Non-Steroidal Anti-Inflammatory Drugs with BSA and DNA Base: Spectral; Electrochemical and Molecular Docking Methods, 2017.
[89]
Afsharan, H.; Hasanzadeh, M.; Shadjou, N.; Jouyban, A. Interaction of some cardiovascular drugs with bovine serum albumin at physiological conditions using glassy carbon electrode: A new approach. Mater. Sci. Eng. C, 2016, 65, 97-108.
[http://dx.doi.org/10.1016/j.msec.2016.03.112] [PMID: 27157732]
[90]
Chen, Q.; Zhou, J.; Han, Q.; Wang, Y.; Fu, Y. The selective adsorption of human serum albumin on N-isobutyryl-cysteine enantiomers modified chiral surfaces. Biochem. Eng. J., 2012, 69, 155-158.
[http://dx.doi.org/10.1016/j.bej.2012.09.008]
[91]
El-Rahman, M.K.A.; Al-Alamein, A.M.A.; Abdel-Moety, E.M.; Fawaz, E.M. Integrated gold-thiol based potentiometric sensors for in situ dual drug-protein binding studies on naproxen/diphenhyd-] ramine salts model. J. Electrochem. Soc., 2017, 164(14), H1013-H1020.
[http://dx.doi.org/10.1149/2.0531714jes]
[92]
Shumyantseva, V.V.; Makhova, A.A.; Shikh, E.V.; Bulko, T.V.; Kuzikov, A.V.; Masamrekh, R.A.; Shkel, T.; Usanov, S.; Gilep, A.; Archakov, A.I. Bioelectrochemical systems as technologies for studying drug interactions related to cytochrome P450. Bionanoscience, 2018, 91, 79-86.
[93]
Tian, J.; Wang, J.; Li, Y.; Huang, M.; Lu, J. Electrochemically driven omeprazole metabolism via cytochrome p450 assembled on the nanocomposites of ceria nanoparticles and graphene. J. Electrochem. Soc., 2017, 164(7), H470-H476.
[http://dx.doi.org/10.1149/2.0751707jes]
[94]
Huang, M.; Xu, X.; Yang, H.; Liu, S. Electrochemically-driven and dynamic enhancement of drug metabolism via cytochrome P450 microsomes on colloidal gold/graphene nanocomposites. RSC Advances, 2012, 2(33), 12844-12850.
[http://dx.doi.org/10.1039/c2ra22014h]
[95]
Xu, X.; Bai, G.; Song, L.; Zheng, Q.; Yao, Y.; Liu, S.; Yao, C. Fast steroid hormone metabolism assays with electrochemical liver microsomal bioreactor based on polydopamine encapsulated gold-graphene nanocomposite. Electrochim. Acta, 2017, 258, 1365-1374.
[http://dx.doi.org/10.1016/j.electacta.2017.11.195]
[96]
Fantuzzi, A.; Mak, L.H.; Capria, E.; Dodhia, V.; Panicco, P.; Collins, S.; Gilardi, G. A new standardized electrochemical array for drug metabolic profiling with human cytochromes P450. Anal. Chem., 2011, 83(10), 3831-3839.
[http://dx.doi.org/10.1021/ac200309q] [PMID: 21469680]
[97]
Shin, S.R.; Kilic, T.; Zhang, Y.S.; Avci, H.; Hu, N.; Kim, D.; Branco, C.; Aleman, J.; Massa, S.; Silvestri, A.; Kang, J.; Desalvo, A.; Hussaini, M.A.; Chae, S.K.; Polini, A.; Bhise, N.; Hussain, M.A.; Lee, H.; Dokmeci, M.R.; Khademhosseini, A. Label‐free and regenerative electrochemical microfluidic biosensors for continual monitoring of cell secretomes. Adv. Sci. (Weinh.), 2017, 4(5), 1600522.
[http://dx.doi.org/10.1002/advs.201600522] [PMID: 28546915]
[98]
Zhu, L.; Shao, Y.; Xiao, H.; Santiago-Schübel, B.; Meyer-Alert, H.; Schiwy, S.; Yin, D.; Hollert, H.; Küppers, S. Electrochemical simulation of triclosan metabolism and toxicological evaluation. Sci. Total Environ., 2018, 622-623, 1193-1201.
[http://dx.doi.org/10.1016/j.scitotenv.2017.11.317] [PMID: 29890587]
[99]
Song, X.; Wang, J.; Luo, X.; Xu, C.; Zhu, A.; Guo, R.; Yan, C.; Zhu, P. Synthesis, biocompatible, and self-assembly properties of poly (ethylene glycol)/lactobionic acid-grafted chitosan. J. Biomater. Sci. Polym. Ed., 2014, 25(10), 1062-1075.
[http://dx.doi.org/10.1080/09205063.2014.918465] [PMID: 24847798]
[100]
López-Marzo, A.; Pons, J.; Merkoçi, A. Controlled formation of nanostructured CaCO3-PEI microparticles with high biofunctionalizing capacity. J. Mater. Chem., 2012, 22(30), 15326-15335.
[http://dx.doi.org/10.1039/c2jm32240d]
[101]
Del Castillo, G.F.D.; Kyriakidou, M.; Adali, Z.; Xiong, K.; Hailes, R.L.N.; Dahlin, A. Electrically switchable polymer brushes for protein capture and release in biological environments. Angew. Chem. Int. Ed. Engl., 2022, 61(22), e202115745.
[PMID: 35289480]
[102]
Caldas, M.; Santos, A.C.; Rebelo, R.; Pereira, I.; Veiga, F.; Reis, R.L.; Correlo, V.M. Electro-responsive controlled drug delivery from melanin nanoparticles. Int. J. Pharm., 2020, 588, 119773.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119773] [PMID: 32805382]
[103]
Jin, J.; Huang, Z.; Yin, G.; Yang, A.; Tang, S. Fabrication of polypyrrole/proteins composite film and their electro-controlled release for axons outgrowth. Electrochim. Acta, 2015, 185, 172-177.
[http://dx.doi.org/10.1016/j.electacta.2015.10.123]
[104]
Hasanzadeh, M.; Shadjou, N.; de la Guardia, M. Nanosized hydrophobic gels: Advanced supramolecules for use in electrochemical bio- and immunosensing. Trends Analyt. Chem., 2018, 102, 210-224.
[http://dx.doi.org/10.1016/j.trac.2018.02.011]
[105]
Wang, W.; Han, R.; Tang, K.; Zhao, S.; Ding, C.; Luo, X. Biocompatible peptide hydrogels with excellent antibacterial and catalytic properties for electrochemical sensing application. Anal. Chim. Acta, 2021, 1154, 338295.
[http://dx.doi.org/10.1016/j.aca.2021.338295] [PMID: 33736817]
[106]
Zhao, P.; Liu, Y.; Xiao, L.; Deng, H.; Du, Y.; Shi, X. Electrochemical deposition to construct a nature inspired multilayer chitosan/layered double hydroxides hybrid gel for stimuli responsive release of protein. J. Mater. Chem. B Mater. Biol. Med., 2015, 3(38), 7577-7584.
[http://dx.doi.org/10.1039/C5TB01056J] [PMID: 32262641]
[107]
Jin, Z.; Harvey, A.M.; Mailloux, S.; Halámek, J.; Bocharova, V.; Twiss, M.R.; Katz, E. Electrochemically stimulated release of lysozyme from an alginate matrix cross-linked with iron cations. J. Mater. Chem., 2012, 22(37), 19523-19528.
[http://dx.doi.org/10.1039/c2jm32008h]
[108]
Wei, Y.; Yu, F.; Diao, Z.; Xu, R.; Li, H.; Qin, G.; Guo, X. Self-cleaning electrochemical protein-imprinting biosensor with a dual-driven switchable affinity for sensing bovine serum albumin. Talanta, 2022, 237, 122893.
[http://dx.doi.org/10.1016/j.talanta.2021.122893] [PMID: 34736709]
[109]
Pastor, E.L.; Reguera-Nuñez, E.; Matveeva, E.; Garcia-Fuentes, M. Pore size is a critical parameter for obtaining sustained protein release from electrochemically synthesized mesoporous silicon microparticles. PeerJ, 2015, 3, e1277.
[http://dx.doi.org/10.7717/peerj.1277] [PMID: 26557423]
[110]
Kleps, I.; Ignat, T.; Miu, M.; Craciunoiu, F.; Trif, M.; Simion, M.; Bragaru, A.; Dinescu, A. Nanostructured silicon particles for medical applications. J. Nanosci. Nanotechnol., 2010, 10(4), 2694-2700.
[http://dx.doi.org/10.1166/jnn.2010.1419] [PMID: 20355486]
[111]
Fu, C.; Song, B.; Wan, C.; Savino, K.; Wang, Y.; Zhang, X.; Yates, M.Z. Electrochemical growth of composite hydroxyapatite coatings for controlled release. Surf. Coat. Tech., 2015, 276, 618-625.
[http://dx.doi.org/10.1016/j.surfcoat.2015.06.007]
[112]
Caris, J.A.; Chaves, A.R.; Queiroz, M.E.C. Evaluation of solid-phase microextraction using a polythiophene film and liquid chromatography with spectrophotometric detection for the determination of antidepressants in plasma samples. J. Braz. Chem. Soc., 2012, 23(1), 57-64.
[http://dx.doi.org/10.1590/S0103-50532012000100009]
[113]
Altunöz-Erdoğan, D.; Erk, N.; Kılıç, E. Voltammetric methods of reboxetine analysis and the mechanism of its electrode reactions. Cent. Eur. J. Chem., 2013, 11, 706-716.
[114]
Guzinski, M.; Lindner, E.; Pendley, B.; Chaum, E. Electrochemical sensor for tricyclic antidepressants with low nanomolar detection limit: quantitative determination of amitriptyline and nortriptyline in blood. Talanta, 2022, 239, 123072.
[http://dx.doi.org/10.1016/j.talanta.2021.123072] [PMID: 34864535]
[115]
Turan, J.; Kesik, M.; Soylemez, S.; Goker, S.; Kolb, M.; Bahadir, M.; Toppare, L. Development of an amperometric biosensor based on a novel conducting copolymer for detection of anti-dementia drugs. J. Electroanal. Chem. (Lausanne), 2014, 735, 43-50.
[http://dx.doi.org/10.1016/j.jelechem.2014.10.007]
[116]
Kapan, B.; Kurbanoglu, S.; Esenturk, E.N.; Soylemez, S.; Toppare, L. Electrochemical catechol biosensor based on β-cyclodextrin capped gold nanoparticles and inhibition effect of ibuprofen. Process Biochem., 2021, 108, 80-89.
[http://dx.doi.org/10.1016/j.procbio.2021.06.004]
[117]
Erkmen, C.; Demir, Y.; Kurbanoglu, S.; Uslu, B. Multi-Purpose electrochemical tyrosinase nanobiosensor based on poly (3,4 ethylenedioxythiophene) nanoparticles decorated graphene quantum dots: Applications to hormone drugs analyses and inhibition studies. Sens. Actuators B Chem., 2021, 343, 130164.
[http://dx.doi.org/10.1016/j.snb.2021.130164]
[118]
Phukon, P.; Radhapyari, K.; Konwar, B.K.; Khan, R. Natural polyhydroxyalkanoate-gold nanocomposite based biosensor for detection of antimalarial drug artemisinin. Mater. Sci. Eng. C, 2014, 37, 314-320.
[http://dx.doi.org/10.1016/j.msec.2014.01.019] [PMID: 24582254]
[119]
Chokkareddy, R.; Bhajanthri, N.; Redhi, G. An enzyme-induced novel biosensor for the sensitive electrochemical determination of isoniazid. Biosensors (Basel), 2017, 7(2), 21.
[http://dx.doi.org/10.3390/bios7020021] [PMID: 28587260]
[120]
Shamagsumova, R.V.; Vasyk, A.V.; Shurpik, D.N.; Evtugin, V.G.; Stoikov, I.I.; Evtugin, G.A. An acetylcholinesterase sensor based on a pillar[6]Arene-Silver nanoparticle composite for the determination of drugs for the treatment of Alzheimer’s Disease. J. Anal. Chem., 2022, 77, 429-438.
[121]
Antunes, R.; Garcia, L.; Somerset, V.; Gil, E.; Lopes, F. The use of a polyphenoloxidase biosensor obtained from the fruit of Jurubeba (Solanum paniculatum l.) in the determination of paracetamol and other phenolic drugs. Biosensors (Basel), 2018, 8(2), 36.
[http://dx.doi.org/10.3390/bios8020036] [PMID: 29614829]
[122]
Asturias-Arribas, L.; Asunción Alonso-Lomillo, M.; Domínguez-Renedo, O.; Julia Arcos-Martínez, M. Cytochrome P450 2D6 based electrochemical sensor for the determination of codeine. Talanta, 2014, 129, 315-319.
[http://dx.doi.org/10.1016/j.talanta.2014.05.053] [PMID: 25127601]
[123]
Ajay, I.R.F.; Tshoko, S.; Mgwili, Y.; Nqunqa, S.; Mulaudzi, T.; Mayedwa, N.; Iwuoha, E. Green method synthesised graphene-silver electrochemical nanobiosensors for ethambutol and pyrazinamide. Processes (Basel), 2020, 8(7), 879.
[http://dx.doi.org/10.3390/pr8070879]
[124]
Franke, C.; Ajayi, R.F.; Uhuo, O.; Januarie, K.; Iwuoha, E. Metallodendrimer-sensitised cytochrome P450 3A4 electrochemical biosensor for TB drugs. Electroanalysis, 2020, 32(12), 3075-3085.
[http://dx.doi.org/10.1002/elan.202060384]
[125]
Mohiuddin, M.; Arbain, D.; Islam, A.K.M.S.; Ahmad, M.S.; Ahmad, M.N. Alpha-glucosidase enzyme biosensor for the electrochemical measurement of antidiabetic potential of medicinal plants. Nanoscale Res. Lett., 2016, 11(1), 95.
[http://dx.doi.org/10.1186/s11671-016-1292-1] [PMID: 26887579]
[126]
El-Hady, D.A.; Youssef, A.K. Adsorptive and affinity linear sweep voltammetry for the determination of singulair in tablets and its interaction with human serum albumin. J. Anal. Chem., 2014, 69(7), 666-673.
[http://dx.doi.org/10.1134/S1061934814070053]
[127]
Zumpano, R.; Manghisi, M.; Polli, F.; D’Agostino, C.; Ietto, F.; Favero, G.; Mazzei, F. Label-free magnetic nanoparticles-based electrochemical immunosensor for atrazine detection. Anal. Bioanal. Chem., 2022, 414(6), 2055-2064.
[http://dx.doi.org/10.1007/s00216-021-03838-y] [PMID: 35043261]
[128]
Demir, B.; Yilmaz, T.; Guler, E.; Gumus, Z.P.; Akbulut, H.; Aldemir, E.; Coskunol, H.; Colak, D.G.; Cianga, I.; Yamada, S.; Timur, S.; Endo, T.; Yagci, Y. Polypeptide with electroactive endgroups as sensing platform for the abused drug ‘methamphetamine’ by bioelectrochemical method. Talanta, 2016, 161, 789-796.
[http://dx.doi.org/10.1016/j.talanta.2016.09.042] [PMID: 27769482]
[129]
Khor, S.M.; Liu, G.; Peterson, J.R.; Iyengar, S.G.; Gooding, J.J. An electrochemical immunobiosensor for direct detection of veterinary drug residues in undiluted complex matrices. Electroanalysis, 2011, 23(8), 1797-1804.
[http://dx.doi.org/10.1002/elan.201100205]
[130]
Centi, S.; Stoica, A.I.; Laschi, S.; Mascini, M. Development of an electrochemical immunoassay based on the use of an eight-electrodes screen-printed array coupled with magnetic beads for the detection of antimicrobial sulfonamides in honey. Electroanalysis, 2010, 22(16), 1881-1888.
[http://dx.doi.org/10.1002/elan.200900618]
[131]
Liu, J.; Chisti, M.M.; Zeng, X. General signal amplification strategy for nonfaradic impedimetric sensing: Trastuzumab detection employing a peptide immunosensor. Anal. Chem., 2017, 89(7), 4013-4020.
[http://dx.doi.org/10.1021/acs.analchem.6b04570] [PMID: 28256130]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy