Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Systematic Review Article

PBPK Modeling as an Alternative Method of Interspecies Extrapolation that Reduces the Use of Animals: A Systematic Review

Author(s): Karen Dayana Lancheros Porras, Izabel Almeida Alves and Diana Marcela Aragón Novoa*

Volume 31, Issue 1, 2024

Published on: 21 June, 2023

Page: [102 - 126] Pages: 25

DOI: 10.2174/0929867330666230408201849

Price: $65

Abstract

Introduction: Physiologically based pharmacokinetic (PBPK) modeling is a computational approach that simulates the anatomical structure of the studied species and presents the organs and tissues as compartments interconnected by arterial and venous blood flows.

Aim: The aim of this systematic review was to analyze the published articles focused on the development of PBPK models for interspecies extrapolation in the disposition of drugs and health risk assessment, presenting to this modeling an alternative to reduce the use of animals.

Methods: For this purpose, a systematic search was performed in PubMed using the following search terms: “PBPK” and “Interspecies extrapolation”. The revision was performed according to PRISMA guidelines.

Results: In the analysis of the articles, it was found that rats and mice are the most commonly used animal models in the PBPK models; however, most of the physiological and physicochemical information used in the reviewed studies were obtained from previous publications. Additionally, most of the PBPK models were developed to extrapolate pharmacokinetic parameters to humans and the main application of the models was for toxicity testing.

Conclusion: PBPK modeling is an alternative that allows the integration of in vitro and in silico data as well as parameters reported in the literature to predict the pharmacokinetics of chemical substances, reducing in large quantity the use of animals that are required in traditional studies.

[1]
Baumans, V. Use of animals in experimental research: An ethical dilemma? Gene Ther., 2004, 11(Suppl. 1), S64-S66.
[http://dx.doi.org/10.1038/sj.gt.3302371] [PMID: 15454959]
[2]
Michael Conn, P. Sourcebook of Models for Biomedical Research; Humana: London: Totowa, N.J., 2008.
[3]
Calabrese, E. Principles of Animal Extrapolation; Lewis Publishers, Inc: Chelsea, Mi, 1991.
[4]
Hubrecht, R.C.; Carter, E. The 3Rs and Humane experimental technique: Implementing change. Animals, 2019, 9(10), 754.
[http://dx.doi.org/10.3390/ani9100754] [PMID: 31575048]
[5]
Akhtar, A. The flaws and human harms of animal experimentation. Camb. Q. Healthc. Ethics, 2015, 24(4), 407-419.
[http://dx.doi.org/10.1017/S0963180115000079] [PMID: 26364776]
[6]
Van Norman, G.A. Limitations of animal studies for predicting toxicity in clinical trials. JACC Basic Transl. Sci., 2020, 5(4), 387-397.
[http://dx.doi.org/10.1016/j.jacbts.2020.03.010] [PMID: 32363250]
[7]
Knudsen, T.B.; Keller, D.A.; Sander, M.; Carney, E.W.; Doerrer, N.G.; Eaton, D.L.; Fitzpatrick, S.C.; Hastings, K.L.; Mendrick, D.L.; Tice, R.R.; Watkins, P.B.; Whelan, M. FutureTox II: In vitro data and in silico models for predictive toxicology. Toxicol. Sci., 2015, 143(2), 256-267.
[http://dx.doi.org/10.1093/toxsci/kfu234] [PMID: 25628403]
[8]
Reddy, M.B.; Yang, R.S.H. Harvey. Physiologically Based Pharmacokinetic Modeling: Science and Applications; John Wiley & Sons, Inc: Hoboken, New Jersey, 2005.
[http://dx.doi.org/10.1002/0471478768]
[9]
Thompson, C.V.; Firman, J.W.; Goldsmith, M.R.; Grulke, C.M.; Tan, Y.M.; Paini, A.; Penson, P.E.; Sayre, R.R.; Webb, S.; Madden, J.C. A systematic review of published physiologically-based kinetic models and an assessment of their chemical space coverage. Altern. Lab. Anim., 2021, 49(5), 197-208.
[http://dx.doi.org/10.1177/02611929211060264] [PMID: 34836462]
[10]
Fisher, J.W.; Gearhart, J.M.; Lin, Z. Physiologically Based Pharmacokinetic (PBPK) Modeling: Methods and Applications in Toxicology and Risk Assessment; Academic Press: Amsterdam, 2020.
[11]
Tsamandouras, N.; Rostami-Hodjegan, A.; Aarons, L. Combining the ‘bottom up’ and ‘top down’ approaches in pharmacokinetic modelling: fitting PBPK models to observed clinical data. Br. J. Clin. Pharmacol., 2015, 79(1), 48-55.
[http://dx.doi.org/10.1111/bcp.12234] [PMID: 24033787]
[12]
Research, C. for D. E. and. physiologically based pharmacokinetic analyses-format and content guidance for industry. Available From: https://www.fda.gov/regulatory-information/search-fda-guidance-documents/physiologically-based-pharmacokinetic-analyses-format-and-content-guidance-industry
[13]
EMA. Reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation-European Medicines Agency. Available From: https://www.ema.europa.eu/en/reporting-physiologically-based-pharmacokinetic-pbpkmodelling-simulation
[14]
Jamei, M.; Abrahamsson, B.; Brown, J.; Bevernage, J.; Bolger, M.B.; Heimbach, T.; Karlsson, E.; Kotzagiorgis, E.; Lindahl, A.; McAllister, M.; Mullin, J.M.; Pepin, X.; Tistaert, C.; Turner, D.B.; Kesisoglou, F. Current status and future opportunities for incorporation of dissolution data in PBPK modeling for pharmaceutical development and regulatory applications: OrBiTo consortium commentary. Eur. J. Pharm. Biopharm., 2020, 155, 55-68.
[http://dx.doi.org/10.1016/j.ejpb.2020.08.005] [PMID: 32781025]
[15]
Zhang, X.; Yang, Y.; Grimstein, M.; Fan, J.; Grillo, J.A.; Huang, S.M.; Zhu, H.; Wang, Y. Application of PBPK modeling and simulation for regulatory decision making and its impact on US prescribing information: An update on the 2018‐2019 submissions to the US FDA’s office of Clinical Pharmacology. J. Clin. Pharmacol., 2020, 60(Suppl. 1), S160-S178.
[http://dx.doi.org/10.1002/jcph.1767] [PMID: 33205429]
[16]
Oecd. Guidance Document on Good in Vitro Method Practices (GIVIMP); Oecd Publishing, 2018. Available From: Guidance Document on Good In Vitro Method Practices (GIVIMP) | en | OECD
[17]
Li, Z.; Gao, Y.; Yang, C.; Xiang, Y.; Zhang, W.; Zhang, T.; Su, R.; Lu, C.; Zhuang, X. Assessment and confirmation of species difference in nonlinear pharmacokinetics of atipamezole with physiologically based pharmacokinetic modeling. Drug Metab. Dispos., 2020, 48(1), 41-51.
[http://dx.doi.org/10.1124/dmd.119.089151] [PMID: 31699808]
[18]
Bogdanffy, M.; Sarangapani, R.; Plowchalk, D.R.; Jarabek, A.; Andersen, M.E. A biologically based risk assessment for vinyl acetate-induced cancer and noncancer inhalation toxicity. Toxicol. Sci., 1999, 51(1), 19-35.
[http://dx.doi.org/10.1093/toxsci/51.1.19] [PMID: 10496674]
[19]
Lin, Z.; Monteiro-Riviere, N.A.; Kannan, R.; Riviere, J.E. A computational framework for interspecies pharmacokinetics, exposure and toxicity assessment of gold nanoparticles. Nanomedicine, 2016, 11(2), 107-119.
[http://dx.doi.org/10.2217/nnm.15.177] [PMID: 26653715]
[20]
Teeguarden, J.G.; Bogdanffy, M.S.; Covington, T.R.; Tan, C.; Jarabek, A.M. A PBPK model for evaluating the impact of aldehyde dehydrogenase polymorphisms on comparative rat and human nasal tissue acetaldehyde dosimetry. Inhal. Toxicol., 2008, 20(4), 375-390.
[http://dx.doi.org/10.1080/08958370801903750] [PMID: 18302046]
[21]
Yang, X.; Zhou, Y.F.; Yu, Y.; Zhao, D.H.; Shi, W.; Fang, B.H.; Liu, Y.H. A physiologically based pharmacokinetic model for quinoxaline-2-carboxylic acid in rats, extrapolation to pigs. J. Vet. Pharmacol. Ther., 2015, 38(1), 55-64.
[http://dx.doi.org/10.1111/jvp.12143] [PMID: 25378053]
[22]
Yuan, L.G.; Luo, X.Y.; Zhu, L.X.; Wang, R.; Liu, Y.H. A physiologically based pharmacokinetic model for valnemulin in rats and extrapolation to pigs. J. Vet. Pharmacol. Ther., 2011, 34(3), 224-231.
[http://dx.doi.org/10.1111/j.1365-2885.2010.01230.x] [PMID: 20950354]
[23]
Hu, Z.Y.; Lu, J.; Zhao, Y. A physiologically based pharmacokinetic model of alvespimycin in mice and extrapolation to rats and humans. Br. J. Pharmacol., 2014, 171(11), 2778-2789.
[http://dx.doi.org/10.1111/bph.12609] [PMID: 24471734]
[24]
Frederick, C.B.; Bush, M.L.; Lomax, L.G.; Black, K.A.; Finch, L.; Kimbell, J.S.; Morgan, K.T.; Subramaniam, R.P.; Morris, J.B.; Ultman, J.S. Application of a hybrid computational fluid dynamics and physiologically based inhalation model for interspecies dosimetry extrapolation of acidic vapors in the upper airways. Toxicol. Appl. Pharmacol., 1998, 152(1), 211-231.
[http://dx.doi.org/10.1006/taap.1998.8492] [PMID: 9772217]
[25]
Lu, Y.; Rieth, S.; Lohitnavy, M.; Dennison, J.; El-Masri, H.; Barton, H.A.; Bruckner, J.; Yang, R.S.H. Application of PBPK modeling in support of the derivation of toxicity reference values for 1,1,1-trichloroethane. Regul. Toxicol. Pharmacol., 2008, 50(2), 249-260.
[http://dx.doi.org/10.1016/j.yrtph.2007.12.001] [PMID: 18226845]
[26]
Bi, Y.; Deng, J.; Murry, D.J.; An, G. A whole-body physiologically based pharmacokinetic model of gefitinib in mice and scale-up to humans. AAPS J., 2016, 18(1), 228-238.
[http://dx.doi.org/10.1208/s12248-015-9836-3] [PMID: 26559435]
[27]
Chou, W.C.; Lin, Z. Bayesian evaluation of a physiologically based pharmacokinetic (PBPK) model for perfluorooctane sulfonate (PFOS) to characterize the interspecies uncertainty between mice, rats, monkeys, and humans: Development and performance verification. Environ. Int., 2019, 129, 408-422.
[http://dx.doi.org/10.1016/j.envint.2019.03.058] [PMID: 31152982]
[28]
Aborig, M.; Malik, P.R.V.; Nambiar, S.; Chelle, P.; Darko, J.; Mutsaers, A.; Edginton, A.N.; Fleck, A.; Osei, E.; Wettig, S. Biodistribution and physiologically-based pharmacokinetic modeling of gold nanoparticles in mice with interspecies extrapolation. Pharmaceutics, 2019, 11(4), 179.
[http://dx.doi.org/10.3390/pharmaceutics11040179] [PMID: 31013763]
[29]
McMullin, T. S.; Yang, Y.; Campbell, J.; Clewell, H. J.; Plotzke, K.; Andersen, M. E. Development of an integrated multi-species and multi-dose route PBPK model for Volatile Methyl Siloxanes - D4 and D5. Regulatory toxicology and pharmacology. RTP, 2016, 74(Suppl), S1-13.
[30]
Yang, X.; Morris, S.M.; Gearhart, J.M.; Ruark, C.D.; Paule, M.G.; Slikker, W., Jr; Mattison, D.R.; Vitiello, B.; Twaddle, N.C.; Doerge, D.R.; Young, J.F.; Fisher, J.W. Development of a physiologically based model to describe the pharmacokinetics of methylphenidate in juvenile and adult humans and nonhuman primates. PLoS One, 2014, 9(9), e106101.
[http://dx.doi.org/10.1371/journal.pone.0106101] [PMID: 25184666]
[31]
Troutman, J.A.; Rick, D.L.; Stuard, S.B.; Fisher, J.; Bartels, M.J. Development of a physiologically-based pharmacokinetic model of 2-phenoxyethanol and its metabolite phenoxyacetic acid in rats and humans to address toxicokinetic uncertainty in risk assessment. Regul. Toxicol. Pharmacol., 2015, 73(2), 530-543.
[http://dx.doi.org/10.1016/j.yrtph.2015.07.012] [PMID: 26188115]
[32]
Methaneethorn, J.; Naosang, K.; Kaewworasut, P.; Poomsaidorn, C.; Lohitnavy, M. Development of a physiologically-based pharmacokinetic Model of Δ 9-Tetrahydrocannabinol in mice, rats, and pigs. Eur. J. Drug Metab. Pharmacokinet., 2020, 45(4), 487-494.
[http://dx.doi.org/10.1007/s13318-020-00616-6] [PMID: 32253721]
[33]
Sweeney, L.M.; Kirman, C.R.; Gannon, S.A.; Thrall, K.D.; Gargas, M.L.; Kinzell, J.H. Development of a physiologically based pharmacokinetic (PBPK) model for methyl iodide in rats, rabbits, and humans. Inhal. Toxicol., 2009, 21(6), 552-582.
[http://dx.doi.org/10.1080/08958370802601569] [PMID: 19519155]
[34]
Campbell, J.L., Jr; Bull, R.J.; Clewell, H.J., III Development of a rat and human PBPK model for bromate and estimation of human equivalent concentrations in drinking water. Int. J. Environ. Health Res., 2021, 31(8), 951-962.
[http://dx.doi.org/10.1080/09603123.2019.1702628] [PMID: 31850798]
[35]
Peters, S.A. Identification of intestinal loss of a drug through physiologically based pharmacokinetic simulation of plasma concentration-time profiles. Clin. Pharmacokinet., 2008, 47(4), 245-259.
[http://dx.doi.org/10.2165/00003088-200847040-00003] [PMID: 18336054]
[36]
Sarangapani, R.; Teeguarden, J.G.; Gentry, P.R.; Clewell, H.J., III; Barton, H.A.; Bogdanffy, M.S. Interspecies dose extrapolation for inhaled dimethyl sulfate: A PBPK model-based analysis using nasal cavity N7-methylguanine adducts. Inhal. Toxicol., 2004, 16(9), 593-605.
[http://dx.doi.org/10.1080/08958370490464562] [PMID: 16036752]
[37]
Li, X.; Yang, Y.; Zhang, Y.; Wu, C.; Jiang, Q.; Wang, W.; Li, H.; Li, J.; Luo, C.; Wu, W.; Wang, Y.; Zhang, T. Justification of biowaiver and dissolution rate specifications for piroxicam immediate release products based on physiologically based pharmacokinetic modeling: An in-depth analysis. Mol. Pharm., 2019, 16(9), 3780-3790.
[http://dx.doi.org/10.1021/acs.molpharmaceut.9b00350] [PMID: 31398041]
[38]
Yanagi, M.; Kamiya, Y.; Murayama, N.; Banju, K.; Shimizu, M.; Yamazaki, H. Metabolic profiles for the pyrrolizidine alkaloid neopetasitenine and its metabolite petasitenine in humans extrapolated from rat in vivo and in vitro data sets using a simplified physiologically based pharmacokinetic model. J. Toxicol. Sci., 2021, 46(9), 391-399.
[http://dx.doi.org/10.2131/jts.46.391] [PMID: 34470991]
[39]
Noh, K.; Yang, Q.J.; Sekhon, L.; Quach, H.P.; Chow, E.C.Y.; Pang, K.S. Noteworthy idiosyncrasies of 1α,25‐dihydroxyvitamin D 3 kinetics for extrapolation from mouse to man: Commentary. Biopharm. Drug Dispos., 2020, 41(3), 126-148.
[http://dx.doi.org/10.1002/bdd.2223] [PMID: 32319119]
[40]
Sarangapani, R.; Teeguarden, J.G.; Cruzan, G.; Clewell, H.J.; Andersen, M.E. Physiologically based pharmacokinetic modeling of styrene and styrene oxide respiratory-tract dosimetry in rodents and humans. Inhal. Toxicol., 2002, 14(8), 789-834.
[http://dx.doi.org/10.1080/08958370290084647] [PMID: 12122565]
[41]
Lu, X.F.; Bi, K.; Chen, X. Physiologically based pharmacokinetic model of docetaxel and interspecies scaling: comparison of simple injection with folate receptor-targeting amphiphilic copolymer-modified liposomes. Xenobiotica, 2016, 46(12), 1093-1104.
[http://dx.doi.org/10.3109/00498254.2016.1155128] [PMID: 26986924]
[42]
Hudachek, S.F.; Gustafson, D.L. Physiologically based pharmacokinetic model of lapatinib developed in mice and scaled to humans. J. Pharmacokinet. Pharmacodyn., 2013, 40(2), 157-176.
[http://dx.doi.org/10.1007/s10928-012-9295-8] [PMID: 23315145]
[43]
Dallas, C.E.; Chen, X.M.; Muralidhara, S.; Varkonyi, P.; Tackett, R.L.; Bruckner, J.V. Physiologically based pharmacokinetic model useful in prediction of the influence of species, dose, and exposure route on perchloroethylene pharmacokinetics. J. Toxicol. Environ. Health, 1995, 44(3), 301-317.
[http://dx.doi.org/10.1080/15287399509531961] [PMID: 7897693]
[44]
Chen, Y.; Zhao, K.; Liu, F.; Xie, Q.; Zhong, Z.; Miao, M.; Liu, X.; Liu, L. Prediction of deoxypodophyllotoxin disposition in mouse, rat, monkey, and dog by physiologically based pharmacokinetic model and the extrapolation to human. Front. Pharmacol., 2016, 7, 488.
[http://dx.doi.org/10.3389/fphar.2016.00488] [PMID: 28018224]
[45]
Pierrillas, P.B.; Henin, E.; Ball, K.; Ogier, J.; Amiel, M.; Kraus-Berthier, L.; Chenel, M.; Bouzom, F.; Tod, M. Prediction of human nonlinear pharmacokinetics of a new Bcl-2 inhibitor using PBPK modeling and interspecies extrapolation strategy. Drug Metab. Dispos., 2019, 47(6), 648-656.
[http://dx.doi.org/10.1124/dmd.118.085605] [PMID: 30940629]
[46]
Béliveau, M.; Lipscomb, J.; Tardif, R.; Krishnan, K. Quantitative structure-property relationships for interspecies extrapolation of the inhalation pharmacokinetics of organic chemicals. Chem. Res. Toxicol., 2005, 18(3), 475-485.
[http://dx.doi.org/10.1021/tx049722k] [PMID: 15777087]
[47]
Sweeney, L.M.; Phillips, E.A.; Goodwin, M.R.; Bannon, D.I. Toxicokinetic model development for the insensitive munitions component 3-Nitro-1,2,4-Triazol-5-One. Int. J. Toxicol., 2015, 34(5), 408-416.
[http://dx.doi.org/10.1177/1091581815589000] [PMID: 26060267]
[48]
Pande, P.; Madeen, E.P.; Williams, D.E.; Crowell, S.R.; Ognibene, T.J.; Turteltaub, K.W.; Corley, R.A.; Smith, J.N. Translating dosimetry of Dibenzo[def,p]chrysene (DBC) and metabolites across dose and species using physiologically based pharmacokinetic (PBPK) modeling. Toxicol. Appl. Pharmacol., 2022, 438, 115830.
[http://dx.doi.org/10.1016/j.taap.2021.115830] [PMID: 34933053]
[49]
Kirman, C.R.; Sweeney, L.M.; Corley, R.; Gargas, M.L. Using physiologically-based pharmacokinetic modeling to address nonlinear kinetics and changes in rodent physiology and metabolism due to aging and adaptation in deriving reference values for propylene glycol methyl ether and propylene glycol methyl ether acetate. Risk Anal., 2005, 25(2), 271-284.
[http://dx.doi.org/10.1111/j.1539-6924.2005.00588.x] [PMID: 15876203]
[50]
Animal Models of Thrombosis and Hemorrhagic Diseases; National Academies Press: Washington, D.C., 1976, pp. 189-204.
[http://dx.doi.org/10.17226/19903]
[51]
Hau, J.; Van, G.L. Handbook of Laboratory Animal Science; Crc Press: Boca Raton, Fla., 2003, p. 2.
[52]
Sweeney, L.M.; Gargas, M.L. Route-to-route extrapolation of 1,2-dichloroethane studies from the oral route to inhalation using physiologically based pharmacokinetic models. Regul. Toxicol. Pharmacol., 2016, 81, 468-479.
[http://dx.doi.org/10.1016/j.yrtph.2016.10.005] [PMID: 27756559]
[53]
Johnson, P.D.; Besselsen, D.G. Practical aspects of experimental design in animal research. ILAR J., 2002, 43(4), 202-206.
[http://dx.doi.org/10.1093/ilar.43.4.202] [PMID: 12391395]
[54]
Animal Models of Diabetes; King, A.J.F., Ed.; Springer US: New York, NY, 2020.
[http://dx.doi.org/10.1007/978-1-0716-0385-7]
[55]
Davies, B.; Morris, T. Physiological parameters in laboratory animals and humans. Pharm. Res., 1993, 10(7), 1093-1095.
[http://dx.doi.org/10.1023/A:1018943613122] [PMID: 8378254]
[56]
Brown, R.P.; Delp, M.D.; Lindstedt, S.L.; Rhomberg, L.R.; Beliles, R.P. Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health, 1997, 13(4), 407-484.
[http://dx.doi.org/10.1177/074823379701300401] [PMID: 9249929]
[57]
Upton, R.N. Organ weights and blood flows of sheep and pig for physiological pharmacokinetic modelling. J. Pharmacol. Toxicol. Methods, 2008, 58(3), 198-205.
[http://dx.doi.org/10.1016/j.vascn.2008.08.001] [PMID: 18775498]
[58]
Lin, L.; Wong, H. Predicting oral drug absorption: Mini review on physiologically-based pharmacokinetic models. Pharmaceutics, 2017, 9(4), 41.
[http://dx.doi.org/10.3390/pharmaceutics9040041] [PMID: 28954416]
[59]
Lipscomb, J.C.; Haddad, S.; Poet, T.; Krishnan, K. Physiologically-based pharmacokinetic (PBPK) models in toxicity testing and risk assessment. Adv. Exp. Med. Biol., 2012, 745, 76-95.
[http://dx.doi.org/10.1007/978-1-4614-3055-1_6] [PMID: 22437814]
[60]
Gibaldi, M.; Lee, M. Archana Desai; American Society Of Health-System Pharmacists. Gibaldi’s Drug Delivery Systems in Pharmaceutical Care; American Society Of Health-System Pharmacists: Bethesda, Md., 2007.
[61]
Turner, P.V.; Brabb, T.; Pekow, C.; Vasbinder, M.A. Administration of substances to laboratory animals: Routes of administration and factors to consider. J. Am. Assoc. Lab. Anim. Sci., 2011, 50(5), 600-613.
[PMID: 22330705]
[62]
Diep, U.; Chudow, M.; Sunjic, K.M. Pharmacokinetic changes in liver failure and impact on drug therapy. AACN Adv. Crit. Care, 2017, 28(2), 93-101.
[http://dx.doi.org/10.4037/aacnacc2017948] [PMID: 28592464]
[63]
Shah, V.P.; Amidon, G.L.; Lennernas, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability, Pharm Res 12, 413-420, 1995--backstory of BCS. AAPS J., 2014, 16(5), 894-898.
[http://dx.doi.org/10.1208/s12248-014-9620-9] [PMID: 24961917]
[64]
Papich, M.G.; Martinez, M.N. Applying Biopharmaceutical Classification System (BCS) criteria to predict oral absorption of drugs in dogs: Challenges and pitfalls. AAPS J., 2015, 17(4), 948-964.
[http://dx.doi.org/10.1208/s12248-015-9743-7] [PMID: 25916691]
[65]
Liu, Y.; Sun, J.; Zhong, L.; Li, Y.; Er, A.N.; Li, T.; Yang, L.; Dong, L. Combination of a biopharmaceutic classification system and physiologically based pharmacokinetic models to predict absorption properties of baicalein in vitro and in vivo. J. Tradit. Chin. Med. Sci., 2021, 8(3), 238-247.
[http://dx.doi.org/10.1016/j.jtcms.2021.07.006]
[66]
Hansmann, S.; Darwich, A.; Margolskee, A.; Aarons, L.; Dressman, J. Forecasting oral absorption across biopharmaceutics classification system classes with physiologically based pharmacokinetic models. J. Pharm. Pharmacol., 2016, 68(12), 1501-1515.
[http://dx.doi.org/10.1111/jphp.12618] [PMID: 27781273]
[67]
Alqahtani, M.S.; Kazi, M.; Alsenaidy, M.A.; Ahmad, M.Z. Advances in oral drug delivery. Front. Pharmacol., 2021, 12, 618411.
[http://dx.doi.org/10.3389/fphar.2021.618411] [PMID: 33679401]
[68]
di Cagno, M.P.; Clarelli, F.; Våbenø, J.; Lesley, C.; Rahman, S.D.; Cauzzo, J.; Franceschinis, E.; Realdon, N.; Stein, P.C. Experimental determination of drug diffusion coefficients in unstirred aqueous environments by temporally resolved concentration measurements. Mol. Pharm., 2018, 15(4), 1488-1494.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b01053] [PMID: 29462563]
[69]
Lin, W.; Chen, Y.; Unadkat, J.D.; Zhang, X.; Wu, D.; Heimbach, T. Applications, challenges, and outlook for pbpk modeling and simulation: A regulatory, industrial and academic perspective. Pharm. Res., 2022, 39(8), 1701-1731.
[http://dx.doi.org/10.1007/s11095-022-03274-2] [PMID: 35552967]
[70]
Wang, Y.; Cder, O. PBPK Current Status and Challenges: A Regulatory Perspective. In: Development of Best Practices in Physiologically Based Pharmacokinetic Modeling to Support Clinical Pharmacology Regulatory Decision-Making; , 2019.
[71]
Manolis, E.; Musuamba, F.T.; Karlsson, K.E. The european medicines agency experience with pediatric dose selection. J. Clin. Pharmacol., 2021, 61(Suppl. 1), S22-S27.
[http://dx.doi.org/10.1002/jcph.1863] [PMID: 34185894]
[72]
Maharaj, A.R.; Edginton, A.N. Physiologically based pharmacokinetic modeling and simulation in pediatric drug development. CPT Pharmacometrics Syst. Pharmacol., 2014, 3(11), 1-13.
[http://dx.doi.org/10.1038/psp.2014.45] [PMID: 25353188]
[73]
Rosenbaum, S. Basic Pharmacokinetics and Pharmacodynamics: An Integrated Textbook and Computer Simulations; John Wiley & Sons, Inc: Hoboken, New Jersey, 2017.
[74]
Onetto, A.J.; Sharif, S. Drug Distribution; StatPearls, 2022.
[75]
Espié, P.; Tytgat, D.; Sargentini-Maier, M.L.; Poggesi, I.; Watelet, J.B. Physiologically based pharmacokinetics (PBPK). Drug Metab. Rev., 2009, 41(3), 391-407.
[http://dx.doi.org/10.1080/10837450902891360] [PMID: 19601719]
[76]
Khalil, F.; Läer, S. Physiologically based pharmacokinetic modeling: Methodology, applications, and limitations with a focus on its role in pediatric drug development. J. Biomed. Biotechnol., 2011, 2011, 1-13.
[http://dx.doi.org/10.1155/2011/907461] [PMID: 21716673]
[77]
Yoon, M.; Kedderis, G.L.; Yang, Y.; Allen, B.C.; Yan, G.Z.; Clewell, H.J. Use of in vitro data in PBPK Models: An example of in vitro to in vivo extrapolation with carbaryl. ACS Symposium Series, 2012, pp. 323-338.
[http://dx.doi.org/10.1021/bk-2012-1099.ch020]
[78]
Kundu, P.K.; Cohen, I.M.; Dowling, D.R. Fluid Mechanics; Academic Press: Waltham, Ma, 2012.
[79]
Vulović, A.; Šušteršič, T.; Cvijić, S.; Ibrić, S.; Filipović, N. Coupled in silico platform: Computational fluid dynamics (CFD) and physiologically-based pharmacokinetic (PBPK) modelling. Eur. J. Pharm. Sci., 2018, 113, 171-184.
[http://dx.doi.org/10.1016/j.ejps.2017.10.022] [PMID: 29054499]
[80]
Afshar, M.; Lanoue, A.; Sallantin, J. Multiobjective/multicriteria optimization and decision support in drug discovery. Comprehensive Medicinal Chemistry, 2007, II, 767-774.
[http://dx.doi.org/10.1016/B0-08-045044-X/00275-3]
[81]
Peyret, T.; Krishnan, K. QSARs for PBPK modelling of environmental contaminants. SAR QSAR Environ. Res., 2011, 22(1-2), 129-169.
[http://dx.doi.org/10.1080/1062936X.2010.548351] [PMID: 21391145]
[82]
Gaohua, L.; Miao, X.; Dou, L. Crosstalk of physiological pH and chemical pKa under the umbrella of physiologically based pharmacokinetic modeling of drug absorption, distribution, metabolism, excretion, and toxicity. Expert Opin. Drug Metab. Toxicol., 2021, 17(9), 1103-1124.
[http://dx.doi.org/10.1080/17425255.2021.1951223] [PMID: 34253134]
[83]
Peters, S.A. Physiologically Based Pharmacokinetic (PBPK) modeling and simulations: Principles, methods, and applications in the pharmaceutical industry; John Wiley & Sons, Inc: Hoboken, Nj, 2022.
[84]
Mintun, M.; Himmelstein, K.J.; Schroder, R.L.; Gibaldi, M.; Shen, D.D. Tissue distribution kinetics of tetraethylammonium ion in the rat. J. Pharmacokinet. Biopharm., 1980, 8(4), 373-409.
[http://dx.doi.org/10.1007/BF01059385] [PMID: 7431228]
[85]
Marcoline, F.; Grabe, M.; Nayak, S.; Zahnley, T.; Oster, G.; Macey, R. Berkeley Madonna User’s Guide; University of California Department of Molecular and Cellular Biolog, 2020.
[86]
El-Khateeb, E.; Burkhill, S.; Murby, S.; Amirat, H.; Rostami-Hodjegan, A.; Ahmad, A. Physiological‐based pharmacokinetic modeling trends in pharmaceutical drug development over the last 20‐years; in‐depth analysis of applications, organizations, and platforms. Biopharm. Drug Dispos., 2021, 42(4), 107-117.
[http://dx.doi.org/10.1002/bdd.2257] [PMID: 33325034]
[87]
Kuepfer, L. Prospects and limitations of physiologically-based pharmacokinetic modelling for cross-species extrapolation. SVU-International Journal of Veterinary Sciences, 2019, 2(2), 45-51.
[http://dx.doi.org/10.21608/svu.2019.14193.1020] [PMID: 31108904]
[88]
Yuan, Y.; He, Q.; Zhang, S.; Li, M.; Tang, Z.; Zhu, X.; Jiao, Z.; Cai, W.; Xiang, X. Application of physiologically based pharmacokinetic modeling in preclinical studies: A feasible strategy to practice the principles of 3Rs. Front. Pharmacol., 2022, 13, 895556.
[http://dx.doi.org/10.3389/fphar.2022.895556] [PMID: 35645843]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy