Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Aldehyde Dehydrogenases as Promising Targets for Treating Toxic Aldehyde-related Diseases

Author(s): Yu Chen and Xin Li*

Volume 31, Issue 8, 2024

Published on: 15 May, 2023

Page: [970 - 994] Pages: 25

DOI: 10.2174/0929867330666230408200401

Price: $65

Abstract

Background: Mammals are exposed to various endogenous and exogenous aldehydes, and aldehyde dehydrogenases (ALDHs) function to metabolize these aldehydes into acids in order to counteract aldehyde over-load. ALDHs, therefore, play important roles in a series of physiological and pathophysiological processes. ALDHs activators and inhibitors are not only important probes for exploring ALDHs functions, but promising for the treatment of toxic aldehyde-related diseases.

Methods: This review has comprehensively summarized the categories and characteristics of 19 human ALDHs, elaborated their related biological pathways, such as alcohol metabolism, retinoic acid (RA) production, neurotransmitter metabolism, etc. In addition, reported ALDHs activators and inhibitors have been summarized by listing their target, inhibition form, and clinical application.

Results: On the one hand, summarization of the types and relative functions is useful for further research on aldehyde metabolic pathways and related diseases. On the other hand, a review of existing activators and inhibitors of ALDHs contributes to discovering new leading compounds and provides new insights.

Conclusion: In consideration of the important role ALDH plays in toxic aldehyde-related diseases, ALDHs are promising targets for the treatment of toxic aldehyde-related diseases, and more research efforts are required to explore their pathophysiology and to develop new regulators.

« Previous
[1]
McMurry, J. Organic Chemistry; Brooks Cole: Monterey, 1984.
[2]
LoPachin, R.M.; Gavin, T. Molecular mechanisms of aldehyde toxicity: A chemical perspective. Chem. Res. Toxicol., 2014, 27(7), 1081-1091.
[http://dx.doi.org/10.1021/tx5001046] [PMID: 24911545]
[3]
Shoeb, M.; Ansari, N.; Srivastava, S.; Ramana, K. 4-Hydroxynonenal in the pathogenesis and progression of human diseases. Curr. Med. Chem., 2013, 21(2), 230-237.
[http://dx.doi.org/10.2174/09298673113209990181] [PMID: 23848536]
[4]
Hopkinson, R.J.; Schofield, C.J. Deciphering functions of intracellular formaldehyde: linking cancer and aldehyde metabolism. Biochemistry, 2018, 57(6), 904-906.
[http://dx.doi.org/10.1021/acs.biochem.7b01304] [PMID: 29368521]
[5]
Chen, C.H.; Ferreira, J.C.B.; Gross, E.R.; Mochly-Rosen, D. Targeting aldehyde dehydrogenase 2: New therapeutic opportunities. Physiol. Rev., 2014, 94(1), 1-34.
[http://dx.doi.org/10.1152/physrev.00017.2013] [PMID: 24382882]
[6]
Poon, H.F.; Calabrese, V.; Scapagnini, G.; Butterfield, D.A. Free radicals: Key to brain aging and heme oxygenase as a cellular response to oxidative stress. J. Gerontol. A Biol. Sci. Med. Sci., 2004, 59(5), M478-M493.
[http://dx.doi.org/10.1093/gerona/59.5.M478] [PMID: 15123759]
[7]
Grünblatt, E.; Riederer, P. Aldehyde dehydrogenase (ALDH) in Alzheimer’s and Parkinson’s disease. J. Neural Transm., 2016, 123(2), 83-90.
[http://dx.doi.org/10.1007/s00702-014-1320-1] [PMID: 25298080]
[8]
Klaunig, J.E. Oxidative stress and cancer. Curr. Pharm. Des., 2019, 24(40), 4771-4778.
[http://dx.doi.org/10.2174/1381612825666190215121712] [PMID: 30767733]
[9]
Pang, J.; Wang, J.; Zhang, Y.; Xu, F.; Chen, Y. Targeting acetaldehyde dehydrogenase 2 (ALDH2) in heart failure - Recent insights and perspectives. Biochim. Biophys. Acta Mol. Basis Dis., 2017, 1863(8), 1933-1941.
[http://dx.doi.org/10.1016/j.bbadis.2016.10.004] [PMID: 27742538]
[10]
Münzel, T.; Daiber, A. The potential of aldehyde dehydrogenase 2 as a therapeutic target in cardiovascular disease. Expert Opin. Ther. Targets, 2018, 22(3), 217-231.
[http://dx.doi.org/10.1080/14728222.2018.1439922] [PMID: 29431026]
[11]
Protein Data Bank. Available from: https://www.rcsb.org/structure/1O01
[12]
Vasiliou, V.; Nebert, D.W. Analysis and update of the human aldehyde dehydrogenase (ALDH) gene family. Hum. Genomics, 2005, 2(2), 138-143.
[http://dx.doi.org/10.1186/1479-7364-2-2-138] [PMID: 16004729]
[13]
Koppaka, V.; Thompson, D.C.; Chen, Y.; Ellermann, M.; Nicolaou, K.C.; Juvonen, R.O.; Petersen, D.; Deitrich, R.A.; Hurley, T.D.; Vasiliou, V. Aldehyde dehydrogenase inhibitors: A comprehensive review of the pharmacology, mechanism of action, substrate specificity, and clinical application. Pharmacol. Rev., 2012, 64(3), 520-539.
[http://dx.doi.org/10.1124/pr.111.005538] [PMID: 22544865]
[14]
Wang, X.; Weiner, H. Involvement of glutamate 268 in the active site of human liver mitochondrial (class 2) aldehyde dehydrogenase as probed by site-directed mutagenesis. Biochemistry, 1995, 34(1), 237-243.
[http://dx.doi.org/10.1021/bi00001a028] [PMID: 7819202]
[15]
Marchal, S.; Rahuel-Clermont, S.; Branlant, G. Role of glutamate-268 in the catalytic mechanism of nonphosphorylating glyceraldehyde-3-phosphate dehydrogenase from Streptococcus mutans. Biochemistry, 2000, 39(12), 3327-3335.
[http://dx.doi.org/10.1021/bi9914208] [PMID: 10727225]
[16]
Yoval-Sánchez, B.; Rodríguez-Zavala, J.S. Differences in susceptibility to inactivation of human aldehyde dehydrogenases by lipid peroxidation byproducts. Chem. Res. Toxicol., 2012, 25(3), 722-729.
[http://dx.doi.org/10.1021/tx2005184] [PMID: 22339434]
[17]
Hsu, L.C.; Chang, W.C.; Chang, C.; Tsukamoto, N.; Yoshida, A. The human aldehyde dehydrogenase 3 gene (ALDH3): identification of a new exon and diverse mRNA isoforms, and functional analysis of the promoter. Gene Expr., 1996, 6(2), 87-99.
[PMID: 8979087]
[18]
Black, W.J.; Stagos, D.; Marchitti, S.A.; Nebert, D.W.; Tipton, K.F.; Bairoch, A.; Vasiliou, V. Human aldehyde dehydrogenase genes: Alternatively spliced transcriptional variants and their suggested nomenclature. Pharmacogenet. Genomics, 2009, 19(11), 893-902.
[http://dx.doi.org/10.1097/FPC.0b013e3283329023] [PMID: 19823103]
[19]
Yoshida, A.; Rzhetsky, A.; Hsu, L.C.; Chang, C. Human aldehyde dehydrogenase gene family. Eur. J. Biochem., 1998, 251(3), 549-557.
[http://dx.doi.org/10.1046/j.1432-1327.1998.2510549.x] [PMID: 9490025]
[20]
Morgan, C.A.; Hurley, T.D. Characterization of two distinct structural classes of selective aldehyde dehydrogenase 1A1 inhibitors. J. Med. Chem., 2015, 58(4), 1964-1975.
[http://dx.doi.org/10.1021/jm501900s] [PMID: 25634381]
[21]
Petrosino, J.; DiSilvestro, D.; Ziouzenkova, O. Aldehyde dehydrogenase 1A1: Friend or foe to female metabolism? Nutrients, 2014, 6(3), 950-973.
[http://dx.doi.org/10.3390/nu6030950] [PMID: 24594504]
[22]
Tomita, H.; Tanaka, K.; Tanaka, T.; Hara, A. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget, 2016, 7(10), 11018-11032.
[http://dx.doi.org/10.18632/oncotarget.6920] [PMID: 26783961]
[23]
Toledo-Guzmán, M.E.; Hernández, M.I.; Gómez-Gallegos, Á.A.; Ortiz-Sánchez, E. ALDH as a stem cell marker in solid tumors. Curr. Stem Cell Res. Ther., 2019, 14(5), 375-388.
[http://dx.doi.org/10.2174/1574888X13666180810120012] [PMID: 30095061]
[24]
Xu, X.; Chai, S.; Wang, P.; Zhang, C.; Yang, Y.; Yang, Y.; Wang, K. Aldehyde dehydrogenases and cancer stem cells. Cancer Lett., 2015, 369(1), 50-57.
[http://dx.doi.org/10.1016/j.canlet.2015.08.018] [PMID: 26319899]
[25]
Kastan, M.B.; Schlaffer, E.; Russo, J.E.; Colvin, O.M.; Civin, C.I.; Hilton, J. Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood, 1990, 75(10), 1947-1950.
[http://dx.doi.org/10.1182/blood.V75.10.1947.1947] [PMID: 2337669]
[26]
Marcato, P.; Dean, C.A.; Giacomantonio, C.A.; Lee, P.W.K. Aldehyde dehydrogenase: Its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle, 2011, 10(9), 1378-1384.
[http://dx.doi.org/10.4161/cc.10.9.15486] [PMID: 21552008]
[27]
Wang, H.; Li, Y.; Zhou, D.; Li, X.; Jia, S.; Qi, S.; Huang, J. Aldehyde dehydrogenase 1B1 is a potential marker of colorectal tumors. Histol. Histopathol., 2021, 36(2), 183-194.
[PMID: 33438176]
[28]
Matsumoto, A.; Arcaroli, J.; Chen, Y.; Gasparetto, M.; Neumeister, V.; Thompson, D.C.; Singh, S.; Smith, C.; Messersmith, W.; Vasiliou, V. Aldehyde dehydrogenase 1B1: A novel immunohistological marker for colorectal cancer. Br. J. Cancer, 2017, 117(10), 1537-1543.
[http://dx.doi.org/10.1038/bjc.2017.304] [PMID: 28881356]
[29]
Singh, S.; Arcaroli, J.; Chen, Y.; Thompson, D.C.; Messersmith, W.; Jimeno, A.; Vasiliou, V. ALDH1B1 is crucial for colon tumorigenesis by modulating Wnt/β-Catenin, Notch and PI3K/Akt signaling pathways. PLoS One, 2015, 10(5), e0121648.
[http://dx.doi.org/10.1371/journal.pone.0121648] [PMID: 25950950]
[30]
Danielsen, S.A.; Eide, P.W.; Nesbakken, A.; Guren, T.; Leithe, E.; Lothe, R.A. Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim. Biophys. Acta, 2015, 1855(1), 104-121.
[PMID: 25450577]
[31]
Langan, R.C.; Mullinax, J.E.; Ray, S.; Raiji, M.T.; Schaub, N.; Xin, H.W.; Koizumi, T.; Steinberg, S.M.; Anderson, A.; Wiegand, G.; Butcher, D.; Anver, M.; Bilchik, A.J.; Stojadinovic, A.; Rudloff, U.; Avital, I. A pilot study assessing the potential role of non-CD133 colorectal cancer stem cells as biomarkers. J. Cancer, 2012, 3, 231-240.
[http://dx.doi.org/10.7150/jca.4542] [PMID: 22670157]
[32]
Wang, X.; Yu, Y.; He, Y.; Cai, Q.; Gao, S.; Yao, W.; Liu, Z.; Tian, Z.; Han, Q.; Wang, W.; Sun, R.; Luo, Y.; Li, C. Upregulation of ALDH1B1 promotes tumor progression in osteosarcoma. Oncotarget, 2018, 9(2), 2502-2514.
[http://dx.doi.org/10.18632/oncotarget.23506] [PMID: 29416787]
[33]
Tsybovsky, Y.; Sereda, V.; Golczak, M.; Krupenko, N.I.; Krupenko, S.A. Structure of putative tumor suppressor ALDH1L1. Commun. Biol., 2022, 5(1), 3.
[http://dx.doi.org/10.1038/s42003-021-02963-9] [PMID: 35013550]
[34]
Hwang, P.H.; Lian, L.; Zavras, A.I. Alcohol intake and folate antagonism via CYP2E1 and ALDH1: Effects on oral carcinogenesis. Med. Hypotheses, 2012, 78(2), 197-202.
[http://dx.doi.org/10.1016/j.mehy.2011.10.023] [PMID: 22100631]
[35]
Krupenko, S.A.; Krupenko, N.I. ALDH1L1 and ALDH1L2 folate regulatory enzymes in cancer. Adv. Exp. Med. Biol., 2018, 1032, 127-143.
[http://dx.doi.org/10.1007/978-3-319-98788-0_10] [PMID: 30362096]
[36]
Kimura, M.; Yokoyama, A.; Higuchi, S. Aldehyde dehydrogenase-2 as a therapeutic target. Expert Opin. Ther. Targets, 2019, 23(11), 955-966.
[http://dx.doi.org/10.1080/14728222.2019.1690454] [PMID: 31697578]
[37]
Perez-Miller, S.; Younus, H.; Vanam, R.; Chen, C.H.; Mochly-Rosen, D.; Hurley, T.D. Alda-1 is an agonist and chemical chaperone for the common human aldehyde dehydrogenase 2 variant. Nat. Struct. Mol. Biol., 2010, 17(2), 159-164.
[http://dx.doi.org/10.1038/nsmb.1737] [PMID: 20062057]
[38]
Luckey, S.W.; Tjalkens, R.B.; Petersen, D.R. Mechanism of inhibition of rat liver class 2 ALDH by 4-hydroxynonenal. Adv. Exp. Med. Biol., 1999, 463, 71-77.
[http://dx.doi.org/10.1007/978-1-4615-4735-8_9] [PMID: 10352671]
[39]
Liu, X.; Sun, A. Aldehyde dehydrogenase-2 roles in ischemic cardiovascular disease. Curr. Drug Targets, 2017, 18(15), 1817-1823.
[PMID: 27633387]
[40]
Chen, C.H.; Ferreira, J.C.B.; Joshi, A.U.; Stevens, M.C.; Li, S.J.; Hsu, J.H.M.; Maclean, R.; Ferreira, N.D.; Cervantes, P.R.; Martinez, D.D.; Barrientos, F.L.; Quintanares, G.H.R.; Mochly-Rosen, D. Novel and prevalent non-East Asian ALDH2 variants; Implications for global susceptibility to aldehydes’ toxicity. EBioMedicine, 2020, 55, 102753.
[http://dx.doi.org/10.1016/j.ebiom.2020.102753] [PMID: 32403082]
[41]
Holmes, R.S.; Hempel, J. Comparative studies of vertebrate aldehyde dehydrogenase 3: Sequences, structures, phylogeny and evolution. Evidence for a mammalian origin for the ALDH3A1 gene. Chem. Biol. Interact., 2011, 191(1-3), 113-121.
[http://dx.doi.org/10.1016/j.cbi.2011.01.014] [PMID: 21296057]
[42]
Lassen, N.; Bateman, J.B.; Estey, T.; Kuszak, J.R.; Nees, D.W.; Piatigorsky, J.; Duester, G.; Day, B.J.; Huang, J.; Hines, L.M.; Vasiliou, V. Multiple and additive functions of ALDH3A1 and ALDH1A1: cataract phenotype and ocular oxidative damage in Aldh3a1(-/-)/Aldh1a1(-/-) knock-out mice. J. Biol. Chem., 2007, 282(35), 25668-25676.
[http://dx.doi.org/10.1074/jbc.M702076200] [PMID: 17567582]
[43]
Ahmed Laskar, A.; Younus, H. Aldehyde toxicity and metabolism: The role of aldehyde dehydrogenases in detoxification, drug resistance and carcinogenesis. Drug Metab. Rev., 2019, 51(1), 42-64.
[http://dx.doi.org/10.1080/03602532.2018.1555587] [PMID: 30514131]
[44]
Parajuli, B.; Georgiadis, T.M.; Fishel, M.L.; Hurley, T.D. Development of selective inhibitors for human aldehyde dehydrogenase 3A1 (ALDH3A1) for the enhancement of cyclophosphamide cytotoxicity. ChemBioChem, 2014, 15(5), 701-712.
[http://dx.doi.org/10.1002/cbic.201300625] [PMID: 24677340]
[45]
Rogers, G.R.; Markova, N.G.; De Laurenzi, V.; Rizzo, W.B.; Compton, J.G. Genomic organization and expression of the human fatty aldehyde dehydrogenase gene (FALDH). Genomics, 1997, 39(2), 127-135.
[http://dx.doi.org/10.1006/geno.1996.4501] [PMID: 9027499]
[46]
De Laurenzi, V.; Rogers, G.R.; Hamrock, D.J.; Marekov, L.N.; Steinert, P.M.; Compton, J.G.; Markova, N.; Rizzo, W.B. Sjögren-Larsson syndrome is caused by mutations in the fatty aldehyde dehydrogenase gene. Nat. Genet., 1996, 12(1061-4036), 52-57.
[http://dx.doi.org/10.1038/ng0196-52]
[47]
Keller, M.A.; Zander, U.; Fuchs, J.E.; Kreutz, C.; Watschinger, K.; Mueller, T.; Golderer, G.; Liedl, K.R.; Ralser, M.; Kräutler, B.; Werner, E.R.; Marquez, J.A. A gatekeeper helix determines the substrate specificity of Sjögren–Larsson Syndrome enzyme fatty aldehyde dehydrogenase. Nat. Commun., 2014, 5(1), 4439.
[http://dx.doi.org/10.1038/ncomms5439] [PMID: 25047030]
[48]
Hsu, L.C.; Chang, W.C.; Yoshida, A. Cloning of a cDNA encoding human ALDH7, a new member of the aldehyde dehydrogenase family. Gene, 1994, 151(1-2), 285-289.
[http://dx.doi.org/10.1016/0378-1119(94)90672-6] [PMID: 7828891]
[49]
Hsu, L.C.; Chang, W.C.; Yoshida, A. Human aldehyde dehydrogenase genes, ALDH7 and ALDH8: Genomic organization and gene structure comparison. Gene, 1997, 189(1), 89-94.
[http://dx.doi.org/10.1016/S0378-1119(96)00839-6] [PMID: 9161417]
[50]
Wang, Y.; Li, K.; Zhao, W.; Liu, Z.; Liu, J.; Shi, A.; Chen, T.; Mu, W.; Xu, Y.; Pan, C.; Zhang, Z. Aldehyde dehydrogenase 3B2 promotes the proliferation and invasion of cholangiocarcinoma by increasing Integrin Beta 1 expression. Cell Death Dis., 2021, 12(12), 1158.
[http://dx.doi.org/10.1038/s41419-021-04451-8] [PMID: 34907179]
[51]
Pemberton, T.A.; Tanner, J.J. Structural basis of substrate selectivity of ∆1-pyrroline-5-carboxylate dehydrogenase (ALDH4A1): Semialdehyde chain length. Arch. Biochem. Biophys., 2013, 538(1), 34-40.
[http://dx.doi.org/10.1016/j.abb.2013.07.024] [PMID: 23928095]
[52]
Pemberton, T.A.; Srivastava, D.; Sanyal, N.; Henzl, M.T.; Becker, D.F.; Tanner, J.J. Structural studies of yeast ∆(1)-pyrroline-5-carboxylate dehydrogenase (ALDH4A1): Active site flexibility and oligomeric state. Biochemistry, 2014, 53(8), 1350-1359.
[http://dx.doi.org/10.1021/bi500048b] [PMID: 24502590]
[53]
Lorenzo, C.; Delgado, P.; Busse, C.E.; Sanz-Bravo, A.; Martos-Folgado, I.; Bonzon-Kulichenko, E.; Ferrarini, A.; Gonzalez-Valdes, I.B.; Mur, S.M.; Roldán-Montero, R.; Martinez-Lopez, D.; Martin-Ventura, J.L.; Vázquez, J.; Wardemann, H.; Ramiro, A.R. ALDH4A1 is an atherosclerosis auto-antigen targeted by protective antibodies. Nature, 2021, 589(7841), 287-292.
[http://dx.doi.org/10.1038/s41586-020-2993-2] [PMID: 33268892]
[54]
Liu, N.; Kong, X.; Kan, Q.; Shi, H.; Wu, Q.; Zhuo, Z.; Bai, Q.; Jiang, M. Mutation analysis and prenatal diagnosis in a Chinese family with succinic semialdehyde dehydrogenase and a systematic review of the literature of reported ALDH5A1 mutations. J. Perinat. Med., 2016, 44(4), 441-451.
[http://dx.doi.org/10.1515/jpm-2014-0164] [PMID: 25431891]
[55]
Pop, A.; Smith, D.E.C.; Kirby, T.; Walters, D.; Gibson, K.M.; Mahmoudi, S.; van Dooren, S.J.M.; Kanhai, W.A.; Fernandez-Ojeda, M.R.; Wever, E.J.M.; Koster, J.; Waterham, H.R.; Grob, B.; Roos, B.; Wamelink, M.M.C.; Chen, J.; Natesan, S.; Salomons, G.S. Functional analysis of thirty-four suspected pathogenic missense variants in ALDH5A1 gene associated with succinic semialdehyde dehydrogenase deficiency. Mol. Genet. Metab., 2020, 130(3), 172-178.
[http://dx.doi.org/10.1016/j.ymgme.2020.04.004] [PMID: 32402538]
[56]
Deng, X.Y.; Gan, X.X.; Feng, J.H.; Cai, W.S.; Wang, X.Q.; Shen, L.; Luo, H.T.; Chen, Z.; Guo, M.; Cao, J.; Shen, F.; Xu, B. ALDH5A1 acts as a tumour promoter and has a prognostic impact in papillary thyroid carcinoma. Cell Biochem. Funct., 2021, 39(2), 317-325.
[http://dx.doi.org/10.1002/cbf.3584] [PMID: 32881051]
[57]
Tian, X.; Han, Y.; Yu, L.; Luo, B.; Hu, Z.; Li, X.; Yang, Z.; Wang, X.; Huang, W.; Wang, H.; Zhang, Q.; Ma, D. Decreased expression of ALDH5A1 predicts prognosis in patients with ovarian cancer. Cancer Biol. Ther., 2017, 18(4), 245-251.
[http://dx.doi.org/10.1080/15384047.2017.1295175] [PMID: 28346042]
[58]
Marcadier, J.L.; Smith, A.M.; Pohl, D.; Schwartzentruber, J.; Al-Dirbashi, O.Y.; Majewski, J.; Ferdinandusse, S.; Wanders, R.J.A.; Bulman, D.E.; Boycott, K.M.; Chakraborty, P.; Geraghty, M.T.; Consortium, F.C. Mutations in ALDH6A1 encoding methylmalonate semialdehyde dehydrogenase are associated with dysmyelination and transient methylmalonic aciduria. Orphanet J. Rare Dis., 2013, 8(1), 98.
[http://dx.doi.org/10.1186/1750-1172-8-98] [PMID: 23835272]
[59]
Lu, J.; Chen, Z.; Zhao, H.; Dong, H.; Zhu, L.; Zhang, Y.; Wang, J.; Zhu, H.; Cui, Q.; Qi, C.; Wang, S.; Chen, S.; Shao, J. ABAT and ALDH6A1, regulated by transcription factor HNF4A, suppress tumorigenic capability in clear cell renal cell carcinoma. J. Transl. Med., 2020, 18(1), 101.
[http://dx.doi.org/10.1186/s12967-020-02268-1] [PMID: 32093682]
[60]
Shin, H.; Cha, H.J.; Lee, M.J.; Na, K.; Park, D.; Kim, C.Y.; Han, D.H.; Kim, H.; Paik, Y.K. Identification of ALDH6A1 as a potential molecular signature in hepatocellular carcinoma via quantitative profiling of the mitochondrial proteome. J. Proteome Res., 2020, 19(4), 1684-1695.
[http://dx.doi.org/10.1021/acs.jproteome.9b00846] [PMID: 31985234]
[61]
Cho, S.Y.; Kang, S.; Kim, D.S.; Na, H.J.; Kim, Y.J.; Choi, Y.D.; Cho, N.H. HSP27, ALDH6A1 and prohibitin act as a trio-biomarker to predict survival in late metastatic prostate cancer. Anticancer Res., 2018, 38(11), 6551-6560.
[http://dx.doi.org/10.21873/anticanres.13021] [PMID: 30396985]
[62]
Brocker, C.; Cantore, M.; Failli, P.; Vasiliou, V. Aldehyde dehydrogenase 7A1 (ALDH7A1) attenuates reactive aldehyde and oxidative stress induced cytotoxicity. Chem. Biol. Interact., 2011, 191(1-3), 269-277.
[http://dx.doi.org/10.1016/j.cbi.2011.02.016] [PMID: 21338592]
[63]
Vasiliou, V.; Thompson, D.C.; Smith, C.; Fujita, M.; Chen, Y. Aldehyde dehydrogenases: From eye crystallins to metabolic disease and cancer stem cells. Chem. Biol. Interact., 2013, 202(1-3), 2-10.
[http://dx.doi.org/10.1016/j.cbi.2012.10.026] [PMID: 23159885]
[64]
Tang, W.K.; Chan, C.B.; Cheng, C.H.K.; Fong, W.P. Seabream antiquitin: Molecular cloning, tissue distribution, subcellular localization and functional expression. FEBS Lett., 2005, 579(17), 3759-3764.
[http://dx.doi.org/10.1016/j.febslet.2005.05.070] [PMID: 15967446]
[65]
Brocker, C.; Lassen, N.; Estey, T.; Pappa, A.; Cantore, M.; Orlova, V.V.; Chavakis, T.; Kavanagh, K.L.; Oppermann, U.; Vasiliou, V. Aldehyde dehydrogenase 7A1 (ALDH7A1) is a novel enzyme involved in cellular defense against hyperosmotic stress. J. Biol. Chem., 2010, 285(24), 18452-18463.
[http://dx.doi.org/10.1074/jbc.M109.077925] [PMID: 20207735]
[66]
Mills, P.B.; Footitt, E.J.; Mills, K.A.; Tuschl, K.; Aylett, S.; Varadkar, S.; Hemingway, C.; Marlow, N.; Rennie, J.; Baxter, P.; Dulac, O.; Nabbout, R.; Craigen, W.J.; Schmitt, B.; Feillet, F.; Christensen, E.; De Lonlay, P.; Pike, M.G.; Hughes, M.I.; Struys, E.A.; Jakobs, C.; Zuberi, S.M.; Clayton, P.T. Genotypic and phenotypic spectrum of pyridoxine-dependent epilepsy (ALDH7A1 deficiency). Brain, 2010, 133(7), 2148-2159.
[http://dx.doi.org/10.1093/brain/awq143] [PMID: 20554659]
[67]
Guo, Y.; Tan, L.J.; Lei, S.F.; Yang, T.L.; Chen, X.D.; Zhang, F.; Chen, Y.; Pan, F.; Yan, H.; Liu, X.; Tian, Q.; Zhang, Z.X.; Zhou, Q.; Qiu, C.; Dong, S.S.; Xu, X.H.; Guo, Y.F.; Zhu, X.Z.; Liu, S.L.; Wang, X.L.; Li, X.; Luo, Y.; Zhang, L.S.; Li, M.; Wang, J.T.; Wen, T.; Drees, B.; Hamilton, J.; Papasian, C.J.; Recker, R.R.; Song, X.P.; Cheng, J.; Deng, H.W. Genome-wide association study identifies ALDH7A1 as a novel susceptibility gene for osteoporosis. PLoS Genet., 2010, 6(1), e1000806.
[http://dx.doi.org/10.1371/journal.pgen.1000806] [PMID: 20072603]
[68]
Davis, I.; Yang, Y.; Wherritt, D.; Liu, A. Reassignment of the human aldehyde dehydrogenase ALDH8A1 (ALDH12) to the kynurenine pathway in tryptophan catabolism. J. Biol. Chem., 2018, 293(25), 9594-9603.
[http://dx.doi.org/10.1074/jbc.RA118.003320] [PMID: 29703752]
[69]
Wang, X.; Zhao, Y.; Luo, J.; Xu, L.; Li, X.; Jin, Y.; Li, C.; Feng, M.; Wang, Y.; Chen, J.; Hou, Y.; Zhao, Q.; Zhao, J.; Ning, B.; Zheng, Y.; Yu, D. MicroRNA hsa-miR-1301-3p regulates human ADH6, ALDH5A1 and ALDH8A1 in the ethanol-acetaldehyde-acetate metabolic pathway. Mol. Pharmacol., 2020, 98(2), 120-129.
[http://dx.doi.org/10.1124/mol.120.119693] [PMID: 32499331]
[70]
Izaguirre, G.; Kikonyogo, A.; Pietruszko, R. Tissue distribution of human aldehyde dehydrogenase E3 (ALDH9): comparison of enzyme activity with E3 protein and mRNA distribution. Comp. Biochem. Physiol. B Biochem. Mol. Biol., 1997, 118(1), 59-64.
[http://dx.doi.org/10.1016/S0305-0491(97)00022-9] [PMID: 9417993]
[71]
Vasiliou, V.; Pappa, A.; Petersen, D.R. Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem. Biol. Interact., 2000, 129(1-2), 1-19.
[http://dx.doi.org/10.1016/S0009-2797(00)00211-8] [PMID: 11154732]
[72]
Henrion, M.Y.R.; Purdue, M.P.; Scelo, G.; Broderick, P.; Frampton, M.; Ritchie, A.; Meade, A.; Li, P.; McKay, J.; Johansson, M.; Lathrop, M.; Larkin, J.; Rothman, N.; Wang, Z.; Chow, W.H.; Stevens, V.L.; Diver, W.R.; Albanes, D.; Virtamo, J.; Brennan, P.; Eisen, T.; Chanock, S.; Houlston, R.S. Common variation at 1q24.1 (ALDH9A1) is a potential risk factor for renal cancer. PLoS One, 2015, 10(3), e0122589.
[http://dx.doi.org/10.1371/journal.pone.0122589] [PMID: 25826619]
[73]
Končitíková, R.; Vigouroux, A.; Kopečná, M.; Šebela, M.; Moréra, S.; Kopečný, D. Kinetic and structural analysis of human ALDH9A1. Biosci. Rep., 2019, 39(4), BSR20190558.
[http://dx.doi.org/10.1042/BSR20190558] [PMID: 30914451]
[74]
Vasiliou, V.; Sandoval, M.; Backos, D.S.; Jackson, B.C.; Chen, Y.; Reigan, P.; Lanaspa, M.A.; Johnson, R.J.; Koppaka, V.; Thompson, D.C. ALDH16A1 is a novel non-catalytic enzyme that may be involved in the etiology of gout via protein–protein interactions with HPRT1. Chem. Biol. Interact., 2013, 202(1-3), 22-31.
[http://dx.doi.org/10.1016/j.cbi.2012.12.018] [PMID: 23348497]
[75]
Sulem, P.; Gudbjartsson, D.F.; Walters, G.B.; Helgadottir, H.T.; Helgason, A.; Gudjonsson, S.A.; Zanon, C.; Besenbacher, S.; Bjornsdottir, G.; Magnusson, O.T.; Magnusson, G.; Hjartarson, E.; Saemundsdottir, J.; Gylfason, A.; Jonasdottir, A.; Holm, H.; Karason, A.; Rafnar, T.; Stefansson, H.; Andreassen, O.A.; Pedersen, J.H.; Pack, A.I.; de Visser, M.C.H.; Kiemeney, L.A.; Geirsson, A.J.; Eyjolfsson, G.I.; Olafsson, I.; Kong, A.; Masson, G.; Jonsson, H.; Thorsteinsdottir, U.; Jonsdottir, I.; Stefansson, K. Identification of low-frequency variants associated with gout and serum uric acid levels. Nat. Genet., 2011, 43(11), 1127-1130.
[http://dx.doi.org/10.1038/ng.972] [PMID: 21983786]
[76]
Hanna, M.C.; Blackstone, C. Interaction of the SPG21 protein ACP33/maspardin with the aldehyde dehydrogenase ALDH16A1. Neurogenetics, 2009, 10(3), 217-228.
[http://dx.doi.org/10.1007/s10048-009-0172-6] [PMID: 19184135]
[77]
Wolthuis, D.F.G.J.; van Asbeck, E.; Mohamed, M.; Gardeitchik, T.; Lim-Melia, E.R.; Wevers, R.A.; Morava, E. Cutis laxa, fat pads and retinopathy due to ALDH18A1 mutation and review of the literature. Eur. J. Paediatr. Neurol., 2014, 18(4), 511-515.
[http://dx.doi.org/10.1016/j.ejpn.2014.01.003] [PMID: 24767728]
[78]
Fischer, B.; Callewaert, B.; Schröter, P.; Coucke, P.J.; Schlack, C.; Ott, C.E.; Morroni, M.; Homann, W.; Mundlos, S.; Morava, E.; Ficcadenti, A.; Kornak, U. Severe congenital cutis laxa with cardiovascular manifestations due to homozygous deletions in ALDH18A1. Mol. Genet. Metab., 2014, 112(4), 310-316.
[http://dx.doi.org/10.1016/j.ymgme.2014.05.003] [PMID: 24913064]
[79]
Coutelier, M.; Goizet, C.; Durr, A.; Habarou, F.; Morais, S.; Dionne-Laporte, A.; Tao, F.; Konop, J.; Stoll, M.; Charles, P.; Jacoupy, M.; Matusiak, R.; Alonso, I.; Tallaksen, C.; Mairey, M.; Kennerson, M.; Gaussen, M.; Schule, R.; Janin, M.; Morice-Picard, F.; Durand, C.M.; Depienne, C.; Calvas, P.; Coutinho, P.; Saudubray, J.M.; Rouleau, G.; Brice, A.; Nicholson, G.; Darios, F.; Loureiro, J.L.; Zuchner, S.; Ottolenghi, C.; Mochel, F.; Stevanin, G. Alteration of ornithine metabolism leads to dominant and recessive hereditary spastic paraplegia. Brain, 2015, 138(8), 2191-2205.
[http://dx.doi.org/10.1093/brain/awv143] [PMID: 26026163]
[80]
Muzio, G.; Maggiora, M.; Paiuzzi, E.; Oraldi, M.; Canuto, R.A. Aldehyde dehydrogenases and cell proliferation. Free Radic. Biol. Med., 2012, 52(4), 735-746.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.033] [PMID: 22206977]
[81]
Guo, J.M.; Liu, A.J.; Zang, P.; Dong, W.Z.; Ying, L.; Wang, W.; Xu, P.; Song, X.R.; Cai, J.; Zhang, S.Q.; Duan, J.L.; Mehta, J.L.; Su, D.F. ALDH2 protects against stroke by clearing 4-HNE. Cell Res., 2013, 23(7), 915-930.
[http://dx.doi.org/10.1038/cr.2013.69] [PMID: 23689279]
[82]
Surmeier, D.J.; Obeso, J.A.; Halliday, G.M. Selective neuronal vulnerability in Parkinson disease. Nat. Rev. Neurosci., 2017, 18(2), 101-113.
[http://dx.doi.org/10.1038/nrn.2016.178] [PMID: 28104909]
[83]
Deza-Ponzio, R.; Herrera, M.L.; Bellini, M.J.; Virgolini, M.B.; Hereñú, C.B. Aldehyde dehydrogenase 2 in the spotlight: The link between mitochondria and neurodegeneration. Neurotoxicology, 2018, 68, 19-24.
[http://dx.doi.org/10.1016/j.neuro.2018.06.005] [PMID: 29936317]
[84]
Doorn, J.A.; Florang, V.R.; Schamp, J.H.; Vanle, B.C. Aldehyde dehydrogenase inhibition generates a reactive dopamine metabolite autotoxic to dopamine neurons. Parkinsonism Relat. Disord., 2014, 20(0 1 Suppl. 1), S73-S75.
[http://dx.doi.org/10.1016/S1353-8020(13)70019-1] [PMID: 24262193]
[85]
Siucinska, E. Aminobutyric acid in adult brain: An update. Behav. Brain Res., 2019, 376, 112224.
[http://dx.doi.org/10.1016/j.bbr.2019.112224] [PMID: 31518661]
[86]
Cha, J.Y.; Jeong, J.J.; Yang, H.J.; Lee, B.J.; Cho, Y.S. Effect of fermented sea tangle on the alcohol dehydrogenase and acetaldehyde dehydrogenase in Saccharomyces cerevisiae. J. Microbiol. Biotechnol., 2011, 21(8), 791-795.
[http://dx.doi.org/10.4014/jmb.1103.02039] [PMID: 21876367]
[87]
Minkina, A.; Lindeman, R.E.; Gearhart, M.D.; Chassot, A.A.; Chaboissier, M.C.; Ghyselinck, N.B.; Bardwell, V.J.; Zarkower, D. Retinoic acid signaling is dispensable for somatic development and function in the mammalian ovary. Dev. Biol., 2017, 424(2), 208-220.
[http://dx.doi.org/10.1016/j.ydbio.2017.02.015] [PMID: 28274610]
[88]
Dräger, U.C.; Wagner, E.; McCaffery, P. Aldehyde dehydrogenases in the generation of retinoic acid in the developing vertebrate: A central role of the eye. J. Nutr., 1998, 128(2)(Suppl.), S463-S466.
[http://dx.doi.org/10.1093/jn/128.2.463S] [PMID: 9478049]
[89]
Duester, G. Families of retinoid dehydrogenases regulating vitamin A function. Eur. J. Biochem., 2000, 267(14), 4315-4324.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01497.x] [PMID: 10880953]
[90]
Vasiliou, V.; Pappa, A.; Estey, T. Role of human aldehyde dehydrogenases in endobiotic and xenobiotic metabolism. Drug Metab. Rev., 2004, 36(2), 279-299.
[http://dx.doi.org/10.1081/DMR-120034001] [PMID: 15237855]
[91]
Zhang, H.; Fu, L. The role of ALDH2 in tumorigenesis and tumor progression: Targeting ALDH2 as a potential cancer treatment. Acta Pharm. Sin. B, 2021, 11(6), 1400-1411.
[http://dx.doi.org/10.1016/j.apsb.2021.02.008] [PMID: 34221859]
[92]
Brooks, P.J.; Enoch, M.A.; Goldman, D.; Li, T.K.; Yokoyama, A. The alcohol flushing response: An unrecognized risk factor for esophageal cancer from alcohol consumption. PLoS Med., 2009, 6(3), e1000050.
[http://dx.doi.org/10.1371/journal.pmed.1000050] [PMID: 19320537]
[93]
Lu, C.; Li, X.; Ren, Y.; Zhang, X. Disulfiram: A novel repurposed drug for cancer therapy. Cancer Chemother. Pharmacol., 2021, 87(2), 159-172.
[http://dx.doi.org/10.1007/s00280-020-04216-8] [PMID: 33426580]
[94]
Ma, I.; Allan, A.L. The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Rev., 2011, 7(2), 292-306.
[http://dx.doi.org/10.1007/s12015-010-9208-4] [PMID: 21103958]
[95]
Garaycoechea, J.I.; Crossan, G.P.; Langevin, F.; Daly, M.; Arends, M.J.; Patel, K.J. Genotoxic consequences of endogenous aldehydes on mouse haematopoietic stem cell function. Nature, 2012, 489(7417), 571-575.
[http://dx.doi.org/10.1038/nature11368] [PMID: 22922648]
[96]
Sugamura, K.; Keaney, J.F., Jr Reactive oxygen species in cardiovascular disease. Free Radic. Biol. Med., 2011, 51(5), 978-992.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.05.004] [PMID: 21627987]
[97]
Zhong, H.; Yin, H. Role of lipid peroxidation derived 4-hydroxynonenal (4-HNE) in cancer: Focusing on mitochondria. Redox Biol., 2015, 4, 193-199.
[http://dx.doi.org/10.1016/j.redox.2014.12.011] [PMID: 25598486]
[98]
Chen, C.H.; Sun, L.; Mochly-Rosen, D. Mitochondrial aldehyde dehydrogenase and cardiac diseases. Cardiovasc. Res., 2010, 88(1), 51-57.
[http://dx.doi.org/10.1093/cvr/cvq192] [PMID: 20558439]
[99]
Wang, M.F.; Han, C.L.; Yin, S.J. Substrate specificity of human and yeast aldehyde dehydrogenases. Chem. Biol. Interact., 2009, 178(1-3), 36-39.
[http://dx.doi.org/10.1016/j.cbi.2008.10.002] [PMID: 18983993]
[100]
Riveros-Rosas, H.; González-Segura, L.; Julián-Sánchez, A.; Díaz-Sánchez, Á.G.; Muñoz-Clares, R.A. Structural determinants of substrate specificity in aldehyde dehydrogenases. Chem. Biol. Interact., 2013, 202(1-3), 51-61.
[http://dx.doi.org/10.1016/j.cbi.2012.11.015] [PMID: 23219887]
[101]
Calleja, L.F.; Yoval-Sánchez, B.; Hernández-Esquivel, L.; Gallardo-Pérez, J.C.; Sosa-Garrocho, M.; Marín-Hernández, Á.; Jasso-Chávez, R.; Macías-Silva, M.; Salud Rodríguez-Zavala, J. Activation of ALDH1A1 by omeprazole reduces cell oxidative stress damage. FEBS J., 2021, 288(13), 4064-4080.
[http://dx.doi.org/10.1111/febs.15698] [PMID: 33400378]
[102]
Calleja, L.F.; Belmont-Díaz, J.A.; Medina-Contreras, O.; Quezada, H.; Yoval-Sánchez, B.; Campos-García, J.; Rodríguez-Zavala, J.S. Omeprazole as a potent activator of human cytosolic aldehyde dehydrogenase ALDH1A1. Biochim. Biophys. Acta, Gen. Subj., 2020, 1864(1), 129451.
[http://dx.doi.org/10.1016/j.bbagen.2019.129451] [PMID: 31678145]
[103]
Belmont-Díaz, J.A.; Calleja-Castañeda, L.F.; Yoval-Sánchez, B.; Rodríguez-Zavala, J.S. Tamoxifen, an anticancer drug, is an activator of human aldehyde dehydrogenase 1A1. Proteins, 2015, 83(1), 105-116.
[http://dx.doi.org/10.1002/prot.24709] [PMID: 25354921]
[104]
Chen, C.H.; Budas, G.R.; Churchill, E.N.; Disatnik, M.H.; Hurley, T.D.; Mochly-Rosen, D. Activation of aldehyde dehydrogenase-2 reduces ischemic damage to the heart. Science, 2008, 321(5895), 1493-1495.
[http://dx.doi.org/10.1126/science.1158554] [PMID: 18787169]
[105]
Steinmetz, C.G.; Xie, P.; Weiner, H.; Hurley, T.D. Structure of mitochondrial aldehyde dehydrogenase: the genetic component of ethanol aversion. Structure, 1997, 5(5), 701-711.
[http://dx.doi.org/10.1016/S0969-2126(97)00224-4] [PMID: 9195888]
[106]
Budas, G.R.; Disatnik, M.H.; Chen, C.H.; Mochly-Rosen, D. Activation of aldehyde dehydrogenase 2 (ALDH2) confers cardioprotection in protein kinase C epsilon (PKCε) knockout mice. J. Mol. Cell. Cardiol., 2010, 48(4), 757-764.
[http://dx.doi.org/10.1016/j.yjmcc.2009.10.030] [PMID: 19913552]
[107]
Hosoi, T.; Yamaguchi, R.; Noji, K.; Matsuo, S.; Baba, S.; Toyoda, K.; Suezawa, T.; Kayano, T.; Tanaka, S.; Ozawa, K. Flurbiprofen ameliorated obesity by attenuating leptin resistance induced by endoplasmic reticulum stress. EMBO Mol. Med., 2014, 6(3), 335-346.
[http://dx.doi.org/10.1002/emmm.201303227] [PMID: 24421337]
[108]
Kang, P.F.; Wu, W.J.; Tang, Y.; Xuan, L.; Guan, S.D.; Tang, B.; Zhang, H.; Gao, Q.; Wang, H.J. Activation of ALDH2 with low concentration of ethanol attenuates myocardial ischemia/reperfusion injury in diabetes rat model. Oxid. Med. Cell. Longev., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/6190504] [PMID: 27829984]
[109]
Hu, J.; Tian, W.; Zhou, R.; Zhang, Y.; Lv, J.; Zhu, J.; Chen, X.; Pan, X.; Zheng, C. Design, synthesis, and biological evaluation of new ALDH2 activators. J. Saudi Chem. Soc., 2019, 23(3), 255-262.
[http://dx.doi.org/10.1016/j.jscs.2018.07.001]
[110]
Tian, W.; Guo, J.; Zhang, Q.; Fang, S.; Zhou, R.; Hu, J.; Wang, M.; Zhang, Y.; Guo, J.M.; Chen, Z.; Zhu, J.; Zheng, C. The discovery of novel small molecule allosteric activators of aldehyde dehydrogenase 2. Eur. J. Med. Chem., 2021, 212, 113119.
[http://dx.doi.org/10.1016/j.ejmech.2020.113119] [PMID: 33383258]
[111]
Xiao, N.; Cao, H.; Chen, C.H.; Kong, C.S.; Ali, R.; Chan, C.; Sirjani, D.; Graves, E.; Koong, A.; Giaccia, A.; Mochly-Rosen, D.; Le, Q.T. A novel aldehyde dehydrogenase-3 activator (Alda-89) protects submandibular gland function from irradiation without accelerating tumor growth. Clin. Cancer Res., 2013, 19(16), 4455-4464.
[http://dx.doi.org/10.1158/1078-0432.CCR-13-0127] [PMID: 23812668]
[112]
Banh, A.; Xiao, N.; Cao, H.; Chen, C.H.; Kuo, P.; Krakow, T.; Bavan, B.; Khong, B.; Yao, M.; Ha, C.; Kaplan, M.J.; Sirjani, D.; Jensen, K.; Kong, C.S.; Mochly-Rosen, D.; Koong, A.C.; Le, Q.T. A novel aldehyde dehydrogenase-3 activator leads to adult salivary stem cell enrichment in vivo. Clin. Cancer Res., 2011, 17(23), 7265-7272.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-0179] [PMID: 21998334]
[113]
Yang, S.M.; Yasgar, A.; Miller, B.; Lal-Nag, M.; Brimacombe, K.; Hu, X.; Sun, H.; Wang, A.; Xu, X.; Nguyen, K.; Oppermann, U.; Ferrer, M.; Vasiliou, V.; Simeonov, A.; Jadhav, A.; Maloney, D.J. Discovery of NCT-501, a potent and selective theophylline-based inhibitor of aldehyde dehydrogenase 1A1 (ALDH1A1). J. Med. Chem., 2015, 58(15), 5967-5978.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00577] [PMID: 26207746]
[114]
Kulsum, S.; Sudheendra, H.V.; Pandian, R.; Ravindra, D.R.; Siddappa, G.R.N.; Chevour, P.; Ramachandran, B.; Sagar, M.; Jayaprakash, A.; Mehta, A.; Kekatpure, V.; Hedne, N.; Kuriakose, M.A.; Suresh, A. Cancer stem cell mediated acquired chemoresistance in head and neck cancer can be abrogated by aldehyde dehydrogenase 1 A1 inhibition. Mol. Carcinog., 2017, 56(2), 694-711.
[http://dx.doi.org/10.1002/mc.22526] [PMID: 27380877]
[115]
Yang, S.M.; Martinez, N.J.; Yasgar, A.; Danchik, C.; Johansson, C.; Wang, Y.; Baljinnyam, B.; Wang, A.Q.; Xu, X.; Shah, P.; Cheff, D.; Wang, X.S.; Roth, J.; Lal-Nag, M.; Dunford, J.E.; Oppermann, U.; Vasiliou, V.; Simeonov, A.; Jadhav, A.; Maloney, D.J. Discovery of orally bioavailable, quinoline-based aldehyde dehydrogenase 1A1 (ALDH1A1) inhibitors with potent cellular activity. J. Med. Chem., 2018, 61(11), 4883-4903.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00270] [PMID: 29767973]
[116]
Yokoyama, Y.; Zhu, H.; Lee, J.H.; Kossenkov, A.V.; Wu, S.Y.; Wickramasinghe, J.M.; Yin, X.; Palozola, K.C.; Gardini, A.; Showe, L.C.; Zaret, K.S.; Liu, Q.; Speicher, D.; Conejo-Garcia, J.R.; Bradner, J.E.; Zhang, Z.; Sood, A.K.; Ordog, T.; Bitler, B.G.; Zhang, R. BET Inhibitors suppress ALDH activity by targeting ALDH1A1 super-enhancer in ovarian cancer. Cancer Res., 2016, 76(21), 6320-6330.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0854] [PMID: 27803105]
[117]
Thomas, M.L.; de Antueno, R.; Coyle, K.M.; Sultan, M.; Cruickshank, B.M.; Giacomantonio, M.A.; Giacomantonio, C.A.; Duncan, R.; Marcato, P. Citral reduces breast tumor growth by inhibiting the cancer stem cell marker ALDH1A3. Mol. Oncol., 2016, 10(9), 1485-1496.
[http://dx.doi.org/10.1016/j.molonc.2016.08.004] [PMID: 27592281]
[118]
Zeng, S.; Kapur, A.; Patankar, M.S.; Xiong, M.P. Formulation, characterization, and antitumor properties of trans- and cis-citral in the 4T1 breast cancer xenograft mouse model. Pharm. Res., 2015, 32(8), 2548-2558.
[http://dx.doi.org/10.1007/s11095-015-1643-0] [PMID: 25673043]
[119]
Arnold, S.L.; Kent, T.; Hogarth, C.A.; Schlatt, S.; Prasad, B.; Haenisch, M.; Walsh, T.; Muller, C.H.; Griswold, M.D.; Amory, J.K.; Isoherranen, N. Importance of ALDH1A enzymes in determining human testicular retinoic acid concentrations. J. Lipid Res., 2015, 56(2), 342-357.
[http://dx.doi.org/10.1194/jlr.M054718] [PMID: 25502770]
[120]
Haenisch, M.; Nguyen, T.; Fihn, C.A.; Goldstein, A.S.; Amory, J.K.; Treuting, P.; Brabb, T.; Paik, J. Investigation of an ALDH1A1-specific inhibitor for suppression of weight gain in a diet-induced mouse model of obesity. Int. J. Obes., 2021, 45(7), 1542-1552.
[http://dx.doi.org/10.1038/s41366-021-00818-1] [PMID: 33934107]
[121]
Wang, B.; Buchman, C.D.; Li, L.; Hurley, T.D.; Meroueh, S.O. Enrichment of chemical libraries docked to protein conformational ensembles and application to aldehyde dehydrogenase 2. J. Chem. Inf. Model., 2014, 54(7), 2105-2116.
[http://dx.doi.org/10.1021/ci5002026] [PMID: 24856086]
[122]
Martensen-Larsen, O. Treatment of alcoholism with a sensitizing drug. Lancet, 1948, 252(6539), 1004-1005.
[http://dx.doi.org/10.1016/S0140-6736(48)91515-3] [PMID: 18122024]
[123]
Omran, Z. Novel disulfiram derivatives as ALDH1A1-selective inhibitors. Molecules, 2022, 27(2), 480.
[http://dx.doi.org/10.3390/molecules27020480] [PMID: 35056791]
[124]
Deitrich, R.A.; Troxell, P.A.; Worth, W.S.; Erwin, V.G. Inhibition of aldehyde dehydrogenase in brain and liver by cyanamide. Biochem. Pharmacol., 1976, 25(24), 2733-2737.
[http://dx.doi.org/10.1016/0006-2952(76)90265-3] [PMID: 1008896]
[125]
Tamai, H.; Yokoyama, A.; Okuyama, K.; Takahashi, H.; Maruyama, K.; Suzuki, Y.; Ishii, H. Comparison of cyanamide and disulfiram in effects on liver function. Alcohol. Clin. Exp. Res., 2000, 24(Suppl. 4), 97S-99S.
[http://dx.doi.org/10.1111/j.1530-0277.2000.tb00021.x] [PMID: 10803789]
[126]
Overstreet, D.H.; Knapp, D.J.; Breese, G.R.; Diamond, I. A selective ALDH-2 inhibitor reduces anxiety in rats. Pharmacol. Biochem. Behav., 2009, 94(2), 255-261.
[http://dx.doi.org/10.1016/j.pbb.2009.09.004] [PMID: 19747934]
[127]
Morgan, C.A.; Parajuli, B.; Buchman, C.D.; Dria, K.; Hurley, T.D.N. N-diethylaminobenzaldehyde (DEAB) as a substrate and mechanism-based inhibitor for human ALDH isoenzymes. Chem. Biol. Interact., 2015, 234, 18-28.
[http://dx.doi.org/10.1016/j.cbi.2014.12.008] [PMID: 25512087]
[128]
Jiménez, R.; Pequerul, R.; Amor, A.; Lorenzo, J.; Metwally, K.; Avilés, F.X.; Parés, X.; Farrés, J. Inhibitors of aldehyde dehydrogenases of the 1A subfamily as putative anticancer agents: Kinetic characterization and effect on human cancer cells. Chem. Biol. Interact., 2019, 306, 123-130.
[http://dx.doi.org/10.1016/j.cbi.2019.04.004] [PMID: 30958995]
[129]
Lowe, E.D.; Gao, G.Y.; Johnson, L.N.; Keung, W.M. Structure of daidzin, a naturally occurring anti-alcohol-addiction agent, in complex with human mitochondrial aldehyde dehydrogenase. J. Med. Chem., 2008, 51(15), 4482-4487.
[http://dx.doi.org/10.1021/jm800488j] [PMID: 18613661]
[130]
Keung, W.M.; Vallee, B.L. Daidzin: A potent, selective inhibitor of human mitochondrial aldehyde dehydrogenase. Proc. Natl. Acad. Sci., 1993, 90(4), 1247-1251.
[http://dx.doi.org/10.1073/pnas.90.4.1247] [PMID: 8433985]
[131]
Chen, Z.; Zhang, J.; Stamler, J.S. Identification of the enzymatic mechanism of nitroglycerin bioactivation. Proc. Natl. Acad. Sci. USA, 2002, 99(12), 8306-8311.
[http://dx.doi.org/10.1073/pnas.122225199] [PMID: 12048254]
[132]
Beretta, M.; Wölkart, G.; Schernthaner, M.; Griesberger, M.; Neubauer, R.; Schmidt, K.; Sacherer, M.; Heinzel, F.R.; Kohlwein, S.D.; Mayer, B. Vascular bioactivation of nitroglycerin is catalyzed by cytosolic aldehyde dehydrogenase-2. Circ. Res., 2012, 110(3), 385-393.
[http://dx.doi.org/10.1161/CIRCRESAHA.111.245837] [PMID: 22207712]
[133]
Buchman, C.D.; Hurley, T.D. Inhibition of the aldehyde dehydrogenase 1/2 family by psoralen and coumarin derivatives. J. Med. Chem., 2017, 60(6), 2439-2455.
[http://dx.doi.org/10.1021/acs.jmedchem.6b01825] [PMID: 28219011]
[134]
Quemener, V.; Quash, G.; Moulinoux, J.P.; Penlap, V.; Ripoll, H.; Havouis, R.; Doutheau, A.; Goré, J. In vivo antitumor activity of 4-amino 4-methyl 2-pentyne 1-al, an inhibitor of aldehyde dehydrogenase. In Vivo, 1989, 3(5), 325-330.
[PMID: 2519873]
[135]
Ogier, G.; Chantepie, J.; Quash, G.; Doutheau, A.; Gore, J.; Marion, C. The effect of a novel inhibitor of aldehyde dehydrogenase on viral replication. Biochem. Pharmacol., 1989, 38(8), 1335-1343.
[http://dx.doi.org/10.1016/0006-2952(89)90341-9] [PMID: 2706022]
[136]
Khanna, M.; Chen, C.H.; Kimble-Hill, A.; Parajuli, B.; Perez-Miller, S.; Baskaran, S.; Kim, J.; Dria, K.; Vasiliou, V.; Mochly-Rosen, D.; Hurley, T.D. Discovery of a novel class of covalent inhibitor for aldehyde dehydrogenases. J. Biol. Chem., 2011, 286(50), 43486-43494.
[http://dx.doi.org/10.1074/jbc.M111.293597] [PMID: 22021038]
[137]
Kim, J.; Shin, J.H.; Chen, C.H.; Cruz, L.; Farnebo, L.; Yang, J.; Borges, P.; Kang, G.; Mochly-Rosen, D.; Sunwoo, J.B. Targeting aldehyde dehydrogenase activity in head and neck squamous cell carcinoma with a novel small molecule inhibitor. Oncotarget, 2017, 8(32), 52345-52356.
[http://dx.doi.org/10.18632/oncotarget.17017] [PMID: 28881734]
[138]
Morgan, C.A.; Hurley, T.D. Development of a high-throughput in vitro assay to identify selective inhibitors for human ALDH1A1. Chem. Biol. Interact., 2015, 234, 29-37.
[http://dx.doi.org/10.1016/j.cbi.2014.10.028] [PMID: 25450233]
[139]
Huddle, B.C.; Grimley, E.; Buchman, C.D.; Chtcherbinine, M.; Debnath, B.; Mehta, P.; Yang, K.; Morgan, C.A.; Li, S.; Felton, J.; Sun, D.; Mehta, G.; Neamati, N.; Buckanovich, R.J.; Hurley, T.D.; Larsen, S.D. Structure-based optimization of a novel class of aldehyde dehydrogenase 1A (ALDH1A) subfamily-selective inhibitors as potential adjuncts to ovarian cancer chemotherapy. J. Med. Chem., 2018, 61(19), 8754-8773.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00930] [PMID: 30221940]
[140]
Quash, G.; Fournet, G.; Courvoisier, C.; Martinez, R.M.; Chantepie, J.; Paret, M.J.; Pharaboz, J.; Joly-Pharaboz, M.O.; Goré, J.; André, J.; Reichert, U. Aldehyde dehydrogenase inhibitors: αβ-Acetylenic N-substituted aminothiolesters are reversible growth inhibitors of normal epithelial but irreversible apoptogens for cancer epithelial cells from human prostate in culture. Eur. J. Med. Chem., 2008, 43(5), 906-916.
[http://dx.doi.org/10.1016/j.ejmech.2007.06.004] [PMID: 17692435]
[141]
Venton, G.; Pérez-Alea, M.; Baier, C.; Fournet, G.; Quash, G.; Labiad, Y.; Martin, G.; Sanderson, F.; Poullin, P.; Suchon, P.; Farnault, L.; Nguyen, C.; Brunet, C.; Ceylan, I.; Costello, R.T. Aldehyde dehydrogenases inhibition eradicates leukemia stem cells while sparing normal progenitors. Blood Cancer J., 2016, 6(9), e469-e469.
[http://dx.doi.org/10.1038/bcj.2016.78] [PMID: 27611922]
[142]
Pappa, A.; Chen, C.; Koutalos, Y.; Townsend, A.J.; Vasiliou, V. Aldh3a1 protects human corneal epithelial cells from ultraviolet- and 4-hydroxy-2-nonenal-induced oxidative damage. Free Radic. Biol. Med., 2003, 34(9), 1178-1189.
[http://dx.doi.org/10.1016/S0891-5849(03)00070-4] [PMID: 12706498]
[143]
Okazaki, S.; Shintani, S.; Hirata, Y.; Suina, K.; Semba, T.; Yamasaki, J.; Umene, K.; Ishikawa, M.; Saya, H.; Nagano, O. Synthetic lethality of the ALDH3A1 inhibitor dyclonine and xCT inhibitors in glutathione deficiency-resistant cancer cells. Oncotarget, 2018, 9(73), 33832-33843.
[http://dx.doi.org/10.18632/oncotarget.26112] [PMID: 30333913]
[144]
Kimble-Hill, A.C.; Parajuli, B.; Chen, C.H.; Mochly-Rosen, D.; Hurley, T.D. Development of selective inhibitors for aldehyde dehydrogenases based on substituted indole-2,3-diones. J. Med. Chem., 2014, 57(3), 714-722.
[http://dx.doi.org/10.1021/jm401377v] [PMID: 24444054]
[145]
Chowdhary, S. Shalini; Arora, A.; Kumar, V. Shalini; Arora, A.; Kumar, V. A mini review on isatin, an anticancer scaffold with potential activities against Neglected Tropical Diseases (Ntds). Pharmaceuticals, 2022, 15(5), 536.
[http://dx.doi.org/10.3390/ph15050536] [PMID: 35631362]
[146]
Annageldiyev, C.; Gowda, K.; Patel, T.; Bhattacharya, P.; Tan, S.F.; Iyer, S.; Desai, D.; Dovat, S.; Feith, D.J.; Loughran, T.P., Jr; Amin, S.; Claxton, D.; Sharma, A. The novel Isatin analog KS99 targets stemness markers in acute myeloid leukemia. Haematologica, 2020, 105(3), 687-696.
[http://dx.doi.org/10.3324/haematol.2018.212886] [PMID: 31123028]
[147]
Dinavahi, S.S.; Gowda, R.; Bazewicz, C.G.; Battu, M.B.; Lin, J.M.; Chitren, R.J.; Pandey, M.K.; Amin, S.; Robertson, G.P.; Gowda, K. Design, synthesis characterization and biological evaluation of novel multi-isoform ALDH inhibitors as potential anticancer agents. Eur. J. Med. Chem., 2020, 187, 111962.
[http://dx.doi.org/10.1016/j.ejmech.2019.111962] [PMID: 31887569]
[148]
Dinavahi, S.S.; Gowda, R.; Gowda, K.; Bazewicz, C.G.; Chirasani, V.R.; Battu, M.B.; Berg, A.; Dokholyan, N.V.; Amin, S.; Robertson, G.P. Development of a novel multi-isoform ALDH inhibitor effective as an antimelanoma agent. Mol. Cancer Ther., 2020, 19(2), 447-459.
[http://dx.doi.org/10.1158/1535-7163.MCT-19-0360] [PMID: 31754071]
[149]
Parajuli, B.; Fishel, M.L.; Hurley, T.D. Selective ALDH3A1 inhibition by benzimidazole analogues increase mafosfamide sensitivity in cancer cells. J. Med. Chem., 2014, 57(2), 449-461.
[http://dx.doi.org/10.1021/jm401508p] [PMID: 24387105]
[150]
Kreuzer, J.; Bach, N.C.; Forler, D.; Sieber, S.A. Target discovery of acivicin in cancer cells elucidates its mechanism of growth inhibition. Chem. Sci., 2015, 6(1), 237-245.
[http://dx.doi.org/10.1039/C4SC02339K]
[151]
Shirota, F.N.; Demaster, E.G.; Nagasawa, H.T. Cyanide is a product of the catalase-mediated oxidation of the alcohol deterrent agent, cyanamide. Toxicol. Lett., 1987, 37(1), 7-12.
[http://dx.doi.org/10.1016/0378-4274(87)90160-3] [PMID: 3590232]
[152]
Dinavahi, S.S.; Bazewicz, C.G.; Gowda, R.; Robertson, G.P. Aldehyde dehydrogenase inhibitors for cancer therapeutics. Trends Pharmacol. Sci., 2019, 40(10), 774-789.
[http://dx.doi.org/10.1016/j.tips.2019.08.002] [PMID: 31515079]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy