Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Research Article

Delivering Relaxin Plasmid by Polymeric Metformin Lipid Nanoparticles for Liver Fibrosis Treatment

Author(s): Yujie Li, Lisha Ma, Yang Xiong*, Jingbin Shi, Feifeng Zhang, Qian Chai, Gengshan Hu and Yun Liu

Volume 21, Issue 3, 2024

Published on: 27 April, 2023

Page: [431 - 437] Pages: 7

DOI: 10.2174/1567201820666230407135026

Price: $65

Abstract

Background: Liver fibrosis usually progresses to liver cirrhosis and even results in hepatocellular carcinoma, which accounts for one million deaths annually worldwide. To date, anti-liver fibrosis drugs for clinical treatment have not yet been approved. Nowadays, as a natural regulator, Relaxin (RLX) has received increased attention because the expression of RLX could deactivate the activation of hepatic stellate cells (aHSCs) and resolve liver fibrosis. However, its application in treatment is limited due to the short half-life in circulation and low accumulation within the target organ.

Methods: To address these problems, a kind of polymeric metformin (PolyMet)-loaded relaxin plasmid (pRLX) core-membrane lipid nanoparticle (PolyMet-pRLX-LNPs, PRLNP) was prepared. Here, PolyMet was used as a carrier to replace the traditional polymer polyethylene diene (PEI), which is of higher toxicity, to prolong the circulation time of pRLX in vivo. Then, the antifibrotic ability of PRLNP to overcome liver fibrosis was carried out in C57BL/6 mice. It is worth mentioning that this is the first time to investigate the potential of PRLNP in carbon tetrachloride-induced liver fibrosis.

Results: The results showed that PRLNP effectively downregulated fibrosis-related biomarkers such as alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Meanwhile, histopathological examinations also showed low collagen accumulation, revealing that PRLNP could histologically and functionally alleviate liver fibrosis. In addition, no significant difference in serum biochemical value between the PRLNP and the normal group, suggesting the safety profile of PRLNP.

Conclusion: This research proposed a novel non-toxic treatment method for liver fibrosis with a nanosystem to effectively treat liver fibrosis.

Graphical Abstract

[1]
Caligiuri, A.; Gentilini, A.; Pastore, M.; Gitto, S.; Marra, F. Cellular and molecular mechanisms underlying liver fibrosis regression. Cells, 2021, 10(10), 2759.
[http://dx.doi.org/10.3390/cells10102759] [PMID: 34685739]
[2]
Xiao, J.; Wang, F.; Wong, N.K.; He, J.; Zhang, R.; Sun, R.; Xu, Y.; Liu, Y.; Li, W.; Koike, K.; He, W.; You, H.; Miao, Y.; Liu, X.; Meng, M.; Gao, B.; Wang, H.; Li, C. Global liver disease burdens and research trends: Analysis from a Chinese perspective. J. Hepatol., 2019, 71(1), 212-221.
[http://dx.doi.org/10.1016/j.jhep.2019.03.004] [PMID: 30871980]
[3]
Asrani, S.K.; Devarbhavi, H.; Eaton, J.; Kamath, P.S. Burden of liver diseases in the world. J. Hepatol., 2019, 70(1), 151-171.
[http://dx.doi.org/10.1016/j.jhep.2018.09.014] [PMID: 30266282]
[4]
Tsuchida, T.; Friedman, S.L. Mechanisms of hepatic stellate cell activation. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(7), 397-411.
[http://dx.doi.org/10.1038/nrgastro.2017.38] [PMID: 28487545]
[5]
Luo, J.; Gong, T.; Ma, L. Chondroitin-modified lipid nanoparticles target the Golgi to degrade extracellular matrix for liver cancer management. Carbohydr. Polym., 2020, 249, 116887.
[http://dx.doi.org/10.1016/j.carbpol.2020.116887] [PMID: 32933700]
[6]
Fan, W.; Liu, T.; Chen, W.; Hammad, S.; Longerich, T.; Hausser, I.; Fu, Y.; Li, N.; He, Y.; Liu, C.; Zhang, Y.; Lian, Q.; Zhao, X.; Yan, C.; Li, L.; Yi, C.; Ling, Z.; Ma, L.; Zhao, X.; Xu, H.; Wang, P.; Cong, M.; You, H.; Liu, Z.; Wang, Y.; Chen, J.; Li, D.; Hui, L.; Dooley, S.; Hou, J.; Jia, J.; Sun, B. ECM1 prevents activation of transforming growth factor β hepatic stellate cells, and fibrogenesis in mice. Gastroenterology, 2019, 157(5), 1352-1367.e13.
[http://dx.doi.org/10.1053/j.gastro.2019.07.036] [PMID: 31362006]
[7]
Sun, W.Y.; Gu, Y.J.; Li, X.R.; Sun, J.C.; Du, J.J.; Chen, J.Y.; Ma, Y.; Wang, Q.T.; Wei, W. β-arrestin2 deficiency protects against hepatic fibrosis in mice and prevents synthesis of extracellular matrix. Cell Death Dis., 2020, 11(5), 389.
[http://dx.doi.org/10.1038/s41419-020-2596-8] [PMID: 32439968]
[8]
Kisseleva, T.; Brenner, D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat. Rev. Gastroenterol. Hepatol., 2021, 18(3), 151-166.
[http://dx.doi.org/10.1038/s41575-020-00372-7] [PMID: 33128017]
[9]
Lin, T.T.; Gao, D.Y.; Liu, Y.C.; Sung, Y.C.; Wan, D.; Liu, J.Y.; Chiang, T.; Wang, L.; Chen, Y. Development and characterization of sorafenib-loaded PLGA nanoparticles for the systemic treatment of liver fibrosis. J. Control. Release, 2016, 221, 62-70.
[http://dx.doi.org/10.1016/j.jconrel.2015.11.003] [PMID: 26551344]
[10]
Kim, J.; Jung, Y. Potential role of thymosin Beta 4 in liver fibrosis. Int. J. Mol. Sci., 2015, 16(12), 10624-10635.
[http://dx.doi.org/10.3390/ijms160510624] [PMID: 26006229]
[11]
Klepfish, M.; Gross, T.; Vugman, M.; Afratis, N.A.; Havusha-Laufer, S.; Brazowski, E.; Solomonov, I.; Varol, C.; Sagi, I. LOXL2 inhibition paves the way for macrophage-mediated collagen degradation in liver fibrosis. Front. Immunol., 2020, 11, 480.
[http://dx.doi.org/10.3389/fimmu.2020.00480] [PMID: 32296422]
[12]
Han, H.S.; Lee, H.; You, D. Human adipose stem cell-derived extracellular nanovesicles for treatment of chronic liver fibrosis. J. Control. Release, 2020, 320, 328-336.
[13]
Van De Wier, B.; Koek, G.H.; Bast, A.; Haenen, G.R.M.M. The potential of flavonoids in the treatment of non-alcoholic fatty liver disease. Crit. Rev. Food Sci. Nutr., 2017, 57(4), 834-855.
[http://dx.doi.org/10.1080/10408398.2014.952399] [PMID: 25897647]
[14]
Zimmermann, G.R.; Lehár, J.; Keith, C.T. Multi-target therapeutics: when the whole is greater than the sum of the parts. Drug Discov. Today, 2007, 12(1-2), 34-42.
[http://dx.doi.org/10.1016/j.drudis.2006.11.008] [PMID: 17198971]
[15]
Trautwein, C.; Friedman, S.L.; Schuppan, D.; Pinzani, M. Hepatic fibrosis: Concept to treatment. J. Hepatol., 2015, 62(Suppl. 1), S15-S24.
[http://dx.doi.org/10.1016/j.jhep.2015.02.039] [PMID: 25920084]
[16]
Hu, M.; Wang, Y.; Xu, L.; An, S.; Tang, Y.; Zhou, X.; Li, J.; Liu, R.; Huang, L. Relaxin gene delivery mitigates liver metastasis and synergizes with check point therapy. Nat. Commun., 2019, 10(1), 2993.
[http://dx.doi.org/10.1038/s41467-019-10893-8] [PMID: 31278269]
[17]
Lee, K.C.; Hsieh, Y.C.; Chan, C.C.; Sun, H.J.; Huang, Y.H.; Hou, M.C.; Lin, H.C. Human relaxin-2 attenuates hepatic steatosis and fibrosis in mice with non-alcoholic fatty liver disease. Lab. Invest., 2019, 99(8), 1203-1216.
[http://dx.doi.org/10.1038/s41374-019-0240-y] [PMID: 30918325]
[18]
Samuel, C.S.; Royce, S.G.; Hewitson, T.D.; Denton, K.M.; Cooney, T.E.; Bennett, R.G. Anti‐fibrotic actions of relaxin. Br. J. Pharmacol., 2017, 174(10), 962-976.
[http://dx.doi.org/10.1111/bph.13529] [PMID: 27250825]
[19]
Fallowfield, J.A.; Hayden, A.L.; Snowdon, V.K.; Aucott, R.L.; Stutchfield, B.M.; Mole, D.J.; Pellicoro, A.; Gordon-Walker, T.T.; Henke, A.; Schrader, J.; Trivedi, P.J.; Princivalle, M.; Forbes, S.J.; Collins, J.E.; Iredale, J.P. Relaxin modulates human and rat hepatic myofibroblast function and ameliorates portal hypertension in vivo. Hepatology, 2014, 59(4), 1492-1504.
[http://dx.doi.org/10.1002/hep.26627] [PMID: 23873655]
[20]
Summers, R.J. Recent progress in the understanding of relaxin family peptides and their receptors. Br. J. Pharmacol., 2017, 174(10), 915-920.
[http://dx.doi.org/10.1111/bph.13778] [PMID: 28447360]
[21]
Fallowfield, J.A.; Ramachandran, P. A relaxin-based nanotherapy for liver fibrosis. Nat. Nanotechnol., 2021, 16(4), 365-366.
[http://dx.doi.org/10.1038/s41565-020-00832-w] [PMID: 33495619]
[22]
Mardhian, D.F.; Storm, G.; Bansal, R.; Prakash, J. Nano-targeted relaxin impairs fibrosis and tumor growth in pancreatic cancer and improves the efficacy of gemcitabine in vivo. J. Control. Release, 2018, 290, 1-10.
[http://dx.doi.org/10.1016/j.jconrel.2018.09.031] [PMID: 30287265]
[23]
Hanin, G.; Yayon, N.; Tzur, Y.; Haviv, R.; Bennett, E.R.; Udi, S.; Krishnamoorthy, Y.R.; Kotsiliti, E.; Zangen, R.; Efron, B.; Tam, J.; Pappo, O.; Shteyer, E.; Pikarsky, E.; Heikenwalder, M.; Greenberg, D.S.; Soreq, H. miRNA-132 induces hepatic steatosis and hyperlipidaemia by synergistic multitarget suppression. Gut, 2018, 67(6), 1124-1134.
[http://dx.doi.org/10.1136/gutjnl-2016-312869] [PMID: 28381526]
[24]
Kaftanovskaya, E.M.; Ng, H.H.; Soula, M.; Rivas, B.; Myhr, C.; Ho, B.A.; Cervantes, B.A.; Shupe, T.D.; Devarasetty, M.; Hu, X.; Xu, X.; Patnaik, S.; Wilson, K.J.; Barnaeva, E.; Ferrer, M.; Southall, N.T.; Marugan, J.J.; Bishop, C.E.; Agoulnik, I.U.; Agoulnik, A.I. Therapeutic effects of a small molecule agonist of the relaxin receptor ML290 in liver fibrosis. FASEB J., 2019, 33(11), 12435-12446.
[http://dx.doi.org/10.1096/fj.201901046R] [PMID: 31419161]
[25]
Nagórniewicz, B.; Mardhian, D.F.; Booijink, R.; Storm, G.; Prakash, J.; Bansal, R. Engineered Relaxin as theranostic nanomedicine to diagnose and ameliorate liver cirrhosis. Nanomedicine, 2019, 17, 106-118.
[http://dx.doi.org/10.1016/j.nano.2018.12.008] [PMID: 30677498]
[26]
Hu, M.; Wang, Y.; Liu, Z.; Yu, Z.; Guan, K.; Liu, M.; Wang, M.; Tan, J.; Huang, L. Hepatic macrophages act as a central hub for relaxin-mediated alleviation of liver fibrosis. Nat. Nanotechnol., 2021, 16(4), 466-477.
[http://dx.doi.org/10.1038/s41565-020-00836-6] [PMID: 33495618]
[27]
Yin, H.; Kanasty, R.L.; Eltoukhy, A.A.; Vegas, A.J.; Dorkin, J.R.; Anderson, D.G. Non-viral vectors for gene-based therapy. Nat. Rev. Genet., 2014, 15(8), 541-555.
[http://dx.doi.org/10.1038/nrg3763] [PMID: 25022906]
[28]
Shirley, J.L.; de Jong, Y.P.; Terhorst, C.; Herzog, R.W. Immune responses to viral gene therapy vectors. Mol. Ther., 2020, 28(3), 709-722.
[http://dx.doi.org/10.1016/j.ymthe.2020.01.001] [PMID: 31968213]
[29]
Chen, C.K.; Huang, P.K.; Law, W.C.; Chu, C.H.; Chen, N.T.; Lo, L.W. Biodegradable polymers for gene-delivery applications. Int. J. Nanomedicine, 2020, 15, 2131-2150.
[http://dx.doi.org/10.2147/IJN.S222419] [PMID: 32280211]
[30]
Sun, N.; Liu, Z.; Huang, W.; Tian, A.; Hu, S. The research of nanoparticles as gene vector for tumor gene therapy. Crit. Rev. Oncol. Hematol., 2014, 89(3), 352-357.
[http://dx.doi.org/10.1016/j.critrevonc.2013.10.006] [PMID: 24210877]
[31]
Boussif, O.; Lezoualc’h, F.; Zanta, M.A.; Mergny, M.D.; Scherman, D.; Demeneix, B.; Behr, J.P. A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc. Natl. Acad. Sci., 1995, 92(16), 7297-7301.
[http://dx.doi.org/10.1073/pnas.92.16.7297] [PMID: 7638184]
[32]
Islam, M.A.; Park, T.E.; Singh, B.; Maharjan, S.; Firdous, J.; Cho, M.H.; Kang, S.K.; Yun, C.H.; Choi, Y.J.; Cho, C.S. Major degradable polycations as carriers for DNA and siRNA. J. Control. Release, 2014, 193, 74-89.
[http://dx.doi.org/10.1016/j.jconrel.2014.05.055] [PMID: 24942341]
[33]
Godbey, W.T.; Wu, K.K.; Mikos, A.G. Poly(ethylenimine) and its role in gene delivery. J. Control. Release, 1999, 60(2-3), 149-160.
[http://dx.doi.org/10.1016/S0168-3659(99)00090-5] [PMID: 10425321]
[34]
Lv, H.; Zhang, S.; Wang, B.; Cui, S.; Yan, J. Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release, 2006, 114(1), 100-109.
[http://dx.doi.org/10.1016/j.jconrel.2006.04.014] [PMID: 16831482]
[35]
Xiong, Y; Zhao, Y; Miao, L; Lin, CM; Huang, L Co-delivery of polymeric metformin and cisplatin by self-assembled core-membrane nanoparticles to treat non-small cell lung cancer. J. Control Release, 2016, 244(Pt A), 63-73.
[36]
Zhao, Y.; Wang, W.; Guo, S.; Wang, Y.; Miao, L.; Xiong, Y.; Huang, L. PolyMetformin combines carrier and anticancer activities for in vivo siRNA delivery. Nat. Commun., 2016, 7(1), 11822.
[http://dx.doi.org/10.1038/ncomms11822] [PMID: 27264609]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy