Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

An Insight into the Role of Biodegradable Controlled-release Polymers and Nanoformulations for Enhanced Brain Drug Delivery

Author(s): Deepika Joshi*

Volume 21, Issue 1, 2024

Published on: 27 April, 2023

Page: [62 - 70] Pages: 9

DOI: 10.2174/1570180820666230407110243

Price: $65

Abstract

Neurological or brain disorders are increasingly recognized as major causes of death and disability worldwide, eventually leading to the burden of non-communicable and communicable diseases in the world. Biodegradable functions of polymers provide promising solutions to meet the therapeutic needs of neurological disorders owing to advantages such as the usage of biodegradable polymers in drug delivery approaches, which has become noticeable due to their biocompatibility and degradability properties. Due to such properties, they are degraded inside the body to produce natural/ nontoxic byproducts such as water and carbon dioxide and hence eliminated easily. Sustained drug delivery by biodegradable polymer devices can increase the therapeutic efficacy of drugs by producing high local tissue concentrations over extended periods of time. This review discusses recent progress in the research and development of biodegradable polymers, including their nanoformulation approaches.

Graphical Abstract

[1]
Degiorgio, V.; Corti, M. Physics of amphiphiles: Micelles, vesicles and microemulsions; North-Holland: Amsterdam, 1985.
[2]
Masood, F. Polymeric nanoparticles for targeted drug delivery system for cancer therapy. Mater. Sci. Eng. C, 2016, 60, 569-578.
[http://dx.doi.org/10.1016/j.msec.2015.11.067] [PMID: 26706565]
[3]
Gänger, S.; Schindowski, K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics, 2018, 10(3), 116.
[http://dx.doi.org/10.3390/pharmaceutics10030116] [PMID: 30081536]
[4]
Erdő, F.; Bors, L.A.; Farkas, D.; Bajza, Á.; Gizurarson, S. Evaluation of intranasal delivery route of drug administration for brain targeting. Brain Res. Bull., 2018, 143, 155-170.
[http://dx.doi.org/10.1016/j.brainresbull.2018.10.009] [PMID: 30449731]
[5]
Geurkink, N. Nasal anatomy, physiology, and function. J. Allergy Clin. Immunol., 1983, 72(2), 123-128.
[http://dx.doi.org/10.1016/0091-6749(83)90518-3] [PMID: 6350406]
[6]
Illum, L. Nasal drug delivery—possibilities, problems and solutions. J. Control. Release, 2003, 87(1-3), 187-198.
[http://dx.doi.org/10.1016/S0168-3659(02)00363-2] [PMID: 12618035]
[7]
Song, J.; Suh, C.H.; Park, Y.B.; Lee, S.H.; Yoo, N.C.; Lee, J.D.; Kim, K.H.; Lee, S.K. A phase I/IIa study on intra-articular injection of holmium-166-chitosan complex for the treatment of knee synovitis of rheumatoid arthritis. Eur. J. Nucl. Med., 2001, 28(4), 489-497.
[http://dx.doi.org/10.1007/s002590000470] [PMID: 11357500]
[8]
Yeh, T.H.; Hsu, L.W.; Tseng, M.T.; Lee, P.L.; Sonjae, K.; Ho, Y.C.; Sung, H.W. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials, 2011, 32(26), 6164-6173.
[http://dx.doi.org/10.1016/j.biomaterials.2011.03.056] [PMID: 21641031]
[9]
Ruby, J.J.; Pandey, V.P. Formulation and evaluation of olanzapine loaded chitosan nanoparticles for nose to brain targeting an in vitro and ex vivo toxicity study. J. Appl. Pharm. Sci.,, 2016, 6(9), 034-040.
[10]
Fazil, M.; Md, S.; Haque, S.; Kumar, M.; Baboota, S.; Sahni, J.; Ali, J. Development and evaluation of rivastigmine loaded chitosan nanoparticles for brain targeting. Eur. J. Pharm. Sci., 2012, 47(1), 6-15.
[http://dx.doi.org/10.1016/j.ejps.2012.04.013] [PMID: 22561106]
[11]
Sharma, D. Bhavna. Formulation and evaluation of polymeric nanomicelles of gliptin for controlled drug delivery. Drug Deliv. Lett., 2019, 9(4), 1-11.
[12]
Singh, R.S.; Saini, G.K.; Kennedy, J.F. Pullulan: Microbial sources, production and applications. Carbohydr. Polym., 2008, 73(4), 515-531.
[http://dx.doi.org/10.1016/j.carbpol.2008.01.003] [PMID: 26048217]
[13]
Hassanzadeh, F.; Varshosaz, J.; Khodarahmi, A.; Mahboubeh, R. Biotin-encoded pullulan-retinoic acid engineered nanomicelles: Preparation, optimization and in vitro cytotoxicity assessment in MCF-7 Cells. Indian J. Pharm. Sci., 2016, 78(5), 557-565.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000153]
[14]
Cevher, E.; Salomon, S.K.; Makrakis, A.; Li, X.W.; Brocchini, S.; Alpar, H.O. Development of chitosan–pullulan composite nanoparticles for nasal delivery of vaccines: Optimisation and cellular studies. J. Microencapsul., 2015, 32(8), 755-768.
[http://dx.doi.org/10.3109/02652048.2015.1073392] [PMID: 26480961]
[15]
Chaturvedi, M.; Kumar, M.; Pathak, K. A review on mucoadhesive polymer used in nasal drug delivery system. J. Adv. Pharm. Technol. Res., 2011, 2(4), 215-222.
[http://dx.doi.org/10.4103/2231-4040.90876] [PMID: 22247888]
[16]
Silva, M.; Calado, R.; Marto, J.; Bettencourt, A.; Almeida, A.; Gonçalves, L. Chitosan nanoparticles as a mucoadhesive drug delivery system for ocular administration. Mar. Drugs, 2017, 15(12), 370.
[http://dx.doi.org/10.3390/md15120370] [PMID: 29194378]
[17]
Dounighi, N.M.; Zolfagharian, H.; Khaki, P.; Bidhendi, S.M.; Sarei, F. Alginate nanoparticles as a promising adjuvant and vaccine delivery system. Indian J. Pharm. Sci., 2013, 75(4), 442-449.
[http://dx.doi.org/10.4103/0250-474X.119829] [PMID: 24302799]
[18]
Rastogi, R.; Sultana, Y.; Aqil, M.; Ali, A.; Kumar, S.; Chuttani, K.; Mishra, A. Alginate microspheres of isoniazid for oral sustained drug delivery. Int. J. Pharm., 2007, 334(1-2), 71-77.
[http://dx.doi.org/10.1016/j.ijpharm.2006.10.024] [PMID: 17113732]
[19]
Jain, A.K.; Khar, R.K.; Ahmed, F.J.; Diwan, P.V.; Diwan, P.V. Effective insulin delivery using starch nanoparticles as a potential trans-nasal mucoadhesive carrier. Eur. J. Pharm. Biopharm., 2008, 69(2), 426-435.
[http://dx.doi.org/10.1016/j.ejpb.2007.12.001] [PMID: 18295464]
[20]
Yadav, A.V.; Mote, H.H. Development of biodegradable starch microspheres for intranasal delivery. Indian J. Pharm. Sci., 2008, 70(2), 170-174.
[http://dx.doi.org/10.4103/0250-474X.41450] [PMID: 20046707]
[21]
Jain, J.P.; Chitkara, D.; Kumar, N. Polyanhydrides as localized drug delivery carrier: An update. Expert Opin. Drug Deliv., 2008, 5(8), 889-907.
[http://dx.doi.org/10.1517/17425247.5.8.889] [PMID: 18712998]
[22]
Kumar, N.; Langer, R.S.; Domb, A.J. Polyanhydrides: An overview. Adv. Drug Deliv. Rev., 2002, 54(7), 889-910.
[http://dx.doi.org/10.1016/S0169-409X(02)00050-9] [PMID: 12384314]
[23]
Di, W.; Czarny, R.S.; Fletcher, N.A.; Krebs, M.D.; Clark, H.A. Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -based nanofiber scaffolds for pH-Sensing. Pharm. Res., 2016, 33(10), 2433-2444.
[http://dx.doi.org/10.1007/s11095-016-1987-0] [PMID: 27380188]
[24]
Tahara, K.; Karasawa, K.; Onodera, R.; Takeuchi, H. Feasibility of drug delivery to the eye’s posterior segment by topical instillation of PLGA nanoparticles. As. J. Pharm. Sci., 2017, 12(4), 394-399.
[http://dx.doi.org/10.1016/j.ajps.2017.03.002] [PMID: 32104351]
[25]
de Oliveira, Junior E.R.; Nascimento, T.L.; Salomão, M.A.; da Silva, A.C.G.; Valadares, M.C.; Lima, E.M. Increased nose-to-brain delivery of melatonin mediated by polycaprolactone nanoparticles for the treatment of glioblastoma. Pharm. Res., 2019, 36(9), 131.
[http://dx.doi.org/10.1007/s11095-019-2662-z] [PMID: 31263962]
[26]
Sathyamoorthy, N.; Magharla, D.; Chintamaneni, P.; Vankayalu, S. Optimization of paclitaxel loaded poly (ε-caprolactone) nanoparticles using Box Behnken design. Beni. Suef Univ. J. Basic Appl. Sci., 2017, 6(4), 362-373.
[http://dx.doi.org/10.1016/j.bjbas.2017.06.002]
[27]
Mir, M.; Ahmed, N.; Rehman, A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf. B Biointerfaces, 2017, 159, 217-231.
[http://dx.doi.org/10.1016/j.colsurfb.2017.07.038] [PMID: 28797972]
[28]
Maji, R.; Dey, N.S.; Satapathy, B.S.; Mukherjee, B.; Mondal, S. Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy. Int. J. Nanomedicine, 2014, 9(1), 3107-3118.
[PMID: 25028549]
[29]
Md, S.; Khan, R.A.; Mustafa, G.; Chuttani, K.; Baboota, S.; Sahni, J.K.; Ali, J. Bromocriptine loaded chitosan nanoparticles intended for direct nose to brain delivery: Pharmacodynamic, pharmacokinetic and scintigraphy study in mice model. Eur. J. Pharm. Sci., 2013, 48(3), 393-405.
[http://dx.doi.org/10.1016/j.ejps.2012.12.007] [PMID: 23266466]
[30]
Margaret, F.; Bennewitz, S.W. Nanotechnology for the delivery of drugs to the brain for epilepsy. J. Nutr., 2009, 6(2), 323-336.
[PMID: 19091799]
[31]
Allam, A.; Hamdallah, S.; Abdallah, O. Chitosan-coated diacerein nanosuspensions as a platform for enhancing bioavailability and lowering side effects: Preparation, characterization, and ex vivo/in vivo evaluation. Int. J. Nanomedicine, 2017, 12, 4733-4745.
[http://dx.doi.org/10.2147/IJN.S139706] [PMID: 28740381]
[32]
Gilmore, J.L.; Yi, X.; Quan, L.; Kabanov, A.V. Novel nanomaterials for clinical neuroscience. J. Neuroimmune Pharmacol., 2008, 3(2), 83-94.
[http://dx.doi.org/10.1007/s11481-007-9099-6] [PMID: 18210200]
[33]
Re, F.; Gregori, M.; Masserini, M. Nanotechnology for neurodegenerative disorders. Maturitas, 2012, 73(1), 45-51.
[http://dx.doi.org/10.1016/j.maturitas.2011.12.015] [PMID: 22261367]
[34]
Spuch, C.; Saida, O.; Navarro, C. Advances in the treatment of neurodegenerative disorders employing nanoparticles. Recent Pat. Drug Deliv. Formul., 2012, 6(1), 2-18.
[http://dx.doi.org/10.2174/187221112799219125] [PMID: 22272933]
[35]
Mudshinge, S.R.; Deore, A.B.; Patil, S.; Bhalgat, C.M. Nanoparticles: Emerging carriers for drug delivery. Saudi Pharm. J., 2011, 19(3), 129-141.
[http://dx.doi.org/10.1016/j.jsps.2011.04.001] [PMID: 23960751]
[36]
Pathak, R.; Bridgeman, M.B. Dipeptidyl Peptidase-4 (DPP-4) inhibitors in the management of diabetes. P&T, 2010, 35(9), 509-513.
[PMID: 20975810]
[37]
Thorne, R.G.; Frey, W.H., II Delivery of neurotrophic factors to the central nervous system: Pharmacokinetic considerations. Clin. Pharmacokinet., 2001, 40(12), 907-946.
[http://dx.doi.org/10.2165/00003088-200140120-00003] [PMID: 11735609]
[38]
Hanson, L.R.; Frey, W.H., II Intranasal delivery bypasses the blood-brain barrier to target therapeutic agents to the central nervous system and treat neurodegenerative disease. BMC Neurosci., 2008, 9(S3), S5.
[http://dx.doi.org/10.1186/1471-2202-9-S3-S5] [PMID: 19091002]
[39]
Youns, M.; Hoheisel, J.D.; Efferth, T. Therapeutic and diagnostic applications of nanoparticles. Curr. Drug Targets, 2011, 12(3), 357-365.
[http://dx.doi.org/10.2174/138945011794815257] [PMID: 20955146]
[40]
Singh, R.; Lillard, J.W. Jr Nanoparticle-based targeted drug delivery. Exp. Mol. Pathol., 2009, 86(3), 215-223.
[http://dx.doi.org/10.1016/j.yexmp.2008.12.004] [PMID: 19186176]
[41]
Szoka, F., Jr; Papahadjopoulos, D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annu. Rev. Biophys. Bioeng., 1980, 9(1), 467-508.
[http://dx.doi.org/10.1146/annurev.bb.09.060180.002343] [PMID: 6994593]
[42]
ElBayoumi, T.A.; Torchilin, V.P. Current trends in liposome research. Methods Mol. Biol., 2010, 605, 1-27.
[http://dx.doi.org/10.1007/978-1-60327-360-2_1] [PMID: 20072870]
[43]
Gregoriadis, G.; Senior, J.; Wolff, B.; Kirby, C. Fate of liposomes in vivo: control leading to targeting. Life Sci., 1984, 82, 243-266.
[44]
Mutlu, N.B.; Değim, Z.; Yılmaz, Ş.; Eşsiz, D.; Nacar, A. New perspective for the treatment of Alzheimer diseases: Liposomal rivastigmine formulations. Drug Dev. Ind. Pharm., 2011, 37(7), 775-789.
[http://dx.doi.org/10.3109/03639045.2010.541262] [PMID: 21231901]
[45]
Phachonpai, W.; Wattanathorn, J.; Muchimapura, S.; Tong-Un, T.; Preechagoon, D. Neuroprotective effect of quercetin encapsulated liposomes: A novel therapeutic strategy against Alzheimer’s disease. Am. J. Appl. Sci., 2010, 7(4), 480-485.
[http://dx.doi.org/10.3844/ajassp.2010.480.485]
[46]
Gurpreet, K.; Singh, S.K. Review of nanoemulsion formulation and characterization techniques. Indian J. Pharm. Sci., 2018, 80(5), 781-789.
[http://dx.doi.org/10.4172/pharmaceutical-sciences.1000422]
[47]
Jaiswal, M.; Dudhe, R.; Sharma, P.K. Nanoemulsion: An advanced mode of drug delivery system. 3 Biotech, 2015, 5(2), 123-127.
[48]
Hussein, J.; El-Bana, M.; Refaat, E.; El-Naggar, M.E. Synthesis of carvacrol-based nanoemulsion for treating neurodegenerative disorders in experimental diabetes. J. Funct. Foods, 2017, 37, 441-448.
[http://dx.doi.org/10.1016/j.jff.2017.08.011]
[49]
Yu, C.; Meng, J.; Chen, J.; Tang, X. Preparation of ergoloid mesylate submicron emulsions for enhancing nasal absorption and reducing nasal ciliotoxicity. Int. J. Pharm., 2009, 375(1-2), 16-21.
[http://dx.doi.org/10.1016/j.ijpharm.2009.03.006] [PMID: 19504748]
[50]
Chauhan, C.S.; Udawat, H.S.; Naruka, P.S.; Chouhan, N.S.; Meena, M.S. Micellar solubilization of poorly water soluble drug using non ionic surfactant. Int. J. Adv. Res. Pharm. Bio Sci., 2012, 2(1), 1-8.
[51]
Sammalkorpi, M.; Karttunen, M.; Haataja, M. Ionic surfactant aggregates in saline solutions: sodium dodecyl sulfate (SDS) in the presence of excess sodium chloride (NaCl) or calcium chloride (CaCl(2)). J. Phys. Chem. B, 2009, 113(17), 5863-5870.
[http://dx.doi.org/10.1021/jp901228v] [PMID: 19344100]
[52]
Pepić, I.; Hafner, A.; Lovrić, J.; Pirkić, B.; Filipović-Grcčić, J. A nonionic surfactant/chitosan micelle system in an innovative eye drop formulation. J. Pharm. Sci., 2010, 99(10), 4317-4325.
[http://dx.doi.org/10.1002/jps.22137] [PMID: 20310026]
[53]
Bruinsmann, F.; Pigana, S.; Aguirre, T.; Souto, G.; Pereira, G.; Bianchera, A.; Fasiolo, L.; Colombo, G.; Marques, M.; Pohlmann, A.; Guterres, S.; Sonvico, F. Chitosan-coated nanoparticles: Effect of chitosan molecular weight on nasal transmucosal delivery. Pharmaceutics, 2019, 11(2), 86.
[http://dx.doi.org/10.3390/pharmaceutics11020086] [PMID: 30781722]
[54]
Shariare, M.H.; Altamimi, M.A.; Marzan, A.L.; Tabassum, R.; Jahan, B.; Reza, H.M.; Rahman, M.; Ahsan, G.U.; Kazi, M. In vitro dissolution and bioavailability study of furosemide nanosuspension prepared using Design Of Experiment (DoE). Saudi Pharm. J., 2019, 27(1), 96-105.
[http://dx.doi.org/10.1016/j.jsps.2018.09.002] [PMID: 30662312]
[55]
Patravale, V.B.; Date, A.A.; Kulkarni, R.M. Nanosuspensions: A promising drug delivery strategy. J. Pharm. Pharmacol., 2010, 56(7), 827-840.
[http://dx.doi.org/10.1211/0022357023691] [PMID: 15233860]
[56]
Merisko-Liversidge, E.; Sarpotdar, P.; Bruno, J.; Hajj, S.; Wei, L.; Peltier, N.; Rake, J.; Shaw, J.M.; Pugh, S.; Polin, L.; Jones, J.; Corbett, T.; Cooper, E.; Liversidge, G.G. Formulation and antitumor activity evaluation of nanocrystalline suspensions of poorly soluble anticancer drugs. Pharm. Res., 1996, 13(2), 272-278.
[http://dx.doi.org/10.1023/A:1016051316815] [PMID: 8932448]
[57]
Siekmann, B.; Westesen, K. Preparation and physicochemical characterization of aqueous dispersions of coenzyme Q10 nanoparticles. Pharm. Res., 1995, 12(2), 201-208.
[http://dx.doi.org/10.1023/A:1016270724413] [PMID: 7784334]
[58]
Muller, R.H. Colloidal Carriers for Controlled Drug Delivery and Targeting; CRC Press: Boca Raton, FL, 1991.
[59]
Prashant, B.V.; Talele, A.; Prajapati, A.; Narkhede, B.S.; Baboota, S.; Ali, J. Formulation Development and evaluation of brain targeted eslicarbamazepine acetate nanosuspension for epilepsy. J. Adv. Res. Innov. Ideas, 2014, 7(2), 1-13.
[60]
B, M.; N, A.; S, T. Investigation of formulation variables affecting the properties of lamotrigine nanosuspension using fractional factorial design. Daru, 2010, 18(1), 1-8.
[PMID: 22615586]

© 2024 Bentham Science Publishers | Privacy Policy