Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

3-Bromopyruvate Inhibits the Growth and Glucose Metabolism of TNBC Xenografts in Nude Mice by Targeting c-Myc

Author(s): Jian-Min Pan, Jia-Chen Li, Cheng Yang, Wang-Fa Xiao, Qi-Shang Li, Xiao-Hui Luo and Xiao-Dong Zhang*

Volume 23, Issue 12, 2023

Published on: 03 May, 2023

Page: [1421 - 1428] Pages: 8

DOI: 10.2174/1871520623666230406111833

Price: $65

conference banner
Abstract

Background: Due to the lack of effective drug treatment, triple-negative breast cancer (TNBC) is prone to recurrence and metastasis after an operation. As a glycolytic inhibitor, 3-bromopyruvic acid (3-BrPA) can inhibit the proliferation and induce apoptosis of TNBC cells. However, whether it has similar effects in animal models remains unclear.

Objective: To observe the effect of 3-BrPA on the growth and glucose metabolism of human TNBC transplanted tumors in nude mice and to investigate the mechanism.

Methods: We constructed subcutaneous xenografts of human TNBC in nude mice and treated them with low, medium and high concentrations of 3-BrPA. After 15 days, nude mice were sacrificed to detect hexokinase (HK) activity and adenosine triphosphate (ATP) content in tumor tissues. Hematoxylin-eosin (HE) staining was used to detect the damage of transplanted tumors and liver and kidney in nude mice, which 3-BrPA caused. The expression of c-Myc in tumor tissues was detected by Immunohistochemistry (IHC). Terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining was used to detect the apoptosis of tumor tissues. Besides, the expressions of Cytc, Bax, Bcl-2 and Caspase-9 were detected by Western blotting.

Results: Compared with the control group, intraperitoneal injection of 3-BrPA inhibited the growth of human TNBC transplant tumors, decreased HK activity and ATP production in tumor tissues, disrupted the tissue structure of transplant tumors, and did not significantly damage liver and kidney tissues. IHC staining and Western blotting showed that 3-BrPA could decrease the expression of c-Myc and Bcl-2, increase the expression of Cyt -c, Bax and Caspase-9 expression and promote apoptosis in tumor tissues.

Conclusion: The above data indicate that 3-BrPA inhibits the growth of human TNBC transplanted tumors and promotes their apoptosis. Its anti-cancer mechanism might reduce HK activity by down-regulating c-Myc expression, eventually leading to decreased glycolytic pathway energy production and promoting apoptosis of transplanted tumors.

Graphical Abstract

[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Zimmer, A.S. Triple-negative breast cancer central nervous system metastases from the laboratory to the clinic. Cancer J., 2021, 27(1), 76-82.
[http://dx.doi.org/10.1097/PPO.0000000000000503] [PMID: 33475296]
[3]
Vagia, E.; Mahalingam, D.; Cristofanilli, M. The landscape of targeted therapies in TNBC. Cancers, 2020, 12(4), 916.
[http://dx.doi.org/10.3390/cancers12040916] [PMID: 32276534]
[4]
Chen, F.; Wang, Q.; Yu, X.; Yang, N.; Wang, Y.; Zeng, Y.; Zheng, Z.; Zhou, F.; Zhou, Y. MCPIP1-mediated NFIC alternative splicing inhibits proliferation of triple-negative breast cancer via cyclin D1-Rb-E2F1 axis. Cell Death Dis., 2021, 12(4), 370.
[http://dx.doi.org/10.1038/s41419-021-03661-4] [PMID: 33824311]
[5]
Warburg, O.; Wind, F.; Negelein, E. The metabolism of tumors in the body. J. Gen. Physiol., 1927, 8(6), 519-530.
[http://dx.doi.org/10.1085/jgp.8.6.519] [PMID: 19872213]
[6]
Fan, T.; Sun, G.; Sun, X.; Zhao, L.; Zhong, R.; Peng, Y. Tumor energy metabolism and potential of 3-bromopyruvate as an inhibitor of aerobic glycolysis: Implications in tumor treatment. Cancers, 2019, 11(3), 317.
[http://dx.doi.org/10.3390/cancers11030317] [PMID: 30845728]
[7]
Kim, S.; Kim, D.H.; Jung, W.H.; Koo, J.S. Metabolic phenotypes in triple-negative breast cancer. Tumour Biol., 2013, 34(3), 1699-1712.
[http://dx.doi.org/10.1007/s13277-013-0707-1] [PMID: 23443971]
[8]
Fatma, H.; Siddique, H.R. Role of long non-coding RNAs and MYC interaction in cancer metastasis: A possible target for therapeutic intervention. Toxicol. Appl. Pharmacol., 2020, 399, 115056.
[http://dx.doi.org/10.1016/j.taap.2020.115056] [PMID: 32445756]
[9]
Constantinou, C.; Papadopoulos, S.; Karyda, E.; Alexopoulos, A.; Agnanti, N.; Batistatou, A.; Harisis, H. Expression and clinical significance of Claudin-7, PDL-1, PTEN, c-Kit, c-Met, c-Myc, ALK, CK5/6, CK17, p53, EGFR, Ki67, p63 in triple-negative breast cancer-A single centre prospective observational study. In Vivo, 2018, 32(2), 303-311.
[PMID: 29475913]
[10]
Shen, S.; Yao, T.; Xu, Y.; Zhang, D.; Fan, S.; Ma, J. CircECE1 activates energy metabolism in osteosarcoma by stabilizing c-Myc. Mol. Cancer, 2020, 19(1), 151.
[http://dx.doi.org/10.1186/s12943-020-01269-4] [PMID: 33106166]
[11]
Ko, Y.H.; Pedersen, P.L.; Geschwind, J.F. Glucose catabolism in the rabbit VX2 tumor model for liver cancer: Characterization and targeting hexokinase. Cancer Lett., 2001, 173(1), 83-91.
[http://dx.doi.org/10.1016/S0304-3835(01)00667-X] [PMID: 11578813]
[12]
Zhang, B.; Chan, S.H.; Liu, X.Q.; Shi, Y.Y.; Dong, Z.X.; Shao, X.R.; Zheng, L.Y.; Mai, Z.Y.; Fang, T.L.; Deng, L.Z.; Zhou, D.S.; Chen, S.N.; Li, M.; Zhang, X.D. Targeting hexokinase 2 increases the sensitivity of oxaliplatin by Twist1 in colorectal cancer. J. Cell. Mol. Med., 2021, 25(18), 8836-8849.
[http://dx.doi.org/10.1111/jcmm.16842] [PMID: 34378321]
[13]
Jardim-Messeder, D.; Moreira-Pacheco, F. 3-Bromopyruvic acid inhibits tricarboxylic acid cycle and glutaminolysis in HepG2 cells. Anticancer Res., 2016, 36(5), 2233-2241.
[PMID: 27127128]
[14]
Sun, X.; Sun, G.; Huang, Y.; Hao, Y.; Tang, X.; Zhang, N.; Zhao, L.; Zhong, R.; Peng, Y. 3-Bromopyruvate regulates the status of glycolysis and BCNU sensitivity in human hepatocellular carcinoma cells. Biochem. Pharmacol., 2020, 177, 113988.
[http://dx.doi.org/10.1016/j.bcp.2020.113988] [PMID: 32330495]
[15]
Guo, X.; Zhang, X.; Wang, T.; Xian, S.; Lu, Y. 3-Bromopyruvate and sodium citrate induce apoptosis in human gastric cancer cell line MGC-803 by inhibiting glycolysis and promoting mitochondria-regulated apoptosis pathway. Biochem. Biophys. Res. Commun., 2016, 475(1), 37-43.
[http://dx.doi.org/10.1016/j.bbrc.2016.04.151] [PMID: 27163639]
[16]
Zhao, B.; Aggarwal, A.; Marshall, J.A.; Barletta, J.A.; Kijewski, M.F.; Lorch, J.H.; Nehs, M.A. Glycolytic inhibition with 3-bromopyruvate suppresses tumor growth and improves survival in a murine model of anaplastic thyroid cancer. Surgery, 2022, 171(1), 227-234.
[http://dx.doi.org/10.1016/j.surg.2021.05.055] [PMID: 34334212]
[17]
Wang, T.A.; Xian, S.L.; Guo, X.Y.; Zhang, X.D.; Lu, Y.F. Combined 18F-FDG PET/CT imaging and a gastric orthotopic xenograft model in nude mice are used to evaluate the efficacy of glycolysis-targeted therapy. Oncol. Rep., 2018, 39(1), 271-279.
[PMID: 29115645]
[18]
Bai, X.; Ni, J.; Beretov, J.; Graham, P.; Li, Y. Triple-negative breast cancer therapeutic resistance: Where is the Achilles’ heel? Cancer Lett., 2021, 497, 100-111.
[http://dx.doi.org/10.1016/j.canlet.2020.10.016] [PMID: 33069769]
[19]
Jhan, J.R.; Andrechek, E.R. Triple-negative breast cancer and the potential for targeted therapy. Pharmacogenomics, 2017, 18(17), 1595-1609.
[http://dx.doi.org/10.2217/pgs-2017-0117] [PMID: 29095114]
[20]
Li, J.; Pan, J.; Liu, Y.; Luo, X.; Yang, C.; Xiao, W.; Li, Q.; Yang, L.; Zhang, X. 3 Bromopyruvic acid regulates glucose metabolism by targeting the c Myc/TXNIP axis and induces mitochondria mediated apoptosis in TNBC cells. Exp. Ther. Med., 2022, 24(2), 520.
[http://dx.doi.org/10.3892/etm.2022.11447] [PMID: 35837063]
[21]
Cocco, S.; Piezzo, M.; Calabrese, A.; Cianniello, D.; Caputo, R.; Di Lauro, V.; Fusco, G.; di Gioia, G.; Licenziato, M.; de Laurentiis, M. Biomarkers in triple-negative breast cancer: State-of-the-art and future perspectives. Int. J. Mol. Sci., 2020, 21(13), 4579.
[http://dx.doi.org/10.3390/ijms21134579] [PMID: 32605126]
[22]
Shin, E.; Koo, J.S. Glucose metabolism and glucose transporters in breast cancer. Front. Cell Dev. Biol., 2021, 9, 728759.
[http://dx.doi.org/10.3389/fcell.2021.728759] [PMID: 34552932]
[23]
Li, L.K.; Zhang, X.J.; Wang, L.M.; Hu, J.Y.; Cao, F.H. Inhibitory effect of 3-bromopyruvate on the proliferation, migration and invasive ability of prostate cancer PC-3 cells. Zhonghua Nan Ke Xue, 2020, 26(1), 17-23.
[PMID: 33345472]
[24]
Garcia, S.N.; Guedes, R.C.; Marques, M.M. Unlocking the potential of HK2 in cancer metabolism and therapeutics. Curr. Med. Chem., 2020, 26(41), 7285-7322.
[http://dx.doi.org/10.2174/0929867326666181213092652] [PMID: 30543165]
[25]
Klepinin, A.; Ounpuu, L.; Mado, K.; Truu, L.; Chekulayev, V.; Puurand, M.; Shevchuk, I.; Tepp, K.; Planken, A.; Kaambre, T. The complexity of mitochondrial outer membrane permeability and VDAC regulation by associated proteins. J. Bioenerg. Biomembr., 2018, 50(5), 339-354.
[http://dx.doi.org/10.1007/s10863-018-9765-9] [PMID: 29998379]
[26]
Gan, L.; Xiu, R.; Ren, P.; Yue, M.; Su, H.; Guo, G.; Xiao, D.; Yu, J.; Jiang, H.; Liu, H.; Hu, G.; Qing, G. Metabolic targeting of oncogene MYC by selective activation of the proton-coupled monocarboxylate family of transporters. Oncogene, 2016, 35(23), 3037-3048.
[http://dx.doi.org/10.1038/onc.2015.360] [PMID: 26434591]
[27]
Wu, N.; Zheng, B.; Shaywitz, A.; Dagon, Y.; Tower, C.; Bellinger, G.; Shen, C.H.; Wen, J.; Asara, J.; McGraw, T.E.; Kahn, B.B.; Cantley, L.C. AMPK-dependent degradation of TXNIP upon energy stress leads to enhanced glucose uptake via GLUT1. Mol. Cell, 2013, 49(6), 1167-1175.
[http://dx.doi.org/10.1016/j.molcel.2013.01.035] [PMID: 23453806]
[28]
Shen, L.; O’Shea, J.M.; Kaadige, M.R.; Cunha, S.; Wilde, B.R.; Cohen, A.L.; Welm, A.L.; Ayer, D.E. Metabolic reprogramming in triple-negative breast cancer through Myc suppression of TXNIP. Proc. Natl. Acad. Sci. USA, 2015, 112(17), 5425-5430.
[http://dx.doi.org/10.1073/pnas.1501555112] [PMID: 25870263]
[29]
Skaripa-Koukelli, I.; Hauton, D.; Walsby-Tickle, J.; Thomas, E.; Owen, J.; Lakshminarayanan, A.; Able, S.; McCullagh, J.; Carlisle, R.C.; Vallis, K.A. 3-Bromopyruvate-mediated MCT1-dependent metabolic perturbation sensitizes triple negative breast cancer cells to ionizing radiation. Cancer Metab., 2021, 9(1), 37.
[http://dx.doi.org/10.1186/s40170-021-00273-6] [PMID: 34649623]
[30]
Fang, Y.; Shen, Z.Y.; Zhan, Y.Z.; Feng, X.C.; Chen, K.L.; Li, Y.S.; Deng, H.J.; Pan, S.M.; Wu, D.H.; Ding, Y. CD36 inhibits β-catenin/c-myc-mediated glycolysis through ubiquitination of GPC4 to repress colorectal tumorigenesis. Nat. Commun., 2019, 10(1), 3981.
[http://dx.doi.org/10.1038/s41467-019-11662-3] [PMID: 31484922]
[31]
Dadsena, S.; King, L.E.; García-Sáez, A.J. Apoptosis regulation at the mitochondria membrane level. Biochim. Biophys. Acta Biomembr., 2021, 1863(12), 183716.
[http://dx.doi.org/10.1016/j.bbamem.2021.183716] [PMID: 34343535]
[32]
Zraik, I.M.; Heß-Busch, Y. Management of chemotherapy side effects and their long-term sequelae. Urologe A, 2021, 60(7), 862-871.
[http://dx.doi.org/10.1007/s00120-021-01569-7] [PMID: 34185118]
[33]
Abdollahi, R.; Najafi, S.; Razmpoosh, E.; Shoormasti, R.S.; Haghighat, S.; Raji Lahiji, M.; Chamari, M.; Asgari, M.; Cheshmazar, E.; Zarrati, M. The effect of dietary intervention along with nutritional education on reducing the gastrointestinal side effects caused by chemotherapy among women with breast cancer. Nutr. Cancer, 2019, 71(6), 922-930.
[http://dx.doi.org/10.1080/01635581.2019.1590608] [PMID: 30945949]
[34]
Li, S.; Yuan, S.; Zhao, Q.; Wang, B.; Wang, X.; Li, K. Quercetin enhances chemotherapeutic effect of doxorubicin against human breast cancer cells while reducing toxic side effects of it. Biomed. Pharmacother., 2018, 100, 441-447.
[http://dx.doi.org/10.1016/j.biopha.2018.02.055] [PMID: 29475141]
[35]
Bukowski, K.; Kciuk, M.; Kontek, R. Mechanisms of multidrug resistance in cancer chemotherapy. Int. J. Mol. Sci., 2020, 21(9), 3233.
[http://dx.doi.org/10.3390/ijms21093233] [PMID: 32370233]
[36]
Linke, C.; Wösle, M.; Harder, A. Anti-cancer agent 3-bromopyruvate reduces growth of MPNST and inhibits metabolic pathways in a representative in vitro model. BMC Cancer, 2020, 20(1), 896.
[http://dx.doi.org/10.1186/s12885-020-07397-w] [PMID: 32948135]
[37]
Nikravesh, H.; Khodayar, M.J.; Behmanesh, B.; Mahdavinia, M.; Teimoori, A.; Alboghobeish, S.; Zeidooni, L. The combined effect of dichloroacetate and 3-bromopyruvate on glucose metabolism in colorectal cancer cell line, HT-29; the mitochondrial pathway apoptosis. BMC Cancer, 2021, 21(1), 903.
[http://dx.doi.org/10.1186/s12885-021-08564-3] [PMID: 34364387]
[38]
Chapiro, J.; Sur, S.; Savic, L.J.; Ganapathy-Kanniappan, S.; Reyes, J.; Duran, R.; Thiruganasambandam, S.C.; Moats, C.R.; Lin, M.; Luo, W.; Tran, P.T.; Herman, J.M.; Semenza, G.L.; Ewald, A.J.; Vogelstein, B.; Geschwind, J.F. Systemic delivery of microencapsulated 3-bromopyruvate for the therapy of pancreatic cancer. Clin. Cancer Res., 2014, 20(24), 6406-6417.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1271] [PMID: 25326230]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy