Generic placeholder image

Cardiovascular & Hematological Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5257
ISSN (Online): 1875-6182

Research Article

L-Tartaric Acid Inhibits Diminazene-induced Vasorelaxation in Isolated Rat Aorta

Author(s): Ayoub Amssayef, Ismail Bouadid and Mohamed Eddouks*

Volume 22, Issue 1, 2024

Published on: 10 May, 2023

Page: [83 - 89] Pages: 7

DOI: 10.2174/1871525721666230406075646

Price: $65

Abstract

Aims: The study investigated the effect of L-tartaric acid on diminazene-indiuced vasorelaxation.

Objective: This work was designed to study the effect of L-tartaric acid on diminazene-induced vasorelaxation using an ex vivo approach.

Materials and Methods: In the current investigation, the inhibitory effect of L-tartaric acid on diminazene-induced relaxation.

Results: The results confirmed that L-tartaric acid was able to inhibit in a dose-dependent manner diminazene-induced vasorelaxation.

Conclusion: This investigation provides important experimental evidence of the efficacy of Ltartaric acid in inhibiting diminazene-induced vasorelaxation.

Graphical Abstract

[1]
World health organization. Coronavirus (COVID-19) Dashboard. Available from: https://covid19.who.int/
[2]
Mathieu, E.; Ritchie, H.; Ortiz-Ospina, E.; Roser, M.; Hasell, J.; Appel, C.; Giattino, C.; Rodés-Guirao, L. A global database of COVID-19 vaccinations. Nat. Hum. Behav., 2021, 5(7), 947-953.
[http://dx.doi.org/10.1038/s41562-021-01122-8] [PMID: 33972767]
[3]
Tregoning, J.S.; Flight, K.E.; Higham, S.L.; Wang, Z.; Pierce, B.F. Progress of the COVID-19 vaccine effort: Viruses, vaccines and variants versus efficacy, effectiveness and escape. Nat. Rev. Immunol., 2021, 21(10), 626-636.
[http://dx.doi.org/10.1038/s41577-021-00592-1] [PMID: 34373623]
[4]
Zhang, X.; Wu, S.; Wu, B.; Yang, Q.; Chen, A.; Li, Y.; Zhang, Y.; Pan, T.; Zhang, H.; He, X. SARS-CoV-2 Omicron strain exhibits potent capabilities for immune evasion and viral entrance. Signal Transduct. Target. Ther., 2021, 6(1), 430.
[http://dx.doi.org/10.1038/s41392-021-00852-5] [PMID: 34921135]
[5]
Chen, Y.; Guo, Y.; Pan, Y.; Zhao, Z.J. Structure analysis of the receptor binding of 2019-nCoV. Biochem. Biophys. Res. Commun., 2020, 525(1), 135-140.
[http://dx.doi.org/10.1016/j.bbrc.2020.02.071] [PMID: 32081428]
[6]
Lupala, C.S.; Ye, Y.; Chen, H.; Su, X.D.; Liu, H. Mutations on RBD of SARS-CoV-2 Omicron variant result in stronger binding to human ACE2 receptor. Biochem. Biophys. Res. Commun., 2022, 590, 34-41.
[http://dx.doi.org/10.1016/j.bbrc.2021.12.079] [PMID: 34968782]
[7]
Dabaghian, F.; Khanavi, M.; Zarshenas, M.M. Bioactive compounds with possible inhibitory activity of Angiotensin-Converting Enzyme-II; a gate to manage and prevent COVID-19. Med. Hypotheses, 2020, 143, 109841.
[http://dx.doi.org/10.1016/j.mehy.2020.109841] [PMID: 32425303]
[8]
Xian, Y.; Zhang, J.; Bian, Z.; Zhou, H.; Zhang, Z.; Lin, Z.; Xu, H. Bioactive natural compounds against human coronaviruses: A review and perspective. Acta Pharm. Sin. B, 2020, 10(7), 1163-1174.
[http://dx.doi.org/10.1016/j.apsb.2020.06.002] [PMID: 32834947]
[9]
Verma, S.; Twilley, D.; Esmear, T.; Oosthuizen, C.B.; Reid, A.M. Anti-SARS-CoV natural products with the potential to inhibit SARS-CoV-2 (COVID-19). In: Front. pharmacol; , 2020; 11, p. 561334.
[10]
Muchtaridi, M.; Fauzi, M.; Khairul Ikram, N.K.; Mohd Gazzali, A.; Wahab, H.A. Natural flavonoids as potential Angiotensin-Converting Enzyme 2 inhibitors for Anti-SARS-CoV-2. Molecules, 2020, 25(17), 3980.
[http://dx.doi.org/10.3390/molecules25173980] [PMID: 32882868]
[11]
Burbidge, C.A.; Ford, C.M.; Melino, V.J.; Wong, D.C.J.; Jia, Y.; Jenkins, C.L.D.; Soole, K.L.; Castellarin, S.D.; Darriet, P.; Rienth, M.; Bonghi, C.; Walker, R.P.; Famiani, F.; Sweetman, C. Biosynthesis and cellular functions of tartaric acid in grapevines. Front. Plant Sci., 2021, 12, 643024.
[http://dx.doi.org/10.3389/fpls.2021.643024] [PMID: 33747023]
[12]
Xuan, J.; Feng, Y. Enantiomeric tartaric acid production using cis-epoxysuccinate hydrolase: History and perspectives. Molecules, 2019, 24(5), 903.
[http://dx.doi.org/10.3390/molecules24050903] [PMID: 30841503]
[13]
Silva, M.M.; Lidon, F.C. An overview on applications and side effects of antioxidant food additives. Emir. J. Food Agric., 2016, 28(12), 823-832.https://doi.org/10.9755/ejfa.2016-07-806
[14]
Coban, H.B. Organic acids as antimicrobial food agents: Applications and microbial productions. Bioprocess Biosyst. Eng., 2020, 43(4), 569-591.
[http://dx.doi.org/10.1007/s00449-019-02256-w] [PMID: 31758240]
[15]
Spiller, G.A.; Story, J.A.; Furumoto, E.J.; Chezem, J.C.; Spiller, M. Effect of tartaric acid and dietary fibre from sun-dried raisins on colonic function and on bile acid and volatile fatty acid excretion in healthy adults. Br. J. Nutr., 2003, 90(4), 803-807.
[http://dx.doi.org/10.1079/BJN2003966] [PMID: 13129449]
[16]
Anasuya, A.; Sasikala, M. Tartaric acid inhibits urinary stone formation in rats. Nutr. Res., 1989, 9(5), 575-580.
[http://dx.doi.org/10.1016/S0271-5317(89)80182-4]
[17]
Amssayef, A.; Bouadid, I.; Eddouks, M.; Vitamin, C. Vitamin C inhibits angiotensin-converting Enzyme-2 in isolated rat aortic ring. Cardiovasc. Hematol. Disord. Drug Targets, 2021, 21(4), 235-242.
[http://dx.doi.org/10.2174/1871529X21666211214153308] [PMID: 34906063]
[18]
Amssayef, A.; Ajebli, M.; Eddouks, M. Aqueous extract of oakmoss produces antihypertensive activity in L-NAME-induced hypertensive rats through sGC-cGMP pathway. Clin. Exp. Hypertens., 2021, 43(1), 49-55.
[http://dx.doi.org/10.1080/10641963.2020.1797087] [PMID: 32706597]
[19]
Ajebli, M.; Eddouks, M. Eucalyptus globulus possesses antihypertensive activity in L-NAME-induced hypertensive rats and relaxes isolated rat thoracic aorta through nitric oxide pathway. Nat. Prod. Res., 2021, 35(5), 819-821.
[http://dx.doi.org/10.1080/14786419.2019.1598992] [PMID: 30966776]
[20]
Piplani, S.; Singh, P.K.; Winkler, D.A.; Petrovsky, N. In silico comparison of SARS-CoV-2 spike protein-ACE2 binding affinities across species and implications for virus origin. Sci. Rep., 2021, 11(1), 13063.
[http://dx.doi.org/10.1038/s41598-021-92388-5] [PMID: 34168168]
[21]
Xie, Y.; Karki, C.B.; Du, D.; Li, H.; Wang, J.; Sobitan, A.; Teng, S.; Tang, Q.; Li, L. Spike proteins of SARS-CoV and SARS-CoV-2 utilize different mechanisms to bind with human ACE2. Front. Mol. Biosci., 2020, 7, 591873.
[http://dx.doi.org/10.3389/fmolb.2020.591873] [PMID: 33363207]
[22]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[23]
da Silva, J.K.R.; Figueiredo, P.L.B.; Byler, K.G.; Setzer, W.N. Essential oils as antiviral agents, potential of essential oils to treat sars-cov-2 infection: An in-silico investigation. Int. J. Mol. Sci., 2020, 21(10), 3426.
[http://dx.doi.org/10.3390/ijms21103426] [PMID: 32408699]
[24]
Chen, H.; Du, Q. Potential natural compounds for preventing 2019-nCoV infection. Europe PMC, 2020; p. 10.
[25]
Ivanov, V.; Goc, A.; Ivanova, S.; Niedzwiecki, A.; Rath, M. Inhibition of ACE2 expression by ascorbic acid alone and its combinations with other natural compounds. Infect. Dis., 2021, 14, 1178633721994605.
[http://dx.doi.org/10.1177/1178633721994605] [PMID: 33642866]
[26]
Senthil Kumar, K.J.; Gokila Vani, M.; Wang, C.S.; Chen, C.C.; Chen, Y.C.; Lu, L.P.; Huang, C.H.; Lai, C.S.; Wang, S.Y. Geranium and lemon essential oils and their active compounds downregulate Angiotensin-Converting Enzyme 2 (ACE2), a SARS-CoV-2 spike receptor-binding domain, in epithelial cells. Plants, 2020, 9(6), 770.
[http://dx.doi.org/10.3390/plants9060770] [PMID: 32575476]
[27]
Wu, C.Y.; Lin, Y.S.; Yang, Y.H.; Shu, L.H.; Cheng, Y.C.; Liu, H.T. GB-2 inhibits ACE2 and TMPRSS2 expression: In vivo and in vitro studies. Biomed. Pharmacother., 2020, 132, 110816.
[http://dx.doi.org/10.1016/j.biopha.2020.110816] [PMID: 33049583]
[28]
De Maria, M.L.; Araújo, L.D.; Fraga-Silva, R.A.; Pereira, L.A.; Ribeiro, H.J.; Menezes, G.B.; Shenoy, V.; Raizada, M.K.; Ferreira, A.J. Anti-hypertensive effects of diminazene aceturate: An Angiotensin- converting enzyme 2 activator in rats. Protein Pept. Lett., 2016, 23(1), 9-16.
[http://dx.doi.org/10.2174/0929866522666151013130550] [PMID: 26458404]
[29]
Sartório, C.L.; Pimentel, E.B.; Santos, R.L.; Rouver, W.N.; Mill, J.G. Acute hypotensive effect of diminazene aceturate in spontaneously hypertensive rats: Role of NO and Mas receptor. Clin. Exp. Pharmacol. Physiol., 2020, 47(10), 1440-1681.13368.
[http://dx.doi.org/10.1111/1440-1681.13368] [PMID: 32603499]
[30]
Guney, C.; Akar, F. Epithelial and endothelial expressions of ACE2: SARS-CoV-2 entry routes. J. Pharm. Pharm. Sci., 2021, 24, 84-93.
[http://dx.doi.org/10.18433/jpps31455] [PMID: 33626315]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy