Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Research Article

Resveratrol Attenuates Hydrogen Peroxide-induced Injury of Rat Ovarian Granulosa-lutein Cells by Resisting Oxidative Stress via the SIRT1/Nrf2/ARE Signaling Pathway

Author(s): Minghui Cai, Jiao Wang, Haijuan Sun, Qi Guo, Chi Zhang, Haixu Yao, Chen Zhao, Yuhan Jia and Hui Zhu*

Volume 29, Issue 12, 2023

Published on: 11 April, 2023

Page: [947 - 956] Pages: 10

DOI: 10.2174/1381612829666230403133322

Price: $65

Abstract

Introduction: This paper aims to reveal the molecular mechanism of resveratrol against oxidative stress and cell injury. The ovarian granulosa-lutein cell injury and apoptosis induced by oxidative stress may be responsible for female luteal phase deficiency. The antioxidant function of resveratrol has been confirmed; however, its effect on the expression of antioxidant enzymes and regulatory mechanisms in ovarian granulosa-lutein cells remains unclear.

Objective: This study aimed to investigate the role of the SIRT1/Nrf2/ARE signaling pathway in the effect of resveratrol on the hydrogen peroxide-induced injury of rat ovarian granulosa-lutein cells.

Methods: In this study, ovarian granulosa-lutein cells extracted from 3-week female SD rats were treated with 200 μM H2O2 in the presence or absence of 20 μM resveratrol. siRNA-SIRT1 and siRNA-Nrf2 were used to inhibit the expression of SIRT1 and Nrf2, respectively. Cell counting kit 8 (CCK-8), cellular morphology, progesterone secretion, and estradiol were used to evaluate cell injury. Hoechst 33258 staining was used to measure cell apoptosis. DHE staining, DCFH-DA staining, malondialdehyde content, protein carbonyl content, total antioxidant capacity and SOD viability were used to estimate the levels of oxidative stress. Western blot analysis was used to detect the levels of apoptosis-related proteins, and SIRT1/Nrf2/ARE signaling pathway-related proteins.

Results: The H2O2 treatment-induced rat ovarian granulosa-lutein cells injury was shown as decreased cell viability, impaired cellular morphology, and decreased levels of progesterone and estradiol. The H2O2 treatment also exacerbated cell apoptosis demonstrated as more apoptotic cells stained by Hoechst staining, decreased level of anti-apoptosis protein Bcl-2 and increased level of pro-apoptosis protein Bax. These effects of cell injury and apoptosis induced by H2O2 can be ameliorated by resveratrol. Resveratrol also alleviated oxidative stress induced by H2O2, supported by decreased superoxide anion and cellular total ROS, decreased malondialdehyde and protein carbonyl levels, and increased total antioxidant capacity and SOD viability. Western blot results demonstrated resveratrol reversed the H2O2-induced decrease in levels of antioxidant enzymes containing ARE sequences and activated SIRT1/Nrf2 pathway. Further treatment by siRNA-Nrf2 suggested resveratrol could not activate the expression of antioxidant enzymes under a condition of inhibition of Nrf2.

Conclusion: This study demonstrates that resveratrol attenuated oxidative stress to protect H2O2-induced rat ovarian granulosa-lutein cell injury and apoptosis via SIRT1/Nrf2/ARE signaling pathway.

[1]
Chou CH, Chen MJ. The effect of steroid hormones on ovarian follicle development. Vitam Horm 2018; 107: 155-75.
[http://dx.doi.org/10.1016/bs.vh.2018.01.013] [PMID: 29544629]
[2]
Yao S, Lopez-Tello J, Sferruzzi-Perri AN. Developmental programming of the female reproductive system—a review. Biol Reprod 2021; 104(4): 745-70.
[http://dx.doi.org/10.1093/biolre/ioaa232] [PMID: 33354727]
[3]
Labarta E, Rodríguez C. Progesterone use in assisted reproductive technology. Best Pract Res Clin Obstet Gynaecol 2020; 69: 74-84.
[http://dx.doi.org/10.1016/j.bpobgyn.2020.05.005] [PMID: 32616441]
[4]
Dashti S, Eftekhar M. Luteal-phase support in assisted reproductive technology: An ongoing challenge. Int J Reprod Biomed 2021; 19(9): 761-72.
[http://dx.doi.org/10.18502/ijrm.v19i9.9708] [PMID: 34723055]
[5]
Huang G, Mei X, Hu J. The antioxidant activities of natural polysaccharides. Curr Drug Targets 2017; 18(11): 1296-300.
[http://dx.doi.org/10.2174/1389450118666170123145357] [PMID: 28117001]
[6]
Jelic M, Mandic A, Maricic S, Srdjenovic B. Oxidative stress and its role in cancer. J Cancer Res Ther 2021; 17(1): 22-8.
[http://dx.doi.org/10.4103/jcrt.JCRT_862_16] [PMID: 33723127]
[7]
Hauck AK, Huang Y, Hertzel AV, Bernlohr DA. Adipose oxidative stress and protein carbonylation. J Biol Chem 2019; 294(4): 1083-8.
[http://dx.doi.org/10.1074/jbc.R118.003214] [PMID: 30563836]
[8]
Wang J, Qian X, Gao Q, et al. Quercetin increases the antioxidant capacity of the ovary in menopausal rats and in ovarian granulosa cell culture in vitro. J Ovarian Res 2018; 11(1): 51.
[http://dx.doi.org/10.1186/s13048-018-0421-0] [PMID: 29929541]
[9]
Li Q, Cai M, Wang J, et al. Decreased ovarian function and autophagy gene methylation in aging rats. J Ovarian Res 2020; 13(1): 12.
[http://dx.doi.org/10.1186/s13048-020-0615-0] [PMID: 32014030]
[10]
Scarpellini F, Mastrone M, Sbracia M, Scarpellini L. Serum lipoperoxide level variations in normal and luteal phase defect cycles. Gynecol Obstet Invest 1996; 42(1): 28-30.
[http://dx.doi.org/10.1159/000291884] [PMID: 8840174]
[11]
Fang L, Li Y, Wang S, et al. Melatonin induces progesterone production in human granulosa-lutein cells through upregulation of StAR expression. Aging 2019; 11(20): 9013-24.
[http://dx.doi.org/10.18632/aging.102367] [PMID: 31619582]
[12]
Henmi H, Endo T, Kitajima Y, Manase K, Hata H, Kudo R. Effects of ascorbic acid supplementation on serum progesterone levels in patients with a luteal phase defect. Fertil Steril 2003; 80(2): 459-61.
[http://dx.doi.org/10.1016/S0015-0282(03)00657-5] [PMID: 12909517]
[13]
Cui J, Li Y, Zhang W, Qian H, Zhang Z, Xu K. Alginic acid induces oxidative stress-mediated hormone secretion disorder, apoptosis and autophagy in mouse granulosa cells and ovaries. Toxicology 2022; 467: 153099.
[http://dx.doi.org/10.1016/j.tox.2022.153099] [PMID: 35066102]
[14]
Chudzińska M, Rogowicz D, Wołowiec Ł, et al. Resveratrol and cardiovascular system—the unfulfilled hopes. Ir J Med Sci 2021; 190(3): 981-6.
[http://dx.doi.org/10.1007/s11845-020-02441-x] [PMID: 33219913]
[15]
Ferraz da Costa DC, Pereira Rangel L, Martins-Dinis MMDC, Ferretti GDS, Ferreira VF, Silva JL. Anticancer potential of resveratrol, β-Lapachone and their analogues. Molecules 2020; 25(4): 893.
[http://dx.doi.org/10.3390/molecules25040893] [PMID: 32085381]
[16]
Meng T, Xiao D, Muhammed A, Deng J, Chen L, He J. Anti-inflammatory action and mechanisms of resveratrol. Molecules 2021; 26(1): 229.
[http://dx.doi.org/10.3390/molecules26010229] [PMID: 33466247]
[17]
Yang G, Chang CC, Yang Y, et al. Resveratrol alleviates rheumatoid arthritis via reducing ROS and inflammation, inhibiting MAPK signaling pathways, and suppressing angiogenesis. J Agric Food Chem 2018; 66(49): 12953-60.
[http://dx.doi.org/10.1021/acs.jafc.8b05047] [PMID: 30511573]
[18]
Kim EN, Lim JH, Kim MY, et al. Resveratrol, an Nrf2 activator, ameliorates aging-related progressive renal injury. Aging 2018; 10(1): 83-99.
[http://dx.doi.org/10.18632/aging.101361] [PMID: 29326403]
[19]
Zhuang Y, Wu H, Wang X, He J, He S, Yin Y. Resveratrol attenuates oxidative stress-induced intestinal barrier injury through PI3K/Akt-mediated Nrf2 signaling pathway. Oxid Med Cell Longev 2019; 2019: 1-14.
[http://dx.doi.org/10.1155/2019/7591840] [PMID: 31885814]
[20]
Alves-Fernandes DK, Jasiulionis MG. The role of SIRT1 on DNA damage response and epigenetic alterations in cancer. Int J Mol Sci 2019; 20(13): 3153.
[http://dx.doi.org/10.3390/ijms20133153] [PMID: 31261609]
[21]
Zhang W, Feng Y, Guo Q, et al. SIRT1 modulates cell cycle progression by regulating CHK2 acetylation−phosphorylation. Cell Death Differ 2020; 27(2): 482-96.
[http://dx.doi.org/10.1038/s41418-019-0369-7] [PMID: 31209362]
[22]
Fu B, Zhao J, Peng W, Wu H, Zhang Y. Resveratrol rescues cadmium-induced mitochondrial injury by enhancing transcriptional regulation of PGC-1α and SOD2 via the Sirt3/FoxO3a pathway in TCMK-1 cells. Biochem Biophys Res Commun 2017; 486(1): 198-204.
[http://dx.doi.org/10.1016/j.bbrc.2017.03.027] [PMID: 28286268]
[23]
Bellezza I, Giambanco I, Minelli A, Donato R. Nrf2-Keap1 signaling in oxidative and reductive stress. Biochim Biophys Acta Mol Cell Res 2018; 1865(5): 721-33.
[http://dx.doi.org/10.1016/j.bbamcr.2018.02.010] [PMID: 29499228]
[24]
Sivandzade F, Bhalerao A, Cucullo L. Cerebrovascular and neurological disorders: Protective role of NRF2. Int J Mol Sci 2019; 20(14): 3433.
[http://dx.doi.org/10.3390/ijms20143433] [PMID: 31336872]
[25]
Boyuk G, Arzu Yigit A, Aydogan I. Co-culture of rat luteal cells with islet cells enhances islet viability and revascularization. In Vitro Cell Dev Biol Anim 2018; 54(9): 640-7.
[http://dx.doi.org/10.1007/s11626-018-0286-y] [PMID: 30187177]
[26]
Su B, Bu SD, Kong BH, Dai RX, Su Q. Cystatin C alleviates H2O2-induced H9c2 cell injury. Eur Rev Med Pharmacol Sci 2020; 24(11): 6360-70.
[http://dx.doi.org/10.26355/eurrev_202006_21534] [PMID: 32572933]
[27]
Zou JF, Wu XN, Shi RH, Sun YQ, Qin FJ, Yang YM. Inhibition of microRNA-184 reduces H2O2-mediated cardiomyocyte injury via targeting FBXO28. Eur Rev Med Pharmacol Sci 2020; 24(21): 11251-8.
[http://dx.doi.org/10.26355/eurrev_202011_23614] [PMID: 33215444]
[28]
Gao Q, Guo X, Cao Y, et al. Melatonin protects HT22 hippocampal cells from H2O2-induced injury by increasing Beclin1 and Atg protein levels to activate autophagy. Curr Pharm Des 2021; 27(3): 446-54.
[http://dx.doi.org/10.2174/1381612826666200824105835] [PMID: 32838711]
[29]
Wang M, Li Y, Molenaar A, et al. Vitamin E and selenium supplementation synergistically alleviate the injury induced by hydrogen peroxide in bovine granulosa cells. Theriogenology 2021; 170: 91-106.
[http://dx.doi.org/10.1016/j.theriogenology.2021.04.015] [PMID: 34000522]
[30]
Chu Y, Li L, Liu Y, et al. FGF1 inhibits H2O2-induced mitochondrion-dependent apoptosis in H9c2 cells. Pharmazie 2020; 75(7): 335-8.
[http://dx.doi.org/10.1691/ph.2020.0427] [PMID: 32635976]
[31]
Yaniv G, Shilkrut M, Larisch S, Binah O. Hydrogen peroxide predisposes neonatal rat ventricular myocytes to Fas-mediated apoptosis. Biochem Biophys Res Commun 2005; 336(3): 740-6.
[http://dx.doi.org/10.1016/j.bbrc.2005.08.167] [PMID: 16157298]
[32]
Gong Y, Zhang W, Yan P, Mu Y. Pranoprofen inhibits endoplasmic reticulum stress-mediated apoptosis of chondrocytes. Panminerva Med 2020.
[http://dx.doi.org/10.23736/S0031-0808.20.03980-4] [PMID: 32608212]
[33]
Chen Z, Yuan Q, Xu G, Chen H, Lei H, Su J. Effects of Quercetin on proliferation and H2O2-induced apoptosis of intestinal porcine enterocyte cells. Molecules 2018; 23(8): 2012.
[http://dx.doi.org/10.3390/molecules23082012] [PMID: 30103566]
[34]
Wu H, Zhu H, Zhuang Y, et al. LncRNA ACART protects cardiomyocytes from apoptosis by activating PPAR-γ/Bcl-2 pathway. J Cell Mol Med 2020; 24(1): 737-46.
[http://dx.doi.org/10.1111/jcmm.14781] [PMID: 31749326]
[35]
Yang X, Xu S, Qian Y, Xiao Q. Resveratrol regulates microglia M1/M2 polarization via PGC-1α in conditions of neuroinflammatory injury. Brain Behav Immun 2017; 64: 162-72.
[http://dx.doi.org/10.1016/j.bbi.2017.03.003] [PMID: 28268115]
[36]
Zhou DD, Luo M, Huang SY, et al. Effects and mechanisms of resveratrol on aging and age-related diseases. Oxid Med Cell Longev 2021; 2021: 1-15.
[http://dx.doi.org/10.1155/2021/9932218] [PMID: 34336123]
[37]
Castaldo L, Narváez A, Izzo L, et al. Red wine consumption and cardiovascular health. Molecules 2019; 24(19): 3626.
[http://dx.doi.org/10.3390/molecules24193626] [PMID: 31597344]
[38]
Stacchiotti A, Corsetti G. Natural compounds and autophagy: Allies against neurodegeneration. Front Cell Dev Biol 2020; 8: 555409.
[http://dx.doi.org/10.3389/fcell.2020.555409] [PMID: 33072744]
[39]
Ren B, Kwah MXY, Liu C, et al. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett 2021; 515: 63-72.
[http://dx.doi.org/10.1016/j.canlet.2021.05.001] [PMID: 34052324]
[40]
Galiniak S, Aebisher D, Bartusik-Aebisher D. Health benefits of resveratrol administration. Acta Biochim Pol 2019; 66(1): 13-21.
[http://dx.doi.org/10.18388/abp.2018_2749] [PMID: 30816367]
[41]
Zhu X, Wang F, Lei X, Dong W. Resveratrol alleviates alveolar epithelial cell injury induced by hyperoxia by reducing apoptosis and mitochondrial dysfunction. Exp Biol Med 2021; 246(5): 596-606.
[http://dx.doi.org/10.1177/1535370220975106] [PMID: 33215523]
[42]
Ding X, Yao W, Zhu J, Mu K, Zhang J, Zhang J. Resveratrol attenuates high glucose-induced vascular endothelial cell injury by activating the E2F3 pathway. BioMed Res Int 2020; 2020: 1-7.
[http://dx.doi.org/10.1155/2020/6173618] [PMID: 32420356]
[43]
Liu S, Zhao M, Zhou Y, et al. Resveratrol exerts dose-dependent anti-fibrotic or pro-fibrotic effects in kidneys: A potential risk to individuals with impaired kidney function. Phytomedicine 2019; 57: 223-35.
[http://dx.doi.org/10.1016/j.phymed.2018.12.024] [PMID: 30785018]
[44]
Mankowski RT, You L, Buford TW, et al. Higher dose of resveratrol elevated cardiovascular disease risk biomarker levels in overweight older adults – A pilot study. Exp Gerontol 2020; 131: 110821.
[http://dx.doi.org/10.1016/j.exger.2019.110821] [PMID: 31891746]
[45]
Craveiro M, Cretenet G, Mongellaz C, et al. Resveratrol stimulates the metabolic reprogramming of human CD4 + T cells to enhance effector function. Sci Signal 2017; 10(501): eaal3024.
[http://dx.doi.org/10.1126/scisignal.aal3024] [PMID: 29042482]
[46]
Vatner SF, Zhang J, Oydanich M, Berkman T, Naftalovich R, Vatner DE. Healthful aging mediated by inhibition of oxidative stress. Ageing Res Rev 2020; 64: 101194.
[http://dx.doi.org/10.1016/j.arr.2020.101194] [PMID: 33091597]
[47]
Fan ZQ, Bai SC, Xu Q, et al. Oxidative stress induced osteocyte apoptosis in steroid-induced femoral head necrosis. Orthop Surg 2021; 13(7): 2145-52.
[http://dx.doi.org/10.1111/os.13127] [PMID: 34559465]
[48]
Romero-Haro AA, Alonso-Alvarez C. Oxidative stress experienced during early development influences the offspring phenotype. Am Nat 2020; 196(6): 704-16.
[http://dx.doi.org/10.1086/711399] [PMID: 33211561]
[49]
Yu D, Xiong J, Gao Y, et al. Resveratrol activates PI3K/AKT to reduce myocardial cell apoptosis and mitochondrial oxidative damage caused by myocardial ischemia/reperfusion injury. Acta Histochem 2021; 123(5): 151739.
[http://dx.doi.org/10.1016/j.acthis.2021.151739] [PMID: 34107386]
[50]
Zhou Y, Jin Y, Yu H, et al. Resveratrol inhibits aflatoxin B1-induced oxidative stress and apoptosis in bovine mammary epithelial cells and is involved the Nrf2 signaling pathway. Toxicon 2019; 164: 10-5.
[http://dx.doi.org/10.1016/j.toxicon.2019.03.022] [PMID: 30946912]
[51]
Arioz BI, Tastan B, Tarakcioglu E, et al. Melatonin attenuates LPS-induced acute depressive-like behaviors and microglial NLRP3 inflammasome activation through the SIRT1/Nrf2 pathway. Front Immunol 2019; 10: 1511.
[http://dx.doi.org/10.3389/fimmu.2019.01511] [PMID: 31327964]
[52]
Ma R, Liang W, Sun Q, et al. Sirt1/Nrf2 pathway is involved in oocyte aging by regulating Cyclin B1. Aging 2018; 10(10): 2991-3004.
[http://dx.doi.org/10.18632/aging.101609] [PMID: 30368232]
[53]
Zhuang K, Jiang X, Liu R, et al. Formononetin activates the Nrf2/ARE signaling pathway via Sirt1 to improve diabetic renal fibrosis. Front Pharmacol 2021; 11: 616378.
[http://dx.doi.org/10.3389/fphar.2020.616378] [PMID: 33519483]
[54]
Lv R, Du L, Zhang L, Zhang Z. Polydatin attenuates spinal cord injury in rats by inhibiting oxidative stress and microglia apoptosis via Nrf2/HO-1 pathway. Life Sci 2019; 217: 119-27.
[http://dx.doi.org/10.1016/j.lfs.2018.11.053] [PMID: 30481506]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy