Generic placeholder image

Current Computer-Aided Drug Design

Editor-in-Chief

ISSN (Print): 1573-4099
ISSN (Online): 1875-6697

Research Article

The Possibility of Polygonum cuspidatum against Osteoarthritis based on Network Pharmacology

Author(s): Chengyin Liu, Lingyun Yu, Yixin Jiang, Songlian Gu, Chenjian Li, Wen Yin and Zhenlei Zhou*

Volume 20, Issue 2, 2024

Published on: 18 April, 2023

Page: [121 - 133] Pages: 13

DOI: 10.2174/1573409919666230403114131

Price: $65

conference banner
Abstract

Background: Polygonum cuspidatum (PC), a widely used Chinese herbal medicine (CHM), plays an important role in treating various diseases including osteoarthritis (OA). Yet, the multicomponent and multitarget characteristics of PC make deciphering the pharmacological mechanisms difficult.

Objective: The purpose of this study is to identify the core molecular mechanisms of PC against OA.

Methods: The Traditional Chinese Medicine Systems Pharmacology (TCMSP) database was used to search for the active ingredients of PC. GeneCards was then screened to establish relevant databases for OA. A visual interactive network diagram of the relationship between the active ingredient, action target, and disease was built using Uniprot. Finally, we used STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database to explain the interaction network of proteins and to further analyze the relationships between related proteins.

Results: PC was screened for nine potentially effective active compounds that can be used to treat OA: 6,8-Dihydroxy-7-methoxyxanthone, rhein, physovenine, beta-sitosterol, picralinal, quercetin, luteolin, catechin, and resveratrol. Using GeneCards database and TCMSP database, we obtained 149 OA-related genes after taking the intersection of OA and PC targets. Moreover, eight core target proteins were calculated by CytoNCA plugin, which is used for network centrality analysis. The enrichment analysis of the common target genes shared by PC and OA unraveled the main biological processes, such as responses to lipopolysaccharide, chemical stress, and reactive oxygen species. Previous research has demonstrated that signaling pathways related to apoptosis, inflammation, and cartilage protection are involved with those core target genes we found, like TNF and PI3K-Akt signaling pathways. The results bring that PC similarly has the potential to treat OA.

Conclusion: The main purpose of this study is to screen the active ingredients and most important target molecules of PC in treating OA. This was achieved using bioinformatic tools and databases to investigate molecular docking technology. The findings provide a theoretical foundation and potential new treatment plan for OA using PC.

[1]
Katz, J.N.; Arant, K.R.; Loeser, R.F. Diagnosis and treatment of hip and knee osteoarthritis. JAMA, 2021, 325(6), 568-578.
[http://dx.doi.org/10.1001/jama.2020.22171] [PMID: 33560326]
[2]
Van Spil, W.E.; Kubassova, O.; Boesen, M.; Bay-Jensen, A.C.; Mobasheri, A. Osteoarthritis phenotypes and novel therapeutic targets. Biochem. Pharmacol., 2019, 165, 41-48.
[http://dx.doi.org/10.1016/j.bcp.2019.02.037] [PMID: 30831073]
[3]
Chu, M.; Gao, T.; Zhang, X.; Kang, W.; Feng, Y.; Cai, Z.; Wu, P. Elucidation of potential targets of san-miao-san in the treatment of osteoarthritis based on network pharmacology and molecular docking analysis. Evid. Based Complement. Alternat. Med., 2022, 2022, 1-13.
[http://dx.doi.org/10.1155/2022/7663212] [PMID: 35087596]
[4]
Hou, P.W.; Fu, P.K.; Hsu, H.C.; Hsieh, C.L. Traditional Chinese medicine in patients with osteoarthritis of the knee. J. Tradit. Complement. Med., 2015, 5(4), 182-196.
[http://dx.doi.org/10.1016/j.jtcme.2015.06.002] [PMID: 26587390]
[5]
Ouyang, L.; Luo, Y.; Tian, M.; Zhang, S.Y.; Lu, R.; Wang, J.H.; Kasimu, R.; Li, X. Plant natural products: From traditional compounds to new emerging drugs in cancer therapy. Cell Prolif., 2014, 47(6), 506-515.
[http://dx.doi.org/10.1111/cpr.12143] [PMID: 25377084]
[6]
Li, S.; Zhang, Z.Q.; Wu, L.J.; Zhang, X.G.; Wang, Y.Y.; Li, Y.D. Understanding ZHENG in traditional Chinese medicine in the context of neuro-endocrine-immune network. IET Syst. Biol., 2007, 1(1), 51-60.
[http://dx.doi.org/10.1049/iet-syb:20060032] [PMID: 17370429]
[7]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(1), 13.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[8]
Zhang, W.; Chen, Y.; Jiang, H.; Yang, J.; Wang, Q.; Du, Y.; Xu, H. Integrated strategy for accurately screening biomarkers based on metabolomics coupled with network pharmacology. Talanta, 2020, 211, 120710.
[http://dx.doi.org/10.1016/j.talanta.2020.120710] [PMID: 32070601]
[9]
Wishart, D.S.; Knox, C.; Guo, A.C.; Shrivastava, S.; Hassanali, M.; Stothard, P.; Chang, Z.; Woolsey, J. DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Res., 2006, 34(90001), D668-D672.
[http://dx.doi.org/10.1093/nar/gkj067] [PMID: 16381955]
[10]
Uszkoreit, J.; Winkelhardt, D.; Barkovits, K.; Wulf, M.; Roocke, S.; Marcus, K.; Eisenacher, M. MaCPepDB: A database to quickly access all tryptic peptides of the uniProtKB. J. Proteome Res., 2021, 20(4), 2145-2150.
[http://dx.doi.org/10.1021/acs.jproteome.0c00967] [PMID: 33724838]
[11]
Stelzer, G.; Rosen, N.; Plaschkes, I.; Zimmerman, S.; Twik, M.; Fishilevich, S.; Stein, T. I.; Nudel, R.; Lieder, I.; Mazor, Y.; Kaplan, S.; Dahary, D.; Warshawsky, D.; Guan-Golan, Y.; Kohn, A.; Rappaport, N.; Safran, M.; Lancet, D. The GeneCards suite: From gene data mining to disease genome sequence analyses. Curr Protoc Bioinformatics, 2016, 54, 1.30.1-1.30.33.
[http://dx.doi.org/10.1002/cpbi.5] [PMID: 27322403]
[12]
Jia, A.; Xu, L.; Wang, Y. Venn diagrams in bioinformatics. Brief. Bioinform., 2021, 22(5), bbab108.
[http://dx.doi.org/10.1093/bib/bbab108] [PMID: 33839742]
[13]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C. STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[14]
Doncheva, N.T.; Morris, J.H.; Gorodkin, J.; Jensen, L.J. Cytoscape StringApp: Network analysis and visualization of proteomics data. J. Proteome Res., 2019, 18(2), 623-632.
[http://dx.doi.org/10.1021/acs.jproteome.8b00702] [PMID: 30450911]
[15]
Yu, G.; Wang, L.G.; Han, Y.; He, Q.Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[16]
Zhou, M.; Wang, D.; Tang, J. Identification of the resveratrol potential targets in the treatment of osteoarthritis. Evid. Based Complement. Alternat. Med., 2021, 2021, 1-12.
[http://dx.doi.org/10.1155/2021/9911286] [PMID: 34917160]
[17]
Sun, K.; Luo, J.; Guo, J.; Yao, X.; Jing, X.; Guo, F. The PI3K/AKT/mTOR signaling pathway in osteoarthritis: A narrative review. Osteoarthritis Cartilage, 2020, 28(4), 400-409.
[http://dx.doi.org/10.1016/j.joca.2020.02.027] [PMID: 32081707]
[18]
Li, W.; Cai, L.; Zhang, Y.; Cui, L.; Shen, G. Intra-articular resveratrol injection prevents osteoarthritis progression in a mouse model by activating SIRT1 and thereby silencing HIF-2α. J. Orthop. Res., 2015, 33(7), 1061-1070.
[http://dx.doi.org/10.1002/jor.22859] [PMID: 25737402]
[19]
Shakibaei, M.; Csaki, C.; Nebrich, S.; Mobasheri, A. Resveratrol suppresses interleukin-1β-induced inflammatory signaling and apoptosis in human articular chondrocytes: Potential for use as a novel nutraceutical for the treatment of osteoarthritis. Biochem. Pharmacol., 2008, 76(11), 1426-1439.
[http://dx.doi.org/10.1016/j.bcp.2008.05.029] [PMID: 18606398]
[20]
Han, J.H.; Koh, W.; Lee, H.J.; Lee, H.J.; Lee, E.O.; Lee, S.J.; Khil, J.H.; Kim, J.T.; Jeong, S.J.; Kim, S.H. Analgesic and anti-inflammatory effects of ethyl acetate fraction of Polygonum cuspidatum in experimental animals. Immunopharmacol. Immunotoxicol., 2012, 34(2), 191-195.
[http://dx.doi.org/10.3109/08923973.2011.590499] [PMID: 21711083]
[21]
Tao, T.; Zhang, Q.; Liu, Z.; Zhang, T.; Wang, L.; Liu, J.; He, T.; Chen, Y.; Feng, J.; Chen, Y. Polygonum cuspidatum extract exerts antihyperlipidemic effects by regulation of PI3K/AKT/FOXO3 signaling pathway. Oxid. Med. Cell. Longev., 2021, 2021, 1-17.
[http://dx.doi.org/10.1155/2021/3830671] [PMID: 34925692]
[22]
Yu, M.; Chen, T.T.; Zhang, T.; Jia, H.M.; Li, J.J.; Zhang, H.W.; Zou, Z.M. Anti-inflammatory constituents in the root and rhizome of Polygonum cuspidatum by UPLC-PDA-QTOF/MS and lipopolysaccharide-activated RAW264.7 macrophages. J. Pharm. Biomed. Anal., 2021, 195, 113839.
[http://dx.doi.org/10.1016/j.jpba.2020.113839] [PMID: 33388645]
[23]
Renaud, S.; de Lorgeril, M. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet, 1992, 339(8808), 1523-1526.
[http://dx.doi.org/10.1016/0140-6736(92)91277-F] [PMID: 1351198]
[24]
Maepa, M.; Razwinani, M.; Motaung, S. Effects of resveratrol on collagen type II protein in the superficial and middle zone chondrocytes of porcine articular cartilage. J. Ethnopharmacol., 2016, 178, 25-33.
[http://dx.doi.org/10.1016/j.jep.2015.11.047] [PMID: 26647105]
[25]
Kim, Y.S.; Nam, Y.; Song, J.; Kim, H. Gastroprotective and healing effects of Polygonum cuspidatum root on experimentally induced gastric ulcers in rats. Nutrients, 2020, 12(8), 2241.
[http://dx.doi.org/10.3390/nu12082241] [PMID: 32727104]
[26]
Feng, K.; Chen, Z.; Pengcheng, L.; Zhang, S.; Wang, X. Quercetin attenuates oxidative stress‐induced apoptosis via SIRT1/AMPK‐mediated inhibition of ER stress in rat chondrocytes and prevents the progression of osteoarthritis in a rat model. J. Cell. Physiol., 2019, 234(10), 18192-18205.
[http://dx.doi.org/10.1002/jcp.28452] [PMID: 30854676]
[27]
Hu, Y.; Gui, Z.; Zhou, Y.; Xia, L.; Lin, K.; Xu, Y. Quercetin alleviates rat osteoarthritis by inhibiting inflammation and apoptosis of chondrocytes, modulating synovial macrophages polarization to M2 macrophages. Free Radic. Biol. Med., 2019, 145, 146-160.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.09.024] [PMID: 31550528]
[28]
Fei, J.; Liang, B.; Jiang, C.; Ni, H.; Wang, L. Luteolin inhibits IL-1β-induced inflammation in rat chondrocytes and attenuates osteoarthritis progression in a rat model. Biomed. Pharmacother., 2019, 109, 1586-1592.
[http://dx.doi.org/10.1016/j.biopha.2018.09.161] [PMID: 30551412]
[29]
Zhou, Z.; Zhang, L.; Liu, Y.; Huang, C.; Xia, W.; Zhou, H.; Zhou, Z.; Zhou, X. Luteolin protects chondrocytes from H2O2-induced oxidative injury and attenuates osteoarthritis progression by activating AMPK-Nrf2 signaling. Oxid. Med. Cell. Longev., 2022, 2022, 1-20.
[http://dx.doi.org/10.1155/2022/5635797] [PMID: 35154568]
[30]
Paniagua-Pérez, R.; Flores-Mondragón, G.; Reyes-Legorreta, C.; Herrera-López, B.; Cervantes-Hernández, I.; Madrigal-Santillán, O.; Morales-González, J.A.; Álvarez-González, I.; Madrigal-Bujaidar, E. Evaluation of the anti-inflammatory capacity of beta-sitosterol in rodent assays. Afr. J. Tradit. Complement. Altern. Med., 2016, 14(1), 123-130.
[http://dx.doi.org/10.21010/ajtcam.v14i1.13] [PMID: 28480389]
[31]
Liao, P.C.; Lai, M.H.; Hsu, K.P.; Kuo, Y.H.; Chen, J.; Tsai, M.C.; Li, C.X.; Yin, X.J.; Jeyashoke, N.; Chao, L.K.P. Identification of β-sitosterol as in vitro anti-inflammatory constituent in Moringa oleifera. J. Agric. Food Chem., 2018, 66(41), 10748-10759.
[http://dx.doi.org/10.1021/acs.jafc.8b04555] [PMID: 30280897]
[32]
Kaur, R.; Kapoor, Y.; Manjal, S.K.; Rawal, R.K.; Kumar, K. Diversity-oriented synthetic approaches for furoindoline: A review. Curr. Org. Synth., 2019, 16(3), 342-368.
[http://dx.doi.org/10.2174/1570179416666190328211509] [PMID: 31984898]
[33]
Weston, C.R.; Davis, R.J. The JNK signal transduction pathway. Curr. Opin. Cell Biol., 2007, 19(2), 142-149.
[http://dx.doi.org/10.1016/j.ceb.2007.02.001] [PMID: 17303404]
[34]
Wojdasiewicz, P.; Poniatowski, Ł.A.; Szukiewicz, D. The role of inflammatory and anti-inflammatory cytokines in the pathogenesis of osteoarthritis. Mediators Inflamm., 2014, 2014, 1-19.
[http://dx.doi.org/10.1155/2014/561459] [PMID: 24876674]
[35]
Barreto, G.; Manninen, M.; K Eklund, K. Osteoarthritis and toll-like receptors: When innate immunity meets chondrocyte apoptosis. Biology, 2020, 9(4), 65.
[http://dx.doi.org/10.3390/biology9040065] [PMID: 32235418]
[36]
Ansari, M.Y.; Novak, K.; Haqqi, T.M. ERK1/2-mediated activation of DRP1 regulates mitochondrial dynamics and apoptosis in chondrocytes. Osteoarthritis Cartilage, 2022, 30(2), 315-328.
[http://dx.doi.org/10.1016/j.joca.2021.11.003] [PMID: 34767958]
[37]
Zhou, Z.; Tang, S.; Nie, X.; Zhang, Y.; Li, D.; Zhao, Y.; Cao, Y.; Yin, J.; Chen, T.; Ruan, G.; Zhu, Z.; Bai, X.; Han, W.; Ding, C. Osteoarthritic infrapatellar fat pad aggravates cartilage degradation via activation of p38MAPK and ERK1/2 pathways. Inflamm. Res., 2021, 70(10-12), 1129-1139.
[http://dx.doi.org/10.1007/s00011-021-01503-9] [PMID: 34562102]
[38]
Lin, C.; Shao, Y.; Zeng, C.; Zhao, C.; Fang, H.; Wang, L.; Pan, J.; Liu, L.; Qi, W.; Feng, X.; Qiu, H.; Zhang, H.; Chen, Y.; Wang, H.; Cai, D.; Xian, C.J. Blocking PI3K/AKT signaling inhibits bone sclerosis in subchondral bone and attenuates post‐traumatic osteoarthritis. J. Cell. Physiol., 2018, 233(8), 6135-6147.
[http://dx.doi.org/10.1002/jcp.26460] [PMID: 29323710]
[39]
Matsuzaki, T.; Alvarez-Garcia, O.; Mokuda, S.; Nagira, K.; Olmer, M.; Gamini, R.; Miyata, K.; Akasaki, Y.; Su, A.I.; Asahara, H.; Lotz, M.K. FoxO transcription factors modulate autophagy and proteoglycan 4 in cartilage homeostasis and osteoarthritis. Sci. Transl. Med., 2018, 10(428), eaan0746.
[http://dx.doi.org/10.1126/scitranslmed.aan0746] [PMID: 29444976]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy