Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Multicomponent Reactions Applied to Total Synthesis of Biologically Active Molecules: A Short Review

Author(s): Juliana A. dos Santos*, Pedro P. de Castro, Kleber T. de Oliveira, Timothy J. Brocksom and Giovanni W. Amarante*

Volume 23, Issue 11, 2023

Published on: 27 April, 2023

Page: [990 - 1003] Pages: 14

DOI: 10.2174/1568026623666230403102437

Price: $65

conference banner
Abstract

Multicomponent reactions (MCRs) are processes in which three or more starting materials are combined in the same reaction vessel, forming an adduct that contains all or most of the atoms of the starting materials. MCRs are one-pot processes that provide attractive advantages for the total synthesis of target molecules. These reactions allow rapid access to structurally complex adducts from particularly simple starting materials. Moreover, MCRs are generally intrinsically associated with principles of green syntheses, such as atom economy, minimization of isolation, and purification of synthetic intermediates, leading to large solvent economies and avoiding the production of large amounts of reaction waste. Thus, synthetic routes employing multicomponent reactions are generally more convergent, economical and often allow higher overall yields. In total synthesis, the use of MCRs has been mainly applied in the preparation of key advanced intermediates. Progress in the use of MCRs in total synthesis has been described over the last decades, including not only classical MCRs reactions (e.g. isocyanide-based transformations), but also non-traditional multicomponent reactions. Furthermore, reports concerning stereoselective multicomponent transformations are still scarce and present further development opportunities. This review aims to provide a general overview of the application of MCRs as key steps in the rapid preparation of structurally complex derivatives and fine chemicals. In special, some selected examples have been successfully applied for medicinal purposes. Finally, in some representative cases, either key intermediates formed during the reaction vessel or corresponding transition states have been disclosed in order to provide insights into the reaction mechanisms.

Graphical Abstract

[1]
Bienaymé, H.; Zhu, J. Eds.; Multicomponent Reactions; Wiley, 2005.
[2]
Dömling, A. Recent developments in isocyanide based multicomponent reactions in applied chemistry. Chem. Rev., 2006, 106(1), 17-89.
[http://dx.doi.org/10.1021/cr0505728] [PMID: 16402771]
[3]
Sadjadi, S.; Heravi, M.M.; Nazari, N. Isocyanide-based multicomponent reactions in the synthesis of heterocycles. RSC Advances, 2016, 6(58), 53203-53272.
[http://dx.doi.org/10.1039/C6RA02143C]
[4]
Slobbe, P.; Ruijter, E.; Orru, R.V.A. Recent applications of multicomponent reactions in medicinal chemistry. MedChemComm, 2012, 3(10), 1189.
[http://dx.doi.org/10.1039/c2md20089a]
[5]
Neochoritis, C.G.; Zhao, T.; Dömling, A. Tetrazoles via multicomponent reactions. Chem. Rev., 2019, 119(3), 1970-2042.
[http://dx.doi.org/10.1021/acs.chemrev.8b00564] [PMID: 30707567]
[6]
Váradi, A.; Palmer, T.; Notis Dardashti, R.; Majumdar, S. Isocyanide-based multicomponent reactions for the synthesis of heterocycles. Molecules, 2015, 21(1), 19.
[http://dx.doi.org/10.3390/molecules21010019] [PMID: 26703561]
[7]
Xiong, Q.; Dong, S.; Chen, Y.; Liu, X.; Feng, X. Asymmetric synthesis of tetrazole and dihydroisoquinoline derivatives by isocyanide-based multicomponent reactions. Nat. Commun., 2019, 10(1), 2116.
[http://dx.doi.org/10.1038/s41467-019-09904-5] [PMID: 31073191]
[8]
Gore, R.P.; Rajput, A.P. A review on recent progress in multicomponent reactions of pyrimidine synthesis. Drug Invention Today, 2013, 5(2), 148-152.
[http://dx.doi.org/10.1016/j.dit.2013.05.010]
[9]
Younus, H.A.; Al-Rashida, M.; Hameed, A.; Uroos, M.; Salar, U.; Rana, S.; Khan, K.M. Multicomponent reactions (MCR) in medicinal chemistry: A patent review (2010-2020). Expert Opin. Ther. Pat., 2021, 31(3), 267-289.
[http://dx.doi.org/10.1080/13543776.2021.1858797] [PMID: 33275061]
[10]
Touré, B.B.; Hall, D.G. Natural product synthesis using multicomponent reaction strategies. Chem. Rev., 2009, 109(9), 4439-4486.
[http://dx.doi.org/10.1021/cr800296p] [PMID: 19480390]
[11]
Smietana, M.; Benedetti, E.; Bressy, C.; Arseniyadis, S. Multicomponent reactions in natural product synthesis.In: Efficiency in Natural Product Total Synthesis; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2018, pp. 319-344.
[http://dx.doi.org/10.1002/9781118940228.ch8]
[12]
Ziarani, G.M.; Moradi, R.; Mahammadkhani, L. Application of multicomponent reactions in the total synthesis of natural peptides. ARKIVOC, 2019, 2019(1), 18-40.
[http://dx.doi.org/10.24820/ark.5550190.p010.779]
[13]
Elders, N.; van der Born, D.; Hendrickx, L.J.D.; Timmer, B.J.J.; Krause, A.; Janssen, E.; de Kanter, F.J.J.; Ruijter, E.; Orru, R.V.A. The efficient one-pot reaction of up to eight components by the union of multicomponent reactions. Angew. Chem. Int. Ed., 2009, 48(32), 5856-5859.
[http://dx.doi.org/10.1002/anie.200902683] [PMID: 19579257]
[14]
Cores, Á.; Clerigué, J.; Orocio-Rodríguez, E.; Menéndez, J.C. Multicomponent reactions for the synthesis of active pharmaceutical ingredients. Pharmaceuticals, 2022, 15(8), 1009.
[http://dx.doi.org/10.3390/ph15081009] [PMID: 36015157]
[15]
Cioc, R.C.; Ruijter, E.; Orru, R.V.A. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem., 2014, 16(6), 2958-2975.
[http://dx.doi.org/10.1039/C4GC00013G]
[16]
Rocha, R.O.; Rodrigues, M.O.; Neto, B.A.D. Review on the Ugi multicomponent reaction mechanism and the use of fluorescent derivatives as functional chromophores. ACS Omega, 2020, 5(2), 972-979.
[http://dx.doi.org/10.1021/acsomega.9b03684] [PMID: 31984252]
[17]
Dömling, A.; Wang, W.; Wang, K. Chemistry and biology of multicomponent reactions. Chem. Rev., 2012, 112(6), 3083-3135.
[http://dx.doi.org/10.1021/cr100233r] [PMID: 22435608]
[18]
Coppola, G.A.; Pillitteri, S.; Van der Eycken, E.V.; You, S.L.; Sharma, U.K. Multicomponent reactions and photo/electro-chemistry join forces: Atom economy meets energy efficiency. Chem. Soc. Rev., 2022, 51(6), 2313-2382.
[http://dx.doi.org/10.1039/D1CS00510C] [PMID: 35244107]
[19]
Zhi, S.; Ma, X.; Zhang, W. Consecutive multicomponent reactions for the synthesis of complex molecules. Org. Biomol. Chem., 2019, 17(33), 7632-7650.
[http://dx.doi.org/10.1039/C9OB00772E] [PMID: 31339143]
[20]
Hosokawa, S.; Nakanishi, K.; Udagawa, Y.; Maeda, M.; Sato, S.; Nakano, K.; Masuda, T.; Ichikawa, Y. Total synthesis of exigurin: The Ugi reaction in a hypothetical biosynthesis of natural products. Org. Biomol. Chem., 2020, 18(4), 687-693.
[http://dx.doi.org/10.1039/C9OB02249J] [PMID: 31903473]
[21]
John, S.E.; Gulati, S.; Shankaraiah, N. Recent advances in multi-component reactions and their mechanistic insights: A triennium review. Org. Chem. Front., 2021, 8(15), 4237-4287.
[http://dx.doi.org/10.1039/D0QO01480J]
[22]
Chéron, N.; Ramozzi, R.; Kaïm, L.E.; Grimaud, L.; Fleurat-Lessard, P. Challenging 50 years of established views on Ugi reaction: A theoretical approach. J. Org. Chem., 2012, 77(3), 1361-1366.
[http://dx.doi.org/10.1021/jo2021554] [PMID: 22225432]
[23]
Ruijter, E.; Scheffelaar, R.; Orru, R.V.A. Multicomponent reaction design in the quest for molecular complexity and diversity. Angew. Chem. Int. Ed., 2011, 50(28), 6234-6246.
[http://dx.doi.org/10.1002/anie.201006515] [PMID: 21710674]
[24]
Ramos, L.M.; Rodrigues, M.O.; Neto, B.A.D. Mechanistic knowledge and noncovalent interactions as the key features for enantioselective catalysed multicomponent reactions: A critical review. Org. Biomol. Chem., 2019, 17(31), 7260-7269.
[http://dx.doi.org/10.1039/C9OB01088B] [PMID: 31192346]
[25]
de Graaff, C.; Ruijter, E.; Orru, R.V.A. Recent developments in asymmetric multicomponent reactions. Chem. Soc. Rev., 2012, 41(10), 3969-4009.
[http://dx.doi.org/10.1039/c2cs15361k] [PMID: 22546840]
[26]
Zarganes-Tzitzikas, T.; Neochoritis, C.G.; Dömling, A. Atorvastatin (Lipitor) by MCR. ACS Med. Chem. Lett., 2019, 10(3), 389-392.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00579] [PMID: 30891146]
[27]
Dömling, A.; Ugi, I. Multicomponent reactions with isocyanides. Angew. Chem. Int. Ed., 2000, 39(18), 3168-3210.
[http://dx.doi.org/10.1002/1521-3773(20000915)39:18<3168:AID-ANIE3168>3.0.CO;2-U] [PMID: 11028061]
[28]
Aratikatla, E.K.; Bhattacharya, A.K. A short review of synthetic routes for the antiepileptic drug (R)-. Lacosamide. Org. Process Res. Dev., 2020, 24(1), 17-24.
[http://dx.doi.org/10.1021/acs.oprd.9b00373]
[29]
Wehlan, H.; Oehme, J.; Schäfer, A.; Rossen, K. Development of scalable conditions for the Ugi reaction-application to the synthesis of (R)-. Lacosamide. Org. Process Res. Dev., 2015, 19(12), 1980-1986.
[http://dx.doi.org/10.1021/acs.oprd.5b00228]
[30]
Anderson, H.J.; Coleman, J.E.; Andersen, R.J.; Roberge, M. Cytotoxic peptides hemiasterlin, hemiasterlin A and hemiasterlin B induce mitotic arrest and abnormal spindle formation. Cancer Chemother. Pharmacol., 1996, 39(3), 223-226.
[http://dx.doi.org/10.1007/s002800050564] [PMID: 8996524]
[31]
Charoenpattarapreeda, J.; Walsh, S.J.; Carroll, J.S.; Spring, D.R. Expeditious total synthesis of hemiasterlin through a convergent multicomponent strategy and its use in targeted cancer therapeutics. Angew. Chem. Int. Ed., 2020, 59(51), 23045-23050.
[http://dx.doi.org/10.1002/anie.202010090] [PMID: 32894646]
[32]
Colombo, R.; Wang, Z.; Han, J.; Balachandran, R.; Daghestani, H.N.; Camarco, D.P.; Vogt, A.; Day, B.W.; Mendel, D.; Wipf, P. Total synthesis and biological evaluation of tubulysin analogues. J. Org. Chem., 2016, 81(21), 10302-10320.
[http://dx.doi.org/10.1021/acs.joc.6b01314] [PMID: 27447195]
[33]
Nicolaou, K.C.; Erande, R.D.; Yin, J.; Vourloumis, D.; Aujay, M.; Sandoval, J.; Munneke, S.; Gavrilyuk, J. Improved total synthesis of tubulysins and design, synthesis, and biological evaluation of new tubulysins with highly potent cytotoxicities against cancer cells as potential payloads for antibody–drug conjugates. J. Am. Chem. Soc., 2018, 140(10), 3690-3711.
[http://dx.doi.org/10.1021/jacs.7b12692] [PMID: 29381062]
[34]
Vishwanatha, T.M.; Giepmans, B.; Goda, S.K.; Dömling, A. Tubulysin synthesis featuring stereoselective catalysis and highly convergent multicomponent assembly. Org. Lett., 2020, 22(14), 5396-5400.
[http://dx.doi.org/10.1021/acs.orglett.0c01718] [PMID: 32584589]
[35]
van der Heijden, G.; van Schaik, T.B.; Mouarrawis, V.; de Wit, M.J.M.; Velde, C.M.L.V.; Ruijter, E.; Orru, R.V.A. Efficient diastereoselective three-;component synthesis of pipecolic amides. Eur. J. Org. Chem., 2019, 2019(31-32), 5313-5325.
[http://dx.doi.org/10.1002/ejoc.201900399]
[36]
Adhyaru, B.B.; Jacobson, T.A. Safety and efficacy of statin therapy. Nat. Rev. Cardiol., 2018, 15(12), 757-769.
[http://dx.doi.org/10.1038/s41569-018-0098-5] [PMID: 30375494]
[37]
Spallarossa, M.; Banfi, L.; Basso, A.; Moni, L.; Riva, R. Access to polycyclic alkaloid-like structures by coupling the passerini and Ugi reactions with two sequential metal-catalyzed cyclizations. Adv. Synth. Catal., 2016, 358(18), 2940-2948.
[http://dx.doi.org/10.1002/adsc.201600638]
[38]
Tanaka, N.; Suto, S.; Ishiyama, H.; Kubota, T.; Yamano, A.; Shiro, M.; Fromont, J.; Kobayashi, J. Halichonadins K and L, new dimeric sesquiterpenoids from a sponge Halichondria sp. Org. Lett., 2012, 14(13), 3498-3501.
[http://dx.doi.org/10.1021/ol3014705] [PMID: 22721494]
[39]
Cao, H.; Liu, H.; Dömling, A. Efficient multicomponent reaction synthesis of the schistosomiasis drug praziquantel. Chemistry, 2010, 16(41), 12296-12298.
[http://dx.doi.org/10.1002/chem.201002046] [PMID: 20845417]
[40]
Liu, H.; William, S.; Herdtweck, E.; Botros, S.; Dömling, A. MCR synthesis of praziquantel derivatives. Chem. Biol. Drug Des., 2012, 79(4), 470-477.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01288.x] [PMID: 22151001]
[41]
Kan, T.; Fukuyama, T.; Ieda, S.; Masuda, A.; Wakimoto, T.; Kariyama, M.; Asakawa, T. Stereocontrolled total synthesis of (−)-FR901483. Heterocycles, 2012, 86(2), 1071.
[http://dx.doi.org/10.3987/COM-12-S(N)38]
[42]
Sakamoto, K.; Tsujii, E.; Abe, F.; Nakanishi, T.; Yamashita, M.; Shigematsu, N.; Izumi, S.; Okuhara, M. FR901483, a novel immunosuppressant isolated from Cladobotryum sp. No. 11231. Taxonomy of the producing organism, fermentation, isolation, physico-chemical properties and biological activities. J. Antibiot., 1996, 49(1), 37-44.
[http://dx.doi.org/10.7164/antibiotics.49.37] [PMID: 8609083]
[43]
Liu, H.; Dömling, A. One-pot synthesis of highly functionalized seleno amino acid derivatives. Chem. Biol. Drug Des., 2009, 74(3), 302-308.
[http://dx.doi.org/10.1111/j.1747-0285.2009.00854.x] [PMID: 19703033]
[44]
Faure, S.; Hjelmgaard, T.; Roche, S.P.; Aitken, D.J. Passerini reaction-amine deprotection-acyl migration peptide assembly: Efficient formal synthesis of cyclotheonamide C. Org. Lett., 2009, 11(5), 1167-1170.
[http://dx.doi.org/10.1021/ol900048r] [PMID: 19203293]
[45]
Massaro, N.P.; Pierce, J.G. Rapid synthesis of the core scaffold of crinane and haemanthamine through a multi-component approach. Tetrahedron Lett., 2021, 75, 153201.
[http://dx.doi.org/10.1016/j.tetlet.2021.153201] [PMID: 34176982]
[46]
Kornienko, A.; Evidente, A. Chemistry, biology, and medicinal potential of narciclasine and its congeners. Chem. Rev., 2008, 108(6), 1982-2014.
[http://dx.doi.org/10.1021/cr078198u] [PMID: 18489166]
[47]
Massaro, N.P.; Pierce, J.G. Stereoselective, multicomponent approach to quaternary substituted hydroindole scaffolds. Org. Lett., 2020, 22(13), 5079-5084.
[http://dx.doi.org/10.1021/acs.orglett.0c01650] [PMID: 32610919]
[48]
Ajay, S.; Saidhareddy, P.; Shaw, A.K. A substrate-directed diastereoselective synthesis of vicinal diamines using an A3 -coupling strategy: An application to the total synthesis of (+)- and (−)-epiquinamides. Asian J. Org. Chem., 2017, 6(5), 503-506.
[http://dx.doi.org/10.1002/ajoc.201700049]
[49]
Rajesh, U.; Gupta, A.; Rawat, D. Approaches to the total synthesis of natural quinolizidine alkaloid (+)-epiquinamide and its isomers: An overview. Curr. Org. Synth., 2014, 11(5), 627-646.
[http://dx.doi.org/10.2174/1570179411666140321180414]
[50]
Wei, C.; Li, Z.; Li, C-J. The Development of A 3 -Coupling (Aldehyde-Alkyne-Amine) and AA 3-Coupling (Asymmetric Aldehyde-Alkyne-Amine). Synlett, 2004, 1472-1483.
[51]
Pandey, S.K.; Ramana, C.V. Total synthesis of (±)-sacidumlignan D. J. Org. Chem., 2011, 76(7), 2315-2318.
[http://dx.doi.org/10.1021/jo1025749] [PMID: 21388200]
[52]
Ha, T.M.; Chatalova-Sazepin, C.; Wang, Q.; Zhu, J. Copper-;catalyzed formal [2+2+1] heteroannulation of alkenes, alkylnitriles, and water: Method development and application to a total synthesis of (±)-. Sacidumlignan D. Angew. Chem. Int. Ed., 2016, 55(32), 9249-9252.
[http://dx.doi.org/10.1002/anie.201604528] [PMID: 27337057]
[53]
James, M.J.; Grant, N.D.; O’Brien, P.; Taylor, R.J.K.; Unsworth, W.P. Catalytic dearomatization approach to quinolizidine alkaloids: Five step total synthesis of (±)-Lasubine II. Org. Lett., 2016, 18(24), 6256-6259.
[http://dx.doi.org/10.1021/acs.orglett.6b03017] [PMID: 27978692]
[54]
N v G, M.; Dyapa, R.; Pansare, S.V. Formal synthesis of (+)-Lasubine II and (-)-Subcosine II via organocatalytic michael addition of a ketone to an α-nitrostyrene. Org. Lett., 2015, 17(21), 5312-5315.
[http://dx.doi.org/10.1021/acs.orglett.5b02677] [PMID: 26492086]
[55]
Yokoyama, T.; Fukami, Y.; Sato, T.; Chida, N. Synthesis of (±)-lasubine II using N-methoxyamines. Chem. Asian J., 2016, 11(4), 470-473.
[http://dx.doi.org/10.1002/asia.201501143] [PMID: 26582105]
[56]
Deguchi, J.; Shoji, T.; Nugroho, A.E.; Hirasawa, Y.; Hosoya, T.; Shirota, O.; Awang, K.; Hadi, A.H.A.; Morita, H. Eucophylline, a tetracyclic vinylquinoline alkaloid from Leuconotis eugenifolius. J. Nat. Prod., 2010, 73(10), 1727-1729.
[http://dx.doi.org/10.1021/np100458b] [PMID: 20836516]
[57]
Hassan, H.; Mohammed, S.; Robert, F.; Landais, Y. Total synthesis of (±)-Eucophylline. A free-radical approach to the synthesis of the azabicyclo[3.3.1]nonane skeleton. Org. Lett., 2015, 17(18), 4518-4521.
[http://dx.doi.org/10.1021/acs.orglett.5b02218] [PMID: 26348122]
[58]
Matthies, S.; Stallforth, P.; Seeberger, P.H. Total synthesis of legionaminic acid as basis for serological studies. J. Am. Chem. Soc., 2015, 137(8), 2848-2851.
[http://dx.doi.org/10.1021/jacs.5b00455] [PMID: 25668389]
[59]
Weinstabl, H.; Suhartono, M.; Qureshi, Z.; Lautens, M. Total synthesis of (+)-linoxepin by utilizing the Catellani reaction. Angew. Chem. Int. Ed., 2013, 52(20), 5305-5308.
[http://dx.doi.org/10.1002/anie.201302327] [PMID: 23592590]
[60]
Cao, J.S.; Zeng, J.; Xiao, J.; Wang, X.H.; Wang, Y.W.; Peng, Y. Total synthesis of linoxepin facilitated by a Ni-catalyzed tandem reductive cyclization. Chem. Commun., 2022, 58(52), 7273-7276.
[http://dx.doi.org/10.1039/D2CC02221D] [PMID: 35674204]
[61]
Nandaluru, P.R.; Bodwell, G.J. Multicomponent synthesis of 6H-dibenzo[b,d]pyran-6-ones and a total synthesis of cannabinol. Org. Lett., 2012, 14(1), 310-313.
[http://dx.doi.org/10.1021/ol2030636] [PMID: 22172052]
[62]
Kothavade, P.S.; Nagmoti, D.M.; Bulani, V.D.; Juvekar, A.R. Arzanol, a potent mPGES-1 inhibitor: Novel anti-inflammatory agent. ScientificWorldJournal, 2013, 2013, 1-9.
[http://dx.doi.org/10.1155/2013/986429] [PMID: 24198734]
[63]
Minassi, A.; Cicione, L.; Koeberle, A.; Bauer, J.; Laufer, S.; Werz, O.; Appendino, G. A multicomponent carba-betti strategy to alkylidene heterodimers - total synthesis and structure-activity relationships of arzanol. Eur. J. Org. Chem., 2012, 2012(4), 772-779.
[http://dx.doi.org/10.1002/ejoc.201101193]
[64]
Wu, C.Y.; Feng, Y.; Cardenas, E.R.; Williams, N.; Floreancig, P.E.; De Brabander, J.K.; Roth, M.G. Studies toward the unique pederin family member psymberin: Structure-activity relationships, biochemical studies, and genetics identify the mode-of-action of psymberin. J. Am. Chem. Soc., 2012, 134(46), 18998-19003.
[http://dx.doi.org/10.1021/ja3057002] [PMID: 23088155]
[65]
Wu, F.; Green, M.E.; Floreancig, P.E. Total synthesis of pederin and analogues. Angew. Chem. Int. Ed., 2011, 50(5), 1131-1134.
[http://dx.doi.org/10.1002/anie.201006438] [PMID: 21268211]
[66]
Wan, S.; Wu, F.; Rech, J.C.; Green, M.E.; Balachandran, R.; Horne, W.S.; Day, B.W.; Floreancig, P.E. Total synthesis and biological evaluation of pederin, psymberin, and highly potent analogs. J. Am. Chem. Soc., 2011, 133(41), 16668-16679.
[http://dx.doi.org/10.1021/ja207331m] [PMID: 21902245]
[67]
Garner, P.; Kaniskan, H.Ü.; Keyari, C.M.; Weerasinghe, L. Asymmetric [C + NC + CC] coupling entry to the naphthyridinomycin natural product family: Formal total synthesis of cyanocycline A and bioxalomycin β2. J. Org. Chem., 2011, 76(13), 5283-5294.
[http://dx.doi.org/10.1021/jo200553g] [PMID: 21627169]
[68]
Fukuyama, T.; Li, L.; Laird, A.A.; Frank, R.K. Stereocontrolled total synthesis of (.+-.)-cyanocycline A. J. Am. Chem. Soc., 1987, 109(5), 1587-1589.
[http://dx.doi.org/10.1021/ja00239a059]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy