Generic placeholder image

Protein & Peptide Letters

Editor-in-Chief

ISSN (Print): 0929-8665
ISSN (Online): 1875-5305

Research Article

Comparison of Adjuvant Effects of Montanide ISA-720 and Heat Shock Protein 27 in Increasing Immunostimulatory Properties of HIV-1 Nef-Vif Fusion Protein Construct

Author(s): Niloofar Khairkhah, Fatemeh Shahhosseini, Elnaz Agi, Alireza Milani and Azam Bolhassani*

Volume 30, Issue 5, 2023

Published on: 08 May, 2023

Page: [401 - 410] Pages: 10

DOI: 10.2174/0929866530666230403093538

Price: $65

Abstract

Introduction: Effective T-cell-mediated immunity has emerged as an essential component of human immunodeficiency virus-1 (HIV-1) vaccination. Thus, inducing an immune response against HIV proteins such as Nef and Vif, two major accessory proteins with critical roles in HIV pathogenesis and immune evasion, may lead to an effective approach.

Aim: Our goal is to evaluate and compare Montanide ISA-720 and heat shock protein 27 in increasing immunostimulatory properties of HIV-1 Nef-Vif fusion protein as a vaccine candidate.

Methods: In this study, the nef-vif fusion gene with and without the heat shock protein 27 (hsp27) gene was cloned in the prokaryotic pET24a (+) vector. Then, the recombinant Nef-Vif and Hsp27-Nef- Vif proteins were generated in the E. coli system. Finally, their immunostimulatory properties were evaluated in mice. Indeed, the potency of Hsp27 as an endogenous natural adjuvant was investigated to enhance HIV-1 Nef-Vif antigen-specific immunity compared to Montanide ISA-720 as a commercial adjuvant in protein-based immunization strategy.

Results: Our results approved the role of Hsp27 as an effective adjuvant in the stimulation of B- and T-cell immunity. The linkage of Hsp27 to antigen could elicit higher levels of IgG1, IgG2a, IFN-γ, IL- 5 and Granzyme B than antigen mixed with Montanide ISA-720. Moreover, the ratios of IFN-γ/IL-5 and IgG2a/IgG1 were significantly increased in groups receiving Nef-Vif protein + Montanide ISA- 720 and Hsp27-Nef-Vif protein indicating the direction of the immune response pathway toward strong Th1 response. These ratios were higher in the group receiving Hsp27-Nef-Vif protein than in the group receiving Nef-Vif protein + Montanide ISA-720.

Conclusion: Our findings suggest that Hsp27 can be used as an effective adjuvant to enhance antigenspecific immune responses in HIV-1 infectious models for therapeutic vaccine development.

Graphical Abstract

[1]
Sidibé, M.; Loures, L.; Samb, B. The UNAIDS 90-90-90 target: A clear choice for ending AIDS and for sustainable health and development. J. Int. AIDS Soc., 2016, 19(1), 21133.
[http://dx.doi.org/10.7448/IAS.19.1.21133] [PMID: 27424601]
[2]
WHO HIV-Aids Data. 2020. Available from: https://www. who.int/data/gho/data/themes/hiv-aids
[3]
Yu, X.; Lichterfeld, M.; Addo, M.; Altfeld, M. Regulatory and accessory HIV-1 proteins: Potential targets for HIV-1 vaccines? Curr. Med. Chem., 2005, 12(6), 741-747.
[http://dx.doi.org/10.2174/0929867053202205] [PMID: 15790309]
[4]
Blood, G.A.C. Human immunodeficiency virus (HIV). Transfus. Med. Hemother., 2016, 43(3), 203-222.
[http://dx.doi.org/10.1159/000445852] [PMID: 27403093]
[5]
Goila-Gaur, R.; Strebel, K. HIV-1 Vif, APOBEC, and intrinsic immunity. Retrovirology, 2008, 5(1), 51.
[http://dx.doi.org/10.1186/1742-4690-5-51] [PMID: 18577210]
[6]
Barouch, D.H. Challenges in the development of an HIV-1 vaccine. Nature, 2008, 455(7213), 613-619.
[http://dx.doi.org/10.1038/nature07352] [PMID: 18833271]
[7]
Foster, J.L.; Garcia, J.V. Role of Nef in HIV-1 replication and pathogenesis. Adv. Pharmacol., 2007, 55, 389-409.
[http://dx.doi.org/10.1016/S1054-3589(07)55011-8] [PMID: 17586321]
[8]
Abraham, L.; Fackler, O.T. HIV-1 Nef: A multifaceted modulator of T cell receptor signaling. Cell Commun. Signal., 2012, 10(1), 39.
[http://dx.doi.org/10.1186/1478-811X-10-39] [PMID: 23227982]
[9]
Foster, J.L.; Garcia, J.V. HIV-1 Nef: At the crossroads. Retrovirology, 2008, 5(1), 84.
[http://dx.doi.org/10.1186/1742-4690-5-84] [PMID: 18808677]
[10]
Stephenson, K.E.; Barouch, D.H. A global approach to HIV -1 vaccine development. Immunol. Rev., 2013, 254(1), 295-304.
[http://dx.doi.org/10.1111/imr.12073] [PMID: 23772627]
[11]
Hargrave, A.; Mustafa, A.S.; Hanif, A.; Tunio, J.H.; Hanif, S.N.M. Current status of HIV-1 vaccines. Vaccines, 2021, 9(9), 1026.
[http://dx.doi.org/10.3390/vaccines9091026] [PMID: 34579263]
[12]
Chen, Z.; Julg, B. Therapeutic vaccines for the treatment of HIV. Transl. Res., 2020, 223, 61-75.
[http://dx.doi.org/10.1016/j.trsl.2020.04.008] [PMID: 32438074]
[13]
Bolesta, E.; Gzyl, J.; Wierzbicki, A.; Kmieciak, D.; Kowalczyk, A.; Kaneko, Y.; Srinivasan, A.; Kozbor, D. Clustered epitopes within the Gag–Pol fusion protein DNA vaccine enhance immune responses and protection against challenge with recombinant vaccinia viruses expressing HIV-1 Gag and Pol antigens. Virology, 2005, 332(2), 467-479.
[http://dx.doi.org/10.1016/j.virol.2004.09.043] [PMID: 15680412]
[14]
Ayyavoo, V.; Kudchodkar, S.; Ramanathan, M.P.; Le, P.; Muthumani, K.; Megalai, N.M.; Dentchev, T.; Santiago-Barrios, L.; Mrinalini, C.; Weiner, D.B. Immunogenicity of a novel DNA vaccine cassette expressing multiple human immunodeficiency virus (HIV-1) accessory genes. AIDS, 2000, 14(1), 1-9.
[http://dx.doi.org/10.1097/00002030-200001070-00001] [PMID: 10714562]
[15]
Abdul-Jawad, S.; Ondondo, B.; van Hateren, A.; Gardner, A.; Elliott, T.; Korber, B.; Hanke, T. Increased valency of conserved-mosaic vaccines enhances the breadth and depth of epitope recognition. Mol. Ther., 2016, 24(2), 375-384.
[http://dx.doi.org/10.1038/mt.2015.210] [PMID: 26581160]
[16]
Barouch, D.H.; O’Brien, K.L.; Simmons, N.L.; King, S.L.; Abbink, P.; Maxfield, L.F.; Sun, Y.H.; La Porte, A.; Riggs, A.M.; Lynch, D.M.; Clark, S.L.; Backus, K.; Perry, J.R.; Seaman, M.S.; Carville, A.; Mansfield, K.G.; Szinger, J.J.; Fischer, W.; Muldoon, M.; Korber, B. Mosaic HIV-1 vaccines expand the breadth and depth of cellular immune responses in rhesus monkeys. Nat. Med., 2010, 16(3), 319-323.
[http://dx.doi.org/10.1038/nm.2089] [PMID: 20173752]
[17]
Aucouturier, J.; Dupuis, L.; Deville, S.; Ascarateil, S.; Ganne, V. Montanide ISA 720 and 51: A new generation of water in oil emulsions as adjuvants for human vaccines. Expert Rev. Vaccines, 2002, 1(1), 111-118.
[http://dx.doi.org/10.1586/14760584.1.1.111] [PMID: 12908518]
[18]
Qiu, Q.; Wang, R.Y.H.; Jiao, X.; Jin, B.; Sugauchi, F.; Grandinetti, T.; Alter, H.J.; Shih, J.W.K. Induction of multispecific Th-1 type immune response against HCV in mice by protein immunization using CpG and Montanide ISA 720 as adjuvants. Vaccine, 2008, 26(43), 5527-5534.
[http://dx.doi.org/10.1016/j.vaccine.2008.07.034] [PMID: 18675871]
[19]
Tifrea, D.F.; Pal, S.; le Bon, C.; Cocco, M.J.; Zoonens, M.; de la Maza, L.M. Improved protection against Chlamydia muridarum using the native major outer membrane protein trapped in Resiquimod-carrying amphipols and effects in protection with addition of a Th1 (CpG-1826) and a Th2 (Montanide ISA 720) adjuvant. Vaccine, 2020, 38(28), 4412-4422.
[http://dx.doi.org/10.1016/j.vaccine.2020.04.065] [PMID: 32386746]
[20]
Srivastava, P. Roles of heat-shock proteins in innate and adaptive immunity. Nat. Rev. Immunol., 2002, 2(3), 185-194.
[http://dx.doi.org/10.1038/nri749] [PMID: 11913069]
[21]
Milani, A.; Basirnejad, M.; Bolhassani, A. Heat-shock proteins in diagnosis and treatment: An overview of different biochemical and immunological functions. Immunotherapy, 2019, 11(3), 215-239.
[http://dx.doi.org/10.2217/imt-2018-0105] [PMID: 30730280]
[22]
Colaco, C.A.; Bailey, C.R.; Walker, K.B.; Keeble, J. Heat shock proteins: Stimulators of innate and acquired immunity. BioMed Res. Int., 2013, 2013461230
[http://dx.doi.org/10.1155/2013/461230] [PMID: 23762847]
[23]
Bendz, H.; Ruhland, S.C.; Pandya, M.J.; Hainzl, O.; Riegelsberger, S.; Braüchle, C.; Mayer, M.P.; Buchner, J.; Issels, R.D.; Noessner, E. Human heat shock protein 70 enhances tumor antigen presentation through complex formation and intracellular antigen delivery without innate immune signaling. J. Biol. Chem., 2007, 282(43), 31688-31702.
[http://dx.doi.org/10.1074/jbc.M704129200] [PMID: 17684010]
[24]
Mantej, J. Bednarek, M.; Sitko, K.; Świętoń, M.; Tukaj, S. Autoantibodies to heat shock protein 60, 70, and 90 are not altered in the anti-SARS-CoV-2 IgG-seropositive humans without or with mild symptoms. Cell Stress Chaperones, 2021, 26(4), 735-740.
[http://dx.doi.org/10.1007/s12192-021-01215-3] [PMID: 34080135]
[25]
Shevtsov, M.; Multhoff, G. Heat shock protein-peptide and HSP-based immunotherapies for the treatment of cancer. Front. Immunol., 2016, 7, 171.
[http://dx.doi.org/10.3389/fimmu.2016.00171] [PMID: 27199993]
[26]
Krupka, M.; Zachova, K.; Cahlikova, R.; Vrbkova, J.; Novak, Z.; Sebela, M.; Weigl, E.; Raska, M. Endotoxin-minimized HIV-1 p24 fused to murine hsp70 activates dendritic cells, facilitates endocytosis and p24-specific Th1 response in mice. Immunol. Lett., 2015, 166(1), 36-44.
[http://dx.doi.org/10.1016/j.imlet.2015.05.010] [PMID: 26021827]
[27]
Lewis, D.J.M.; Wang, Y.; Huo, Z.; Giemza, R.; Babaahmady, K.; Rahman, D.; Shattock, R.J.; Singh, M.; Lehner, T. Effect of vaginal immunization with HIVgp140 and HSP70 on HIV-1 replication and innate and T cell adaptive immunity in women. J. Virol., 2014, 88(20), 11648-11657.
[http://dx.doi.org/10.1128/JVI.01621-14] [PMID: 25008917]
[28]
Li, J.; Li, K.N.; Gao, J.; Cui, J.H.; Liu, Y.F.; Yang, S.J. Heat shock protein 70 fused to or complexed with Hantavirus nucleocapsid protein significantly enhances specific humoral and cellular immune responses in C57BL/6 mice. Vaccine, 2008, 26(25), 3175-3187.
[http://dx.doi.org/10.1016/j.vaccine.2008.02.066] [PMID: 18479786]
[29]
Jin, C.; Cleveland, J.C.; Ao, L.; Li, J.; Zeng, Q.; Fullerton, D.A.; Meng, X. Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: The proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol. Med., 2014, 20(1), 280-289.
[http://dx.doi.org/10.2119/molmed.2014.00058] [PMID: 24918749]
[30]
Shi, C.; Deng, J.; Chiu, M.; Chen, Y.X.; O’Brien, E.R. Heat shock protein 27 immune complex altered signaling and transport (ICAST): Novel mechanisms of attenuating inflammation. FASEB J., 2020, 34(11), 14287-14301.
[http://dx.doi.org/10.1096/fj.202001389RR] [PMID: 32888229]
[31]
Boliukh, I.; Rombel-Bryzek, A.; Radecka, B. Immunological aspects of heat shock protein functions and their significance in the development of cancer vaccines. Nowotwory. J. Oncol., 2022, 72(3), 174-183.
[http://dx.doi.org/10.5603/NJO.a2022.0024]
[32]
De, A.; Miller-Graziano, C. Use of Hsp27 as an anti-inflammatory agent. Patent US20010049357A1, 2001.
[33]
Milani, A.; Baesi, K.; Agi, E.; Marouf, G.; Ahmadi, M.; Bolhassani, A. HIV-1 accessory proteins: Which one is potentially effective in diagnosis and vaccine development? Protein Pept. Lett., 2021, 28(6), 687-698.
[http://dx.doi.org/10.2174/0929866528999201231213610] [PMID: 33390106]
[34]
Bolhassani, A.; Shahbazi, S.; Milani, A.; Nadji, S.A. Small heat shock proteins B1 and B6: Which one is the most effective adjuvant in therapeutic HPV vaccine? IUBMB Life, 2018, 70(10), 1002-1011.
[http://dx.doi.org/10.1002/iub.1892] [PMID: 30171788]
[35]
Doi, N.; Koma, T.; Adachi, A.; Nomaguchi, M. Expression level of HIV-1 Vif can be fluctuated by natural nucleotide variations in the vif-coding and regulatory SA1D2prox sequences of the proviral genome. Front. Microbiol., 2019, 10, 2758.
[http://dx.doi.org/10.3389/fmicb.2019.02758] [PMID: 31849897]
[36]
Seelamgari, A.; Maddukuri, A.; Berro, R.; de la Fuente, C.; Kehn, K.; Deng, L.; Dadgar, S.; Bottazzi, M.E.; Ghedin, E.; Pumfery, A.; Kashanchi, F. Role of viral regulatory and accessory proteins in HIV-1 replication. Front. Biosci., 2004, 9(1-3), 2388-2413.
[http://dx.doi.org/10.2741/1403] [PMID: 15353294]
[37]
Boffito, M.; Fox, J.; Bowman, C.; Fisher, M.; Orkin, C.; Wilkins, E.; Jackson, A.; Pleguezuelos, O.; Robinson, S.; Stoloff, G.A.; Caparrós-Wanderley, W. Safety, immunogenicity and efficacy assessment of HIV immunotherapy in a multi-centre, double-blind, randomised, Placebo-controlled Phase Ib human trial. Vaccine, 2013, 31(48), 5680-5686.
[http://dx.doi.org/10.1016/j.vaccine.2013.09.057] [PMID: 24120550]
[38]
Collins, D.R.; Gaiha, G.D.; Walker, B.D. CD8+ T cells in HIV control, cure and prevention. Nat. Rev. Immunol., 2020, 20(8), 471-482.
[http://dx.doi.org/10.1038/s41577-020-0274-9] [PMID: 32051540]
[39]
Korber, B.; Fischer, W. T cell-based strategies for HIV-1 vaccines. Hum. Vaccin. Immunother., 2020, 16(3), 713-722.
[http://dx.doi.org/10.1080/21645515.2019.1666957] [PMID: 31584318]
[40]
Martins, M.A.; Wilson, N.A.; Piaskowski, S.M.; Weisgrau, K.L.; Furlott, J.R.; Bonaldo, M.C.; Veloso de Santana, M.G.; Rudersdorf, R.A.; Rakasz, E.G.; Keating, K.D.; Chiuchiolo, M.J.; Piatak, M., Jr; Allison, D.B.; Parks, C.L.; Galler, R.; Lifson, J.D.; Watkins, D.I. Vaccination with Gag, Vif, and Nef gene fragments affords partial control of viral replication after mucosal challenge with SIVmac239. J. Virol., 2014, 88(13), 7493-7516.
[http://dx.doi.org/10.1128/JVI.00601-14] [PMID: 24741098]
[41]
Arnon, R.; Ben-Yedidia, T. Old and new vaccine approaches. Int. Immunopharmacol., 2003, 3(8), 1195-1204.
[http://dx.doi.org/10.1016/S1567-5769(03)00016-X] [PMID: 12860175]
[42]
Rao, M.; Alving, C.R. Adjuvants for HIV vaccines. Curr. Opin. HIV AIDS, 2016, 11(6), 585-592.
[http://dx.doi.org/10.1097/COH.0000000000000315] [PMID: 27607594]
[43]
Oliveira, G.A.; Wetzel, K.; Calvo-Calle, J.M.; Nussenzweig, R.; Schmidt, A.; Birkett, A.; Dubovsky, F.; Tierney, E.; Gleiter, C.H.; Boehmer, G.; Luty, A.J.F.; Ramharter, M.; Thornton, G.B.; Kremsner, P.G.; Nardin, E.H. Safety and enhanced immunogenicity of a hepatitis B core particle Plasmodium falciparum malaria vaccine formulated in adjuvant Montanide ISA 720 in a phase I trial. Infect. Immun., 2005, 73(6), 3587-3597.
[http://dx.doi.org/10.1128/IAI.73.6.3587-3597.2005] [PMID: 15908388]
[44]
Miles, A.P.; McClellan, H.A.; Rausch, K.M.; Zhu, D.; Whitmore, M.D.; Singh, S.; Martin, L.B.; Wu, Y.; Giersing, B.K.; Stowers, A.W.; Long, C.A.; Saul, A. Montanide® ISA 720 vaccines: Quality control of emulsions, stability of formulated antigens, and comparative immunogenicity of vaccine formulations. Vaccine, 2005, 23(19), 2530-2539.
[http://dx.doi.org/10.1016/j.vaccine.2004.08.049] [PMID: 15752840]
[45]
Casadevall, A. Antibody-mediated immunity against intracellular pathogens: Two-dimensional thinking comes full circle. Infect. Immun., 2003, 71(8), 4225-4228.
[http://dx.doi.org/10.1128/IAI.71.8.4225-4228.2003] [PMID: 12874297]
[46]
Jiang, J.; Xie, D.; Zhang, W.; Xiao, G.; Wen, J. Fusion of Hsp70 to Mage-a1 enhances the potency of vaccine-specific immune responses. J. Transl. Med., 2013, 11(1), 300.
[http://dx.doi.org/10.1186/1479-5876-11-300] [PMID: 24314011]
[47]
Colaco, C.A.L.S.; Bailey, C.R.; Keeble, J.; Walker, K.B. BCG (Bacille Calmette–Guérin) HspCs (heat-shock protein–peptide complexes) induce T-helper 1 responses and protect against live challenge in a murine aerosol challenge model of pulmonary tuberculosis. Biochem. Soc. Trans., 2004, 32(4), 626-628.
[http://dx.doi.org/10.1042/BST0320626] [PMID: 15270692]
[48]
Brenner, B.G.; Wainberg, Z. Heat shock proteins: Novel therapeutic tools for HIV-infection? Expert Opin. Biol. Ther., 2001, 1(1), 67-77.
[http://dx.doi.org/10.1517/14712598.1.1.67] [PMID: 11727548]
[49]
Milani, A.; Bolhassani, A.; Heshmati, M. Delivery of HIV-1 Nef linked to heat shock protein 27 using a cationic polymer is more effective than cationic lipid in mammalian cells. Bratisl. Med. J., 2017, 118(6), 334-338.
[http://dx.doi.org/10.4149/BLL_2017_064] [PMID: 28664742]
[50]
Akbar, M.T.; Lundberg, A.M.C.; Liu, K.; Vidyadaran, S.; Wells, K.E.; Dolatshad, H.; Wynn, S.; Wells, D.J.; Latchman, D.S.; de Belleroche, J. The neuroprotective effects of heat shock protein 27 overexpression in transgenic animals against kainate-induced seizures and hippocampal cell death. J. Biol. Chem., 2003, 278(22), 19956-19965.
[http://dx.doi.org/10.1074/jbc.M207073200] [PMID: 12639970]
[51]
Eto, D.; Hisaka, T.; Horiuchi, H.; Uchida, S.; Ishikawa, H.; Kawashima, Y.; Kinugasa, T.; Nakashima, O.; Yano, H.; Okuda, K.; Akagi, Y. Expression of HSP27 in hepatocellular carcinoma. Anticancer Res., 2016, 36(7), 3775-3779.
[PMID: 27354654]
[52]
Qazi, K.R.; Qazi, M.R.; Julián, E.; Singh, M.; Abedi-Valugerdi, M.; Fernández, C. Exposure to mycobacteria primes the immune system for evolutionarily diverse heat shock proteins. Infect. Immun., 2005, 73(11), 7687-7696. [a
[http://dx.doi.org/10.1128/IAI.73.11.7687-7696.2005] [PMID: 16239573]
[53]
Beresford, P.J.; Jaju, M.; Friedman, R.S.; Yoon, M.J.; Lieberman, J. A role for heat shock protein 27 in CTL-mediated cell death. J. Immunol., 1998, 161(1), 161-167.
[http://dx.doi.org/10.4049/jimmunol.161.1.161] [PMID: 9647220]
[54]
Petrovsky, N.; Aguilar, J.C. Vaccine adjuvants: Current state and future trends. Immunol. Cell Biol., 2004, 82(5), 488-496.
[http://dx.doi.org/10.1111/j.0818-9641.2004.01272.x] [PMID: 15479434]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy