Generic placeholder image

CNS & Neurological Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5273
ISSN (Online): 1996-3181

Review Article

Rationale and Development of Tavapadon, a D1/D5-Selective Partial Dopamine Agonist for the Treatment of Parkinson’s Disease

Author(s): Erwan Bezard, David Gray, Rouba Kozak, Matthew Leoni, Cari Combs and Sridhar Duvvuri*

Volume 23, Issue 4, 2024

Published on: 04 May, 2023

Page: [476 - 487] Pages: 12

DOI: 10.2174/1871527322666230331121028

Price: $65

Abstract

Currently, available therapeutics for the treatment of Parkinson’s disease (PD) fail to provide sustained and predictable relief from motor symptoms without significant risk of adverse events (AEs). While dopaminergic agents, particularly levodopa, may initially provide strong motor control, this efficacy can vary with disease progression. Patients may suffer from motor fluctuations, including sudden and unpredictable drop-offs in efficacy. Dopamine agonists (DAs) are often prescribed during early-stage PD with the expectation they will delay the development of levodopa-associated complications, but currently available DAs are less effective than levodopa for the treatment of motor symptoms. Furthermore, both levodopa and DAs are associated with a significant risk of AEs, many of which can be linked to strong, repeated stimulation of D2/D3 dopamine receptors. Targeting D1/D5 dopamine receptors has been hypothesized to produce strong motor benefits with a reduced risk of D2/D3-related AEs, but the development of D1-selective agonists has been previously hindered by intolerable cardiovascular AEs and poor pharmacokinetic properties. There is therefore an unmet need in PD treatment for therapeutics that provide sustained and predictable efficacy, with strong relief from motor symptoms and reduced risk of AEs. Partial agonism at D1/D5 has shown promise for providing relief from motor symptoms, potentially without the AEs associated with D2/D3-selective DAs and full D1/D5-selective DAs. Tavapadon is a novel oral partial agonist that is highly selective at D1/D5 receptors and could meet these criteria. This review summarizes currently available evidence of tavapadon’s therapeutic potential for the treatment of early through advanced PD.

Graphical Abstract

[1]
Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers 2017; 3(1): 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[2]
Albin RL, Young AB, Penney JB. The functional anatomy of basal ganglia disorders. Trends Neurosci 1989; 12(10): 366-75.
[http://dx.doi.org/10.1016/0166-2236(89)90074-X] [PMID: 2479133]
[3]
Cacabelos R. Parkinson’s disease: From pathogenesis to pharmacogenomics. Int J Mol Sci 2017; 18(3): 551.
[http://dx.doi.org/10.3390/ijms18030551] [PMID: 28273839]
[4]
Sveinbjornsdottir S. The clinical symptoms of Parkinson’s disease. J Neurochem 2016; 139 (Suppl. 1): 318-24.
[http://dx.doi.org/10.1111/jnc.13691] [PMID: 27401947]
[5]
Fox SH, Katzenschlager R, Lim SY, et al. International Parkinson and movement disorder society evidence-based medicine review: Update on treatments for the motor symptoms of Parkinson’s disease. Mov Disord 2018; 33(8): 1248-66.
[http://dx.doi.org/10.1002/mds.27372] [PMID: 29570866]
[6]
Pringsheim T, Day GS, Smith DB, et al. Dopaminergic therapy for motor symptoms in early Parkinson disease practice guideline summary: A report of the AAN Guideline Subcommittee. Neurology 2021; 97(20): 942-57.
[http://dx.doi.org/10.1212/WNL.0000000000012868] [PMID: 34782410]
[7]
Brocks DR. Anticholinergic drugs used in Parkinson’s disease: An overlooked class of drugs from a pharmacokinetic perspective. J Pharm Pharm Sci 1999; 2(2): 39-46.
[PMID: 10952768]
[8]
Ellis JM, Fell MJ. Current approaches to the treatment of Parkinson’s Disease. Bioorg Med Chem Lett 2017; 27(18): 4247-55.
[http://dx.doi.org/10.1016/j.bmcl.2017.07.075] [PMID: 28869077]
[9]
Gitto R, Vittorio S, Bucolo F, et al. Discovery of neuroprotective agents based on a 5-(4-pyridinyl)-1,2,4-triazole scaffold. ACS Chem Neurosci 2022; 13(5): 581-6.
[http://dx.doi.org/10.1021/acschemneuro.1c00849] [PMID: 35179861]
[10]
Lang AE, Espay AJ. Disease modification in Parkinson’s disease: Current approaches, challenges, and future considerations. Mov Disord 2018; 33(5): 660-77.
[http://dx.doi.org/10.1002/mds.27360] [PMID: 29644751]
[11]
Borovac JA. Side effects of a dopamine agonist therapy for Parkinson’s disease: A mini-review of clinical pharmacology. Yale J Biol Med 2016; 89(1): 37-47.
[PMID: 27505015]
[12]
Bastide MF, Meissner WG, Picconi B, et al. Pathophysiology of L-dopa-induced motor and non-motor complications in Parkinson’s disease. Prog Neurobiol 2015; 132: 96-168.
[http://dx.doi.org/10.1016/j.pneurobio.2015.07.002] [PMID: 26209473]
[13]
Stoker TB, Barker RA. Recent developments in the treatment of Parkinson’s Disease. F1000 Res 2020; 9: F1000.
[http://dx.doi.org/10.12688/f1000research.25634.1]
[14]
Navaratnam P, Arcona S, Friedman HS, Leoni M, Shaik S, Sasane R. Natural history and patterns of treatment change in Parkinson’s disease: A retrospective chart review. Clin Park Relat Disord 2022; 6: 100125.
[http://dx.doi.org/10.1016/j.prdoa.2021.100125]
[15]
Yeung EYH, Cavanna AE. Sleep Attacks in patients with Parkinson’s disease on dopaminergic medications: A systematic review. Mov Disord Clin Pract 2014; 1(4): 307-16.
[http://dx.doi.org/10.1002/mdc3.12063] [PMID: 30363881]
[16]
Hauser RA, Rascol O, Korczyn AD, et al. Ten-year follow-up of Parkinson’s disease patients randomized to initial therapy with ropinirole or levodopa. Mov Disord 2007; 22(16): 2409-17.
[http://dx.doi.org/10.1002/mds.21743] [PMID: 17894339]
[17]
de Bie RMA, Clarke CE, Espay AJ, Fox SH, Lang AE. Initiation of pharmacological therapy in Parkinson’s disease: when, why, and how. Lancet Neurol 2020; 19(5): 452-61.
[http://dx.doi.org/10.1016/S1474-4422(20)30036-3] [PMID: 32171387]
[18]
Nutt JG. Pharmacokinetics and pharmacodynamics of levodopa. Mov Disord 2008; 23(S3): S580-5.
[http://dx.doi.org/10.1002/mds.22037]
[19]
Stocchi F. The levodopa wearing-off phenomenon in Parkinson’s disease: Pharmacokinetic considerations. Expert Opin Pharmacother 2006; 7(10): 1399-407.
[http://dx.doi.org/10.1517/14656566.7.10.1399] [PMID: 16805724]
[20]
Gray DL, Allen JA, Mente S, et al. Impaired β-arrestin recruitment and reduced desensitization by non-catechol agonists of the D1 dopamine receptor. Nat Commun 2018; 9(1): 674.
[http://dx.doi.org/10.1038/s41467-017-02776-7] [PMID: 29445200]
[21]
Gerfen CR, Surmeier DJ. Modulation of striatal projection systems by dopamine. Annu Rev Neurosci 2011; 34(1): 441-66.
[http://dx.doi.org/10.1146/annurev-neuro-061010-113641] [PMID: 21469956]
[22]
Gerfen CR, Engber TM, Mahan LC, et al. D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 1990; 250(4986): 1429-32.
[http://dx.doi.org/10.1126/science.2147780] [PMID: 2147780]
[23]
Le Moine C, Bloch B. D1 and D2 dopamine receptor gene expression in the rat striatum: Sensitive cRNA probes demonstrate prominent segregation of D1 and D2 mRNAS in distinct neuronal populations of the dorsal and ventral striatum. J Comp Neurol 1995; 355(3): 418-26.
[http://dx.doi.org/10.1002/cne.903550308] [PMID: 7636023]
[24]
Castello J, Cortés M, Malave L, et al. The Dopamine D5 receptor contributes to activation of cholinergic interneurons during L-DOPA induced dyskinesia. Sci Rep 2020; 10(1): 2542.
[http://dx.doi.org/10.1038/s41598-020-59011-5] [PMID: 32054879]
[25]
Marcellino D, Ferré S, Casadó V, et al. Identification of dopamine D1-D3 receptor heteromers. Indications for a role of synergistic D1-D3 receptor interactions in the striatum. J Biol Chem 2008; 283(38): 26016-25.
[http://dx.doi.org/10.1074/jbc.M710349200] [PMID: 18644790]
[26]
Calabresi P, Picconi B, Tozzi A, Ghiglieri V, Di Filippo M. Direct and indirect pathways of basal ganglia: A critical reappraisal. Nat Neurosci 2014; 17(8): 1022-30.
[http://dx.doi.org/10.1038/nn.3743] [PMID: 25065439]
[27]
Hernández-López S, Bargas J, Surmeier DJ, Reyes A, Galarraga E. D1 receptor activation enhances evoked discharge in neostriatal medium spiny neurons by modulating an L-type Ca2+ conductance. J Neurosci 1997; 17(9): 3334-42.
[http://dx.doi.org/10.1523/JNEUROSCI.17-09-03334.1997] [PMID: 9096166]
[28]
Hernández-López S, Tkatch T, Perez-Garci E, et al. D2 dopamine receptors in striatal medium spiny neurons reduce L-type Ca2+ currents and excitability via a novel PLC[beta]1-IP3-calcineurin-signaling cascade. J Neurosci 2000; 20(24): 8987-95.
[http://dx.doi.org/10.1523/JNEUROSCI.20-24-08987.2000] [PMID: 11124974]
[29]
Neumann WJ, Schroll H, de Almeida Marcelino AL, et al. Functional segregation of basal ganglia pathways in Parkinson’s disease. Brain 2018; 141(9): 2655-69.
[http://dx.doi.org/10.1093/brain/awy206] [PMID: 30084974]
[30]
Soares-Cunha C, Coimbra B, Sousa N, Rodrigues AJ. Reappraising striatal D1- and D2-neurons in reward and aversion. Neurosci Biobehav Rev 2016; 68: 370-86.
[http://dx.doi.org/10.1016/j.neubiorev.2016.05.021] [PMID: 27235078]
[31]
Rascol O, Nutt JG, Blin O, et al. Induction by dopamine D1 receptor agonist ABT-431 of dyskinesia similar to levodopa in patients with Parkinson disease. Arch Neurol 2001; 58(2): 249-54.
[http://dx.doi.org/10.1001/archneur.58.2.249] [PMID: 11176963]
[32]
Moore RY, Whone AL, McGowan S, Brooks DJ. Monoamine neuron innervation of the normal human brain: An 18F-DOPA PET study. Brain Res 2003; 982(2): 137-45.
[http://dx.doi.org/10.1016/S0006-8993(03)02721-5] [PMID: 12915249]
[33]
Young D, Popiolek M, Trapa P, et al. D1 agonist improved movement of parkinsonian nonhuman primates with limited dyskinesia side effects. ACS Chem Neurosci 2020; 11(4): 560-6.
[http://dx.doi.org/10.1021/acschemneuro.9b00589] [PMID: 31971364]
[34]
Sagot B, Li L, Zhou FM. Hyperactive response of direct pathway striatal projection neurons to L-dopa and D1 agonism in freely moving parkinsonian mice. Front Neural Circuits 2018; 12: 57.
[http://dx.doi.org/10.3389/fncir.2018.00057]
[35]
Kravitz AV, Freeze BS, Parker PRL, et al. Regulation of Parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 2010; 466(7306): 622-6.
[http://dx.doi.org/10.1038/nature09159] [PMID: 20613723]
[36]
So CH, Varghese G, Curley KJ, et al. D1 and D2 dopamine receptors form heterooligomers and cointernalize after selective activation of either receptor. Mol Pharmacol 2005; 68(3): 568-78.
[http://dx.doi.org/10.1124/mol.105.012229] [PMID: 15923381]
[37]
Mailman RB, Yang Y, Huang X. D1, not D2, dopamine receptor activation dramatically improves MPTP-induced Parkinsonism unresponsive to levodopa. Eur J Pharmacol 2021; 892: 173760.
[http://dx.doi.org/10.1016/j.ejphar.2020.173760]
[38]
Johnson BJ, Peacock V, Schneider JS. Dihydrexidine, a full D1 dopamine receptor agonist, induces rotational asymmetry in hemiparkinsonian monkeys. Pharmacol Biochem Behav 1995; 51(4): 617-22.
[http://dx.doi.org/10.1016/0091-3057(94)00424-H] [PMID: 7675833]
[39]
Rascol O, Blin O, Thalamas C, et al. ABT-431, a D1 receptor agonist prodrug, has efficacy in Parkinson’s disease. Ann Neurol 1999; 45(6): 736-41.
[http://dx.doi.org/10.1002/1531-8249(199906)45:6<736:AID-ANA7>3.0.CO;2-F] [PMID: 10360765]
[40]
Giardina WJ, Williams M. Adrogolide HCl (ABT-431; DAS-431), a prodrug of the dopamine D1 receptor agonist, A-86929: Preclinical pharmacology and clinical data. CNS Drug Rev 2001; 7(3): 305-16.
[http://dx.doi.org/10.1111/j.1527-3458.2001.tb00201.x] [PMID: 11607045]
[41]
Weiner DM, Levey AI, Sunahara RK, et al. D1 and D2 dopamine receptor mRNA in rat brain. Proc Natl Acad Sci 1991; 88(5): 1859-63.
[http://dx.doi.org/10.1073/pnas.88.5.1859] [PMID: 1825729]
[42]
Hall H, Farde L, Halldin C, Hurd YL, Pauli S, Sedvall G. Autoradiographic localization of extrastriatal D2-dopamine receptors in the human brain using [125I]epidepride. Synapse 1996; 23(2): 115-23.
[http://dx.doi.org/10.1002/(SICI)1098-2396(199606)23:2<115:AID-SYN7>3.0.CO;2-C] [PMID: 8723716]
[43]
Voon V, Fernagut PO, Wickens J, et al. Chronic dopaminergic stimulation in Parkinson’s disease: from dyskinesias to impulse control disorders. Lancet Neurol 2009; 8(12): 1140-9.
[http://dx.doi.org/10.1016/S1474-4422(09)70287-X] [PMID: 19909912]
[44]
Napier TC, Persons AL. Pharmacological insights into impulsive compulsive spectrum disorders associated with dopaminergic therapy. Eur J Neurosci 2019; 50(3): 2492-502.
[http://dx.doi.org/10.1111/ejn.14177] [PMID: 30269390]
[45]
Weintraub D, Koester J, Potenza MN, et al. Impulse control disorders in Parkinson disease: a cross-sectional study of 3090 patients. Arch Neurol 2010; 67(5): 589-95.
[http://dx.doi.org/10.1001/archneurol.2010.65] [PMID: 20457959]
[46]
Solla P, Cannas A, Corona M, Marrosu MG, Marrosu F. Dopamine dysregulation syndrome in Parkinson’s disease patients with unsatisfactory switching from immediate to extended release pramipexole: A further clue to incentive sensitization mechanisms? Behav Neurol 2013; 27(4): 563-6.
[http://dx.doi.org/10.1155/2013/848052] [PMID: 23242362]
[47]
Giannakis A, Chondrogiorgi M, Tsironis C, Tatsioni A, Konitsiotis S. Levodopa-induced dyskinesia in Parkinson’s disease: still no proof? A meta-analysis. J Neural Transm 2018; 125(9): 1341-9.
[http://dx.doi.org/10.1007/s00702-018-1841-0] [PMID: 29352351]
[48]
Balice-Gordon R, Honey GD, Chatham C, et al. A neurofunctional domains approach to evaluate D1/D5 dopamine receptor partial agonism on cognition and motivation in healthy volunteers with low working memory capacity. Int J Neuropsychopharmacol 2020; 23(5): 287-99.
[http://dx.doi.org/10.1093/ijnp/pyaa007] [PMID: 32055822]
[49]
Arnsten AFT, Girgis RR, Gray DL, Mailman RB. Novel dopamine therapeutics for cognitive deficits in schizophrenia. Biol Psychiatry 2017; 81(1): 67-77.
[http://dx.doi.org/10.1016/j.biopsych.2015.12.028] [PMID: 26946382]
[50]
Sohur US, Gray DL, Duvvuri S, Zhang Y, Thayer K, Feng G. Phase 1 Parkinson’s disease studies show the dopamine D1/D5 agonist PF-06649751 is safe and well tolerated. Neurol Ther 2018; 7(2): 307-19.
[http://dx.doi.org/10.1007/s40120-018-0114-z] [PMID: 30361858]
[51]
Blanchet PJ, Fang J, Gillespie M, et al. Effects of the full dopamine D1 receptor agonist dihydrexidine in Parkinson’s disease. Clin Neuropharmacol 1998; 21(6): 339-43.
[PMID: 9844789]
[52]
Riesenberg R, Werth J, Zhang Y, Duvvuri S, Gray D. PF-06649751 efficacy and safety in early Parkinson’s disease: A randomized, placebo-controlled trial. Ther Adv Neurol Disord 2020; 13: 1756286420911296.
[http://dx.doi.org/10.1177/1756286420911296]
[53]
Brooks DJ, Ibanez V, Sawle GV, et al. Striatal D2 receptor status in patients with Parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with11C-raclopride and positron emission tomography. Ann Neurol 1992; 31(2): 184-92.
[http://dx.doi.org/10.1002/ana.410310209] [PMID: 1575457]
[54]
Shinotoh H, Inoue O, Hirayama K, et al. Dopamine D1 receptors in Parkinson’s disease and striatonigral degeneration: a positron emission tomography study. J Neurol Neurosurg Psychiatry 1993; 56(5): 467-72.
[http://dx.doi.org/10.1136/jnnp.56.5.467] [PMID: 8505636]
[55]
Michaelides MR, Hong Y, DiDomenico S Jr, et al. (5aR,11bS)-4,5,5a,6,7,11b-Hexahydro-2-propyl-3-thia-5-azacyclopent-1-ena[c]phenanthrene-9,10-diol (A-86929): a potent and selective dopamine D1 agonist that maintain behavioral efficacy following repeated administration and characterization of its diacetyl prodrug (ABT-431). J Med Chem 1995; 38(18): 3445-7.
[http://dx.doi.org/10.1021/jm00018a002] [PMID: 7658429]
[56]
Gorelova NA, Yang CR. Dopamine D1/D5 receptor activation modulates a persistent sodium current in rat prefrontal cortical neurons in vitro. J Neurophysiol 2000; 84(1): 75-87.
[http://dx.doi.org/10.1152/jn.2000.84.1.75] [PMID: 10899185]
[57]
Tremblay M, Silveira MM, Kaur S, et al. Chronic D2/3 agonist ropinirole treatment increases preference for uncertainty in rats regardless of baseline choice patterns. Eur J Neurosci 2017; 45(1): 159-66.
[http://dx.doi.org/10.1111/ejn.13332] [PMID: 27422144]
[58]
Augustine A, Winstanley CA, Krishnan V. Impulse control disorders in Parkinson’s disease: From bench to bedside. Front Neurosci 2021; 15: 654238.
[http://dx.doi.org/10.3389/fnins.2021.654238]
[59]
Eagle DM, Noschang C, d’Angelo LSC, et al. The dopamine D2/D3 receptor agonist quinpirole increases checking-like behaviour in an operant observing response task with uncertain reinforcement: A novel possible model of OCD. Behav Brain Res 2014; 264(100): 207-29.
[http://dx.doi.org/10.1016/j.bbr.2013.12.040] [PMID: 24406720]
[60]
Szechtman H, Sulis W, Eilam D. Quinpirole induces compulsive checking behavior in rats: A potential animal model of obsessive-compulsive disorder (OCD). Behav Neurosci 1998; 112(6): 1475-85.
[http://dx.doi.org/10.1037/0735-7044.112.6.1475] [PMID: 9926830]
[61]
Rokosik SL, Napier TC. Pramipexole-induced increased probabilistic discounting: comparison between a rodent model of Parkinson’s disease and controls. Neuropsychopharmacology 2012; 37(6): 1397-408.
[http://dx.doi.org/10.1038/npp.2011.325] [PMID: 22257895]
[62]
Cocker PJ, Tremblay M, Kaur S, Winstanley CA. Chronic administration of the dopamine D2/3 agonist ropinirole invigorates performance of a rodent slot machine task, potentially indicative of less distractible or compulsive-like gambling behaviour. Psychopharmacology 2017; 234(1): 137-53.
[http://dx.doi.org/10.1007/s00213-016-4447-y] [PMID: 27714426]
[63]
St Onge JR, Abhari H, Floresco SB. Dissociable contributions by prefrontal D1 and D2 receptors to risk-based decision making. J Neurosci 2011; 31(23): 8625-33.
[http://dx.doi.org/10.1523/JNEUROSCI.1020-11.2011] [PMID: 21653866]
[64]
Pattij T, Janssen MCW, Vanderschuren LJMJ, Schoffelmeer ANM, van Gaalen MM. Involvement of dopamine D1 and D2 receptors in the nucleus accumbens core and shell in inhibitory response control. Psychopharmacology 2007; 191(3): 587-98.
[http://dx.doi.org/10.1007/s00213-006-0533-x] [PMID: 16972104]
[65]
Winstanley CA, Zeeb FD, Bedard A, et al. Dopaminergic modulation of the orbitofrontal cortex affects attention, motivation and impulsive responding in rats performing the five-choice serial reaction time task. Behav Brain Res 2010; 210(2): 263-72.
[http://dx.doi.org/10.1016/j.bbr.2010.02.044] [PMID: 20206211]
[66]
Self DW, Karanian DA, Spencer JJ. Effects of the novel D1 dopamine receptor agonist ABT-431 on cocaine self-administration and reinstatement. Ann N Y Acad Sci 2000; 909(1): 133-44.
[http://dx.doi.org/10.1111/j.1749-6632.2000.tb06679.x] [PMID: 10911927]
[67]
OʼSullivan SS, Evans AH, Lees AJ. Dopamine dysregulation syndrome: an overview of its epidemiology, mechanisms and management. CNS Drugs 2009; 23(2): 157-70.
[http://dx.doi.org/10.2165/00023210-200923020-00005] [PMID: 19173374]
[68]
Warren N, O’Gorman C, Lehn A, Siskind D. Dopamine dysregulation syndrome in Parkinson’s disease: a systematic review of published cases. J Neurol Neurosurg Psychiat 2017; 88(12): 1060-4.
[http://dx.doi.org/10.1136/jnnp-2017-315985] [PMID: 29018160]
[69]
Khroyan TV, Platt DM, Rowlett JK, Spealman RD. Attenuation of relapse to cocaine seeking by dopamine D1 receptor agonists and antagonists in non-human primates. Psychopharmacology 2003; 168(1-2): 124-31.
[http://dx.doi.org/10.1007/s00213-002-1365-y] [PMID: 12607074]
[70]
Self DW, Barnhart WJ, Lehman DA, Nestler EJ. Opposite modulation of cocaine-seeking behavior by D1- and D2-like dopamine receptor agonists. Science 1996; 271(5255): 1586-9.
[http://dx.doi.org/10.1126/science.271.5255.1586] [PMID: 8599115]
[71]
De Vries TJ, Schoffelmeer ANM, Binnekade R, Vanderschuren LJMJ. Dopaminergic mechanisms mediating the incentive to seek cocaine and heroin following long-term withdrawal of IV drug self-administration. Psychopharmacology 1999; 143(3): 254-60.
[http://dx.doi.org/10.1007/s002130050944] [PMID: 10353427]
[72]
Chellian R, Behnood-Rod A, Wilson R, et al. Dopamine D1-like receptor blockade and stimulation decreases operant responding for nicotine and food in male and female rats. Sci Rep 2022; 12(1): 14131.
[http://dx.doi.org/10.1038/s41598-022-18081-3] [PMID: 35986048]
[73]
Cohen C, Perrault G, Sanger DJ. Effects of D 1 dopamine receptor agonists on oral ethanol self-administration in rats: comparison with their efficacy to produce grooming and hyperactivity. Psychopharmacology 1999; 142(1): 102-10.
[http://dx.doi.org/10.1007/s002130050868] [PMID: 10102789]
[74]
Engeln M, Ahmed SH, Vouillac C, Tison F, Bezard E, Fernagut PO. Reinforcing properties of Pramipexole in normal and parkinsonian rats. Neurobiol Dis 2013; 49: 79-86.
[http://dx.doi.org/10.1016/j.nbd.2012.08.005] [PMID: 22940424]
[75]
Loiodice S, McGhan P, Gryshkova V, et al. Striatal changes underlie MPEP-mediated suppression of the acquisition and expression of pramipexole-induced place preference in an alpha-synuclein rat model of Parkinson’s disease. J Psychopharmacol 2017; 31(10): 1323-33.
[http://dx.doi.org/10.1177/0269881117714051] [PMID: 28631520]
[76]
Riddle JL, Rokosik SL, Napier TC. Pramipexole- and methamphetamine-induced reward-mediated behavior in a rodent model of Parkinson’s disease and controls. Behav Brain Res 2012; 233(1): 15-23.
[http://dx.doi.org/10.1016/j.bbr.2012.04.027] [PMID: 22727039]
[77]
Zengin-Toktas Y, Authier N, Denizot H, et al. Motivational properties of D2 and D3 dopamine receptors agonists and cocaine, but not with D1 dopamine receptors agonist and l-dopa, in bilateral 6-OHDA-lesioned rat. Neuropharmacology 2013; 70: 74-82.
[http://dx.doi.org/10.1016/j.neuropharm.2012.12.011] [PMID: 23347953]
[78]
Haney M, Collins ED, Ward AS, Foltin RW, Fischman MW. Effect of a selective dopamine D 1 agonist (ABT-431) on smoked cocaine self-administration in humans. Psychopharmacology 1999; 143(1): 102-10.
[http://dx.doi.org/10.1007/s002130050925] [PMID: 10227086]
[79]
Pastino G, Yuan J, Duvvuri S, et al. Pharmacokinetics, pharmacodynamics, and safety of the highly selective dopamine D1/D5 agonist tavapadon: summary of early phase clinical studies. Poster presented at: American Academy of Neurology 2022. Apr 2-7; Seattle, WA. 2022.
[80]
Pastino G, Yuan J, Duvvuri S, et al. Pharmacokinetics, pharmacodynamics, and safety of the highly selective dopamine D1/D5 agonist tavapadon: Summary of phase 1 clinical studies (P10-11.001). Neurology 2022; 98(S18): 2728.
[81]
Dooley M, Markham A. Pramipexole. Drugs Aging 1998; 12(6): 495-514.
[http://dx.doi.org/10.2165/00002512-199812060-00007] [PMID: 9638397]
[82]
Kaye CM, Nicholls B. Clinical pharmacokinetics of ropinirole. Clin Pharmacokinet 2000; 39(4): 243-54.
[http://dx.doi.org/10.2165/00003088-200039040-00001] [PMID: 11069211]
[83]
National Institutes of Health US National Library of Medicine ClinicalTrialsgov [Internet] ClinicalTrialsgov Fixed-dose trial in early parkinson's disease (PD) (TEMPO-1) Patent NCT04201093 [Updated 2023 February 23; cited 2023 April 4] Available from: https://clinicaltrials.gov/ct2/show/NCT04201093
[84]
National Institutes of Health US National Library of Medicine ClinicalTrialsgov [Internet] ClinicalTrialsgov Flexible-dose trial in early Parkinson's disease (PD) (TEMPO-2) Patent NCT04223193 [Updated 2023 February 23; cited 2023 April 4] Available from: https://clinicaltrials.gov/ct2/show/NCT04223193
[85]
National Institutes of Health US National Library of Medicine ClinicalTrialsgov [Internet] ClinicalTrialsgov Flexible-dose, adjunctive therapy trial in adults with Parkinson's disease with motor fluctuations (TEMPO-3) Patent NCT04542499 [Updated 2023 February 23; cited 2023 April 4] Available from: https://clinicaltrials.gov/ct2/show/NCT04542499
[86]
National Institutes of Health US National Library of Medicine ClinicalTrialsgov [Internet] ClinicalTrialsgov Open-label trial in Parkinson's disease (PD) (TEMPO-4) Patent NCT04760769 [Updated 2023 February 23; cited 2023 April 4] Available from: https://clinicaltrials.gov/ct2/show/NCT04760769
[87]
Papapetropoulos S, Liu W, Duvvuri S, Thayer K, Gray DL. Evaluation of D1/D5 partial agonist PF-06412562 in Parkinson’s disease following oral administration. Neurodegener Dis 2018; 18(5-6): 262-9.
[http://dx.doi.org/10.1159/000492498] [PMID: 30453303]
[88]
Huang X, Lewis MM, Van Scoy LJ, et al. The D1/D5 dopamine partial agonist PF-06412562 in advanced-stage Parkinson’s disease: a feasibility study. J Parkinsons Dis 2020; 10(4): 1515-27.
[http://dx.doi.org/10.3233/JPD-202188] [PMID: 32986682]
[89]
Lewis MM, Van Scoy LJ, Mailman RB, et al. Dopamine D1 agonist effects in late-stage Parkinson’s disease. medRxiv 2022.04.30.22270885.
[http://dx.doi.org/10.1101/2022.04.30.22270885]
[90]
Fargel M, Grobe B, Oesterle E, Hastedt C, Rupp M. Treatment of Parkinson’s disease: A survey of patients and neurologists. Clin Drug Investig 2007; 27(3): 207-18.
[http://dx.doi.org/10.2165/00044011-200727030-00004] [PMID: 17305415]
[91]
Hechtner MC, Vogt T, Zöllner Y, et al. Quality of life in Parkinson’s disease patients with motor fluctuations and dyskinesias in five European countries. Parkinsonism Relat Disord 2014; 20(9): 969-74.
[http://dx.doi.org/10.1016/j.parkreldis.2014.06.001] [PMID: 24953743]
[92]
Hermanowicz N, Castillo-Shell M, McMean A, Fishman J, D’Souza J. Patient and physician perceptions of disease management in Parkinson’s disease: Results from a US-based multicenter survey. Neuropsychiatr Dis Treat 2019; 15: 1487-95.
[http://dx.doi.org/10.2147/NDT.S196930] [PMID: 31239684]
[93]
Medications for motor symptoms. Michael J Fox Foundation. Available from: https://www.michaeljfox.org/news/medications-motor-symptoms

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy