Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Mini-Review Article

Bromelain: An Enzyme Expanding its Horizon from Food to Pharmaceutical Industry

Author(s): Gauresh Sharma and Archana Vimal*

Volume 24, Issue 14, 2023

Published on: 27 April, 2023

Page: [1715 - 1726] Pages: 12

DOI: 10.2174/1389201024666230331115338

Price: $65

conference banner
Abstract

Bromelain is a protein digestive enzyme obtained from the extract of pineapple (steam, fruit, and leaves). It is a cocktail of several thiol endopeptidases and other components like peroxidase, cellulase, phosphatase, and several protease inhibitors. It is a glycoprotein with an oligosaccharide in its molecular structure that contains xylose, fucose, mannose, and N-acetyl glucosamine. Many approaches have been used in the extraction and purification of bromelain like filtration, membrane filtration, INT filtration, precipitation, aqueous two-phase system, ion-exchange chromatography, etc. This enzyme is widely used in the food industry for meat tenderization, baking, cheese processing, seafood processing, etc. However, this enzyme also expands its applicability in the food industry. It is reported to have the potential for the treatment of bronchitis, surgical trauma, sinusitis, etc. The in vitro and in vivo studies showed that it possesses fibrinolytic, antiinflammatory, antithrombotic, anti-edematous activity, etc. The human body absorbed bromelain without any side effects or reduction in its activity. However, in some cases, it shows side effects in those patients who are allergic to pineapple. To minimize such adverse effects bromelain is immobilized inside the nanoparticles. This paper gives an overview of the production, purification, and application of this industrially important enzyme in the food and pharmaceutical industry. It also discusses the various immobilization strategies used to enhance its efficiency.

Next »
Graphical Abstract

[1]
Varilla, C.; Marcone, M.; Paiva, L.; Baptista, J. Bromelain, a group of pineapple proteolytic complex enzymes (Ananas comosus) and their possible therapeutic and clinical effects. A summary. Foods, 2021, 10(10), 2249.
[http://dx.doi.org/10.3390/foods10102249] [PMID: 34681298]
[2]
Pavan, R.; Jain, S.; Shraddha; Kumar, A. Properties and therapeutic application of bromelain: A review. Biotechnol. Res. Int., 2012, 2012, 1-6.
[http://dx.doi.org/10.1155/2012/976203] [PMID: 23304525]
[3]
Orsini, R.A. Bromelain. Plast. Reconstr. Surg., 2006, 118(7), 1640-1644.
[http://dx.doi.org/10.1097/01.prs.0000242503.50548.ee] [PMID: 17102739]
[4]
Bhattacharyya, B.K. Bromelain: An overview. Nat. Prod. Rad., 2008, 7(4), 359-363.
[5]
Ishihara, H.; Takahashi, N.; Oguri, S.; Tejima, S. Complete structure of the carbohydrate moiety of stem bromelain. An application of the almond glycopeptidase for structural studies of glycopeptides. J. Biol. Chem., 1979, 254(21), 10715-10719.
[http://dx.doi.org/10.1016/S0021-9258(19)86580-8] [PMID: 500606]
[6]
Seligman, B. Bromelain: An anti-inflammatory agent. Angiology, 1962, 13(11), 508-510.
[http://dx.doi.org/10.1177/000331976201301103] [PMID: 13992714]
[7]
Maurer, H.R. Bromelain: Biochemistry, pharmacology and medical use. Cell. Mol. Life Sci., 2001, 58(9), 1234-1245.
[http://dx.doi.org/10.1007/PL00000936] [PMID: 11577981]
[8]
Noor, S.M.; Roslan, R.; Fhong, S.C.; Nayan, N.H.M. Bromelain as a potential material in future chemotherapy: A review. Int. J. Eng. Technol. Manag. Appl., 2022, 13(6), 1-12.
[http://dx.doi.org/10.14456/ITJEMAST.2022.115]
[9]
Susanti, S.; Rizqiati, H.; Pratama, Y.; Arifan, F.; Reza, S.P. Characteristics of bromelain enzyme from queen variety pineapple crown at different drying temperatures. IOP Conference Series: Earth and Environmental Science, International Conference on Agriculture, Environment and Food Security (AEFS), 18 November 2021Medan, Indonesia2022, 977, p. 012029.
[http://dx.doi.org/10.1088/1755-1315/977/1/012029]
[10]
Arshad, Z.I.M.; Amid, A.; Yusof, F.; Jaswir, I.; Ahmad, K.; Loke, S.P. Bromelain: An overview of industrial application and purification strategies. Appl. Microbiol. Biotechnol., 2014, 98(17), 7283-7297.
[http://dx.doi.org/10.1007/s00253-014-5889-y] [PMID: 24965557]
[11]
Taussig, S.J. The mechanism of the physiological action of bromelain. Med. Hypotheses, 1980, 6(1), 99-104.
[http://dx.doi.org/10.1016/0306-9877(80)90038-9] [PMID: 7382892]
[12]
Ramli, A.N.M.; Aznan, T.N.T.; Illias, R.M. Bromelain: From production to commercialisation. J. Sci. Food Agric., 2017, 97(5), 1386-1395.
[http://dx.doi.org/10.1002/jsfa.8122] [PMID: 27790704]
[13]
Zhou, W.; Ye, C.; Geng, L.; Chen, G.; Wang, X.; Chen, W.; Sa, R.; Zhang, J.; Zhang, X. Purification and characterization of bromelain from pineapple (Ananas comosus L.) peel waste. J. Food Sci., 2021, 86(2), 385-393.
[http://dx.doi.org/10.1111/1750-3841.15563] [PMID: 33415738]
[14]
Bradauskiene, V.; Vaiciulyte-Funk, L.; Cernauskas, D.; Dzingeleviciene, R.; Lima, J.P.M.; Bradauskaite, A.; Tita, M.A. The efficacy of plant enzymes bromelain and papain as a tool for reducing gluten immunogenicity from wheat bran. Processes, 2022, 10(10), 1948.
[http://dx.doi.org/10.3390/pr10101948]
[15]
Hebbar, U.H.; Sumana, B.; Hemavathi, A.B.; Raghavarao, K.S.M.S. Separation and purification of bromelain by reverse micellar extraction coupled ultrafiltration and comparative studies with other methods. Food Bioprocess Technol., 2012, 5(3), 1010-1018.
[http://dx.doi.org/10.1007/s11947-010-0395-4]
[16]
Bala, M.; Ismail, N.A.; Mel, M.; Jami, M.S.; Salleh, H.M.; Amid, A. Bromelain production: Current trends and perspective. Arch. Sci., 2012, 65(11), 369-399.
[17]
Babu, B.R.; Rastogi, N.K.; Raghavarao, K.S.M.S. Liquid–liquid extraction of bromelain and polyphenol oxidase using aqueous two-phase system. Chem. Eng. Process., 2008, 47(1), 83-89.
[http://dx.doi.org/10.1016/j.cep.2007.08.006]
[18]
Ketnawa, S.; Rawdkuen, S.; Chaiwut, P. Two phase partitioning and collagen hydrolysis of bromelain from pineapple peel Nang Lae culti-var. Biochem. Eng. J., 2010, 52(2-3), 205-211.
[http://dx.doi.org/10.1016/j.bej.2010.08.012]
[19]
Abreu, D.C.A.; Figueiredo, K.C.S. Bromelain separation and purification processes from pineapple extract. Braz. J. Chem. Eng., 2019, 36(2), 1029-1039.
[http://dx.doi.org/10.1590/0104-6632.20190362s20180417]
[20]
Nanda, R.F.; Bahar, R.; Syukri, D.; Thu, N.N.A.; Kasim, A. A review: Application of bromelain enzymes in animal food products. And. Intl. J. Agr.nat. Sci, 2020, 1(1), 33-44.
[http://dx.doi.org/10.25077/aijans.v1.i01.33-44.2020]
[21]
Tysnes, B.B.; Maurert, H.R.; Porwol, T.; Probst, B.; Bjerkvig, R.; Hoover, F. Bromelain reversibly inhibits invasive properties of glioma cells. Neoplasia, 2001, 3(6), 469-479.
[http://dx.doi.org/10.1038/sj.neo.7900196] [PMID: 11774029]
[22]
Agrawal, P.; Nikhade, P.; Patel, A.; Mankar, N.; Sedani, S. Bromelain: A potent phytomedicine. Cureus, 2022, 14(8), e27876.
[http://dx.doi.org/10.7759/cureus.27876] [PMID: 36110474]
[23]
Brien, S.; Lewith, G.; Walker, A.; Hicks, S.M.; Middleton, D. Bromelain as a treatment for osteoarthritis: A review of clinical studies. Evid. Based Complement. Alternat. Med., 2004, 1(3), 251-257.
[http://dx.doi.org/10.1093/ecam/neh035] [PMID: 15841258]
[24]
Tallei, T.E. Fatimawali,; Adam, A.A.; Elseehy, M.M.; El-Shehawi, A.M.; Mahmoud, E.A.; Tania, A.D.; Niode, N.J.; Kusumawaty, D.; Rahimah, S.; Effendi, Y.; Idroes, R.; Celik, I.; Hossain, M.J.; Emran, T.B. Fruit bromelain-derived peptide potentially restrains the attachment of SARS-CoV-2 variants to hACE2: A pharmacoinformatics approach. Molecules, 2022, 27(1), 260.
[http://dx.doi.org/10.3390/molecules27010260] [PMID: 35011492]
[25]
Jagadeesan, P.; Jagadeesan, R.; Ramachandran, R. A Potential Therapeutic Solution For COVID-19. Int. J. Sci. Eng., 2021, 12(10), 487-514.
[26]
Rathnavelu, V.; Alitheen, N.B.; Sohila, S.; Kanagesan, S.; Ramesh, R. Potential role of bromelain in clinical and therapeutic applications. Biomed. Rep., 2016, 5(3), 283-288.
[http://dx.doi.org/10.3892/br.2016.720] [PMID: 27602208]
[27]
Dalgleish, A.; Liu, W. The role of immune modulation and anti inflammatory agents in the management of prostate cancer: A case report of six patients. Oncol. Lett., 2022, 24(2), 247.
[http://dx.doi.org/10.3892/ol.2022.13367] [PMID: 35761946]
[28]
Hu, P.A.; Wang, S.H.; Chen, C.H.; Guo, B.C.; Huang, J.W.; Lee, T.S. New mechanisms of bromelain in alleviating non-alcoholic fatty liver disease-induced deregulation of blood coagulation. Nutrients, 2022, 14(11), 2329.
[http://dx.doi.org/10.3390/nu14112329] [PMID: 35684129]
[29]
Müller, S.; März, R.; Schmolz, M.; Drewelow, B.; Eschmann, K.; Meiser, P. Placebo-controlled randomized clinical trial on the immuno-modulating activities of low- and high-dose bromelain after oral administration - new evidence on the antiinflammatory mode of action of bromelain. Phytother. Res., 2013, 27(2), 199-204.
[http://dx.doi.org/10.1002/ptr.4678] [PMID: 22517542]
[30]
Kwatra, B. A review on potential properties and therapeutic applications of bromelain. World J. Pharm. Pharm. Sci., 2019, 8(11), 488-500.
[http://dx.doi.org/10.20959/wjpps201911-14941]
[31]
Rajan, P.K.; Dunna, N.R.; Venkatabalasubramanian, S. A comprehensive overview on the anti-inflammatory, antitumor, and ferroptosis functions of bromelain: An emerging cysteine protease. Expert Opin. Biol. Ther., 2022, 22(5), 615-625.
[http://dx.doi.org/10.1080/14712598.2022.2042250] [PMID: 35176951]
[32]
Khazaeel, K.; Rad, O.R.; Jamshidian, J.; Tabandeh, M.R.; Mohammadi, G.; Atashfaraz, A. Effect of bromelain on sperm quality, testicular oxidative stress and expression of oestrogen receptors in BISPHENOL‐A treated male mice. Andrologia, 2022, 54(11), e14584.
[http://dx.doi.org/10.1111/and.14584] [PMID: 36068179]
[33]
Kumar, R.; Kumar, R.; Sharma, N.; Khurana, N.; Singh, S.K.; Satija, S.; Mehta, M.; Vyas, M. Pharmacological evaluation of bromelain in mouse model of Alzheimer’s disease. Neurotoxicology, 2022, 90, 19-34.
[http://dx.doi.org/10.1016/j.neuro.2022.02.009] [PMID: 35219781]
[34]
Gopalraaj, J.; Raj, J.B.S.; Velayudhannair, K.; Chandrakas, L. Bromelain improves the growth, biochemical, and hematological profiles of the fingerlings of Nile Tilapia, Oreochromis niloticus. J. Appl. Biol. Biotechnol., 2022, 10(2), 73-77.
[http://dx.doi.org/10.7324/JABB.2022.10s207]
[35]
Kiani, M.; Zabihi, E.; Nafarzadeh, S.; Nouri, H.R.; Bijani, A.; Seyedmajidi, M. Anti-cancer effect of bromelain and its combination with cisplatin on HN5 cell line (Squamous Cell Carcinoma). J. Dent., 2022, 23(3), 257-265.
[http://dx.doi.org/10.30476/DENTJODS.2021.89577.1478] [PMID: 36506883]
[36]
Weinzierl, A.; Harder, Y.; Schmauss, D.; Menger, M.D.; Laschke, M.W. Bromelain protects critically perfused musculocutaneous flap tissue from necrosis. Biomedicines, 2022, 10(6), 1449.
[http://dx.doi.org/10.3390/biomedicines10061449] [PMID: 35740469]
[37]
Sharma, A.; Sharma, T.; Sharma, S.; Kumar, D.; Gondil, V.S.; Mehra, N.; Kanwar, S.S. The Impact of Nanoparticles-based Enzyme Im-mobilization in Biocatalysis. In: Nanomaterials for Biocatalysis; Elsevier: Amsterdam, 2022; pp. 149-168.
[http://dx.doi.org/10.1016/B978-0-12-824436-4.00021-6]
[38]
Meryam, S.R.A.; Sardar, M. Enzyme immobilization: An overview on nanoparticles as immobilization matrix. Biochem. Anal. Biochem., 2015, 4(2), 1.
[http://dx.doi.org/10.4172/2161-1009.1000178]
[39]
Mohammadi, Z.B.; Zhang, F.; Kharazmi, M.S.; Jafari, S.M. Nano-biocatalysts for food applications; immobilized enzymes within different nanostructures. Crit. Rev. Food Sci. Nutr., 2022, 15, 1-19.
[http://dx.doi.org/10.1080/10408398.2022.2092719] [PMID: 35758266]
[40]
Prasad, K.; Jha, A.K. ZnO nanoparticles: Synthesis and adsorption study. Nat. Sci., 2009, 1(02), 129.
[http://dx.doi.org/10.4236/ns.2009.120]
[41]
Jha, A.K.; Prasad, K.; Prasad, K. A green low-cost biosynthesis of Sb2O3 nanoparticles. Biochem. Eng. J., 2009, 43(3), 303-306.
[http://dx.doi.org/10.1016/j.bej.2008.10.016] [PMID: 19844916]
[42]
Johny, L.C.; Kudre, T.G.; Suresh, P.V. Production of egg white hydrolysate by digestion with pineapple bromelain: optimization, evalua-tion and antioxidant activity study. J. Food Sci. Technol., 2022, 59(5), 1769-1780.
[http://dx.doi.org/10.1007/s13197-021-05188-0] [PMID: 34219806]
[43]
Bodnar, M.; Hartmann, J.F.; Borbely, J. Synthesis and study of cross-linked chitosan-N-poly(ethylene glycol) nanoparticles. Biomacromolecules, 2006, 7(11), 3030-3036.
[http://dx.doi.org/10.1021/bm0605053] [PMID: 17096528]
[44]
Alhwaige, A.A.; Agag, T.; Ishida, H.; Qutubuddin, S. Biobased chitosan/polybenzoxazine cross-linked films: Preparation in aqueous me-dia and synergistic improvements in thermal and mechanical properties. Biomacromolecules, 2013, 14(6), 1806-1815.
[http://dx.doi.org/10.1021/bm4002014] [PMID: 23631553]
[45]
Ataide, J.A.; Gérios, E.F.; Mazzola, P.G.; Souto, E.B. Bromelain-loaded nanoparticles: A comprehensive review of the state of the art. Adv. Colloid Interface Sci., 2018, 254, 48-55.
[http://dx.doi.org/10.1016/j.cis.2018.03.006] [PMID: 29622269]
[46]
Brito, A.M.M.; Oliveira, V.; Icimoto, M.Y.; Nantes-Cardoso, I.L. Collagenase activity of bromelain immobilized at gold nanoparticle inter-faces for therapeutic applications. Pharmaceutics, 2021, 13(8), 1143.
[http://dx.doi.org/10.3390/pharmaceutics13081143] [PMID: 34452104]
[47]
García Colmenares, J.M.; Reyes Cuellar, J.C. Immobilization of bromelain on cobalt-iron magnetic nanoparticles (CoFe2O4) for casein hydrolysis. Rev. Colomb. Quim., 2020, 49(1), 3-10.
[http://dx.doi.org/10.15446/rev.colomb.quim.v1n49.69474]
[48]
Wang, X.; He, L.; Wei, B.; Yan, G.; Wang, J.; Tang, R. Bromelain-immobilized and lactobionic acid-modified chitosan nanoparticles for enhanced drug penetration in tumor tissues. Int. J. Biol. Macromol., 2018, 115, 129-142.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.04.076] [PMID: 29665385]
[49]
Hasannasab, M.; Nourmohammadi, J.; Dehghan, M.M.; Ghaee, A. Immobilization of bromelain and ZnO nanoparticles on silk fibroin nanofibers as an antibacterial and anti-inflammatory burn dressing. Int. J. Pharm., 2021, 610, 121227.
[http://dx.doi.org/10.1016/j.ijpharm.2021.121227] [PMID: 34699950]
[50]
Hasan, S. A review on nanoparticles: Their synthesis and types. Res. J. Recent Sci., 2015, 2277, 2502.
[51]
Bhatia, S. Nanoparticles Types, Classification, Characterization, Fabrication Methods and Drug Delivery Applications. In: Natural polymer drug delivery systems; Springer: Cham, 2016; pp. 33-93.
[http://dx.doi.org/10.1007/978-3-319-41129-3_2]
[52]
Liu, W.T. Nanoparticles and their biological and environmental applications. J. Biosci. Bioeng., 2006, 102(1), 1-7.
[http://dx.doi.org/10.1263/jbb.102.1] [PMID: 16952829]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy